
Numerical Investigation and Optimization of a Flushwall
Injector for Scramjet Applications at Hypervelocity Flow

Conditions

Rajiv R. Shenoy,†Tomasz G. Drozda,‡Erik L. Axdahl,‡and Robert A. Baurle,‡
NASA Langley Research Center, Hampton, VA 23681

ABSTRACT

An investigation utilizing Reynolds-averaged simulations (RAS) was performed in order to find optimal
designs for an interdigitated flushwall injector suitable for scramjet applications at hypervelocity conditions.
The flight Mach number, duct height, spanwise width, and injection angle were the design variables selected
to maximize two objective functions: the thrust potential and combustion efficiency. A Latin hypercube
sampling design-of-experiments method was used to select design points for RAS. A methodology was
developed that automated building geometries and generating grids for each design. The ensuing RAS
analysis generated the performance database from which the two objective functions of interest were
computed using a one-dimensional performance utility. The data were fitted using four surrogate models:
an artificial neural network (ANN) model, a cubic polynomial, a quadratic polynomial, and a Kriging model.
Variance-based decomposition showed that both objective functions were primarily driven by changes in the
duct height. Multiobjective design optimization was performed for all four surrogate models via a genetic
algorithm method. Optimal solutions were obtained at the upper and lower bounds of the flight Mach
number range. The Kriging model obtained an optimal solution set that predicted high values for both
objective functions. Additionally, three challenge points were selected to assess the designs on the Pareto
fronts. Further sampling among the designs of the Pareto fronts are required in order to lower the errors
and perform more accurate surrogate-based optimization.

INTRODUCTION

The design of fuel injector systems, fuel-air mixing, and efficient combustion and flameholding are key fluid
dynamic challenges for optimal designs of scramjet flowpaths. Attempts to enhance the fuel-air mixing,
while simultaneously reducing total pressure losses, thereby improving thrust potential, have received a
great deal of attention over the years.1 Although a certain amount of total pressure loss is expected due to
the desired effect of molecular mixing of the fuel and air, further losses will reduce the thrust potential of the
engine and should, therefore, be minimized.
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The Enhanced Injection and Mixing Project (EIMP) being conducted at the NASA Langley Research Center,
represents an effort to achieve more rapid mixing at high speeds.2 The EIMP aims to investigate scramjet
fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop
enhancement strategies relevant to flight Mach numbers greater than 8. Since a shorter combustor results
in a lighter vehicle, the ultimate goal is to minimize the overall combustor length, while producing sufficient
thrust and minimal losses. Furthermore, it is beneficial to obtain functional relationships between the
relevant performance metrics, such as combustion efficiency and losses, and the flowpath geometrical
parameters, such as spanwise spacing, in order to guide design changes. In the experiments, which are un-
derway in the Arc-Heated Scramjet Test Facility (AHSTF), various fuel injection devices are being tested on
an open flat plate located downstream of a Mach 6 facility nozzle, which simulates the combustor entrance
flight enthalpy of a flight vehicle traveling at a Mach number of about 14 to 16. An open flat plate geometry
was chosen, as opposed to a closed duct, in order to facilitate optical access for nonintrusive diagnostics
and to simplify the experiment. Furthermore, the tests are conducted at reduced total temperature and with
an inert fuel simulant (helium) to allow for uncooled test hardware, thereby further reducing the complexity
and cost of the experiment. The impact of reduced total temperature, inert fuel simulant, and open plate
versus ducted flowpath configuration on the mixing character of the flow has been previously assessed
computationally.3,4 The mixing performance of three baseline fuel injectors: a strut, a ramp and a flushwall,
under these experimental conditions, has been characterized computationally.5 The effect of varying the
flight Mach number between 8 and 15 was investigated subsequently for these baseline fuel injectors.6 The
goal of the present study is to perform optimization of an interdigitated flushwall injector in a straight duct,
using hydrogen as the fuel. Surrogate models, which will be trained or developed using Reynolds-averaged
simulations (RAS), are used by a genetic algorithm to drive optimization in order to substantially reduce
computational expense.

INJECTOR GEOMETRY AND FLOW CONDITIONS

Top and side views and dimensional details of the flushwall injector geometry are shown in Fig.1. The port’s
exit interface shape is derived from the multiobjective optimization work of Ogawa.7 The flushwall injector
introduces a number of flow features around the injection site that interact to produce a fluidic blockage. A
bow shock forms upstream of the injection plume creating total pressure losses and aerodynamic blockage
by forcing the air to flow around the fuel plume. The fuel plume entering the high-speed crossflow generates
a counterrotating vortex pair, which becomes the main mechanism for stirring the fuel into the air. However,
unlike a fuel placement device, such as a strut, the extent to which the fuel penetrates into the airflow is
governed by fluidic considerations.1,8–10 The jet penetration has been shown to be primarily proportional to
the ratio of the orthogonal components of the dynamic pressure (or momentum flux) of the main air and the
fuel jet, and is further enhanced by matching the static pressure at the exit of the fuel injector to the static
pressure of the air just upstream of the fuel plume and downstream of the bow shock. The injector port
has a rectangular cross section with the longer dimension aligned with the streamwise direction. Ogawa7

showed that a high aspect ratio oval cross-section port was desirable for high mixing efficiency and fuel
penetration. The injection angle α, i.e., the angle of the port with respect to the streamwise direction, is
variable and the port rotates about an axis coinciding with the intersection of the upstream port wall and
the combustor plate as detailed in Fig.1. The injector also contains an expansion section with a 6 degree
half-angle. The port’s width is fixed at 0.1392 inches and the port’s throat height is 0.1541 inches. The
expansion area ratio is approximately 2.95 with an exit height of 0.4551 inches. The interface created as
the port is rotated about the rotation axis varies with the injection angle. This interface has length L, which
is equivalent to the port’s exit height when α = 90◦.

Figure 2 shows a schematic view of the flow cross section for the interdigitated flushwall injector configu-
ration. An infinite row of interdigitated injectors is simulated. The duct height h is defined as the distance
between the two combustor plates, while the spanwise spacing w is defined as the distance between two
injector ports attached to the same plate. The intended fueling area (IFA) is defined as the portion of the
cross-sectional area of the duct that each injector is expected to fuel independently of others, demarcated
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Figure 1. Dimensional details of the baseline flushwall injector (dimensions are in inches). The
injection angle is denoted as α. The injector port intersects the combustor plate across an interface
with length L.

h
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w

Figure 2. Schematic of the cross-section view of the ducted flowpath with a row of interdigitated
flushwall injectors The region between dashed lines denote the IFA for each injector and the shaded
area illustrates the cross-section of the computational domain used.

by dashed lines. For the flushwall injector, an appropriate choice for the IFA is the half-height times the
spanwise spacing (h/2× w).

The flight conditions of interest in this study range from a Mach number of 8 to 15 assuming a nominal
vehicle flight path along a constant dynamic pressure trajectory of 1500 psf. The freestream air is then
compressed to 50.66 kPa with an inlet model assuming 95% isentropic efficiency and 99% adiabatic
efficiency. The kinetic energy efficiency of this notional inlet is about 98%. The total inlet contraction
ratio ranges from about 7.3 at a flight Mach number of 8 to about 20.0 at a flight Mach number of 15. The
combustor inflow Mach number ranges from about 3.7 to 6.4 as the flight Mach number varies from 8 to
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15, respectively. The freestream conditions for flight Mach numbers of 8 and 15 are shown in Table 1. The
combustor flowpath entrance static pressure was maintained 50.66 kPa (half an atmosphere) for all flight
conditions. A thermally perfect mixture of 21% oxygen (O2) and 79% nitrogen (N2) by volume was used for
the air. Hydrogen fuel is supplied at a total temperature of approximately 1200 K and its mass flow rate for
each injector was computed based on an equivalence ratio (ER) of 0.75 over the IFA.

OBJECTIVE FUNCTIONS OF INTEREST AND DESIGN VARIABLES

The performance of the fuel injection was evaluated using two metrics of interest, which were selected from
a number of different metrics that are typical in such combustion performance analyses.11 The first metric
of interest is the thrust potential. This metric is obtained by expanding one-dimensional values of the flow
variables at each streamwise location through an ideal (isentropic) thrust nozzle. In the current work, this
(thermodynamic) expansion process is evaluated until the flow reaches the static pressure at the combustor
flowpath entrance. The thrust potential is computed from:

TP = ṁeue + peAe − ṁiui − piAi (1)

where TP is the stream thrust potential (not net thrust potential); ṁ, u, p, and A, are the mass flow rate,
velocity, static pressure, and the area, with subscripts e and i denoting conditions at the thrust nozzle exit
plane, and the flowpath entrance (inflow), respectively. The stream thrust potential only includes the internal
portion of the flowpath as the control volume, whereas the net thrust potential includes the entire notional
flowpath in its formulation. Since the mass flow rate through the flowpath varies with the flight condition and
the IFA is unique to each injector, it is beneficial to normalize the thrust potential based on an inflow mass
flow rate that is processed by each combustor in order to draw useful comparisons as the flight condition
changes. The resulting mass-flow specific stream thrust potential is:

TPm ≡
TP

ṁi
=
ṁeue + peAe − piAi

ṁi
− ui. (2)

This metric represents an ideal potential mass-flow specific stream thrust that could be obtained when a
flowpath of interest is truncated at a given streamwise location and coupled at that location to an ideal thrust
nozzle. However, the flow in the thrust nozzle is assumed to be chemically “frozen” starting at the point of
expansion, and therefore, this metric does not account for any additional mixing (thrust loss) and reaction
(thrust gain) during the expansion process. For the rest of this paper, this mass-flow specific stream thrust
potential will be referred to as the thrust potential for brevity (TPm). All of the losses in the value of the total
pressure still appear as a decrease in the value of the thrust potential, however, the chemical reactions,
which energize the flow, could increase the value of the thrust potential.

The second metric to serve as an objective function of interest is the combustion efficiency, which quantifies
how completely a given flowpath is able to process a mixture of fuel and air into combustion products,
thereby enabling heat release into the flow. The combustion efficiency is selected in this work in addition to
the thrust potential in order to incorporate designs that promote fuel mixing (and, thereby, combustion) as
desirable, rather than designs that simply augment thrust with added momentum of the unmixed fuel and/or
designs that do not generate significant heat release that helps to augment thrust. There exists a number

Table 1. Freestream conditions for the extrema of flight Mach numbers in the current simulations.

Alt. (km) Mach No. Q (kPa) p (kPa) T (K) T0
† (K) p0

† (MPa)
28.0 8.0 71.82 1.6048 232.4 2753.9 24.78
36.6 15.0 71.82 0.4565 249.4 8816.6 1333.2

†Value based on frozen composition of air
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of combustion efficiency definitions, however, in this effort, the simplest definition based on the fuel mass
fraction depletion is used, i.e.,

ηc = 1− ṁf

ṁf,tot
(3)

where ṁf and ṁf,tot are the integrated mass flow rates of fuel at a streamwise location of interest and the
total injected fuel flow rate, respectively.

Four parameters are used as design variables. These are the flight Mach number M , duct height h,
spanwise spacing w, and the injection angle α. The bounds of these variables were chosen based on
results obtained from previous work and problem feasibility. The optimization problem can be characterized
as follows:

maximize: thrust potential: TPm

combustion efficiency: ηc

subject to: flight Mach number: 8.0 ≤M ≤ 15.0
duct height: 1.0 ≤ h ≤ 3.0
spanwise spacing: 0.8 ≤ w ≤ 2.0
injection angle: 30◦ ≤ α ≤ 90◦

Both optimization quantities are obtained at the exit of the domain, i.e., 25 inches downstream of the fuel
injection plane. The flight Mach number bounds reflect the flight conditions of interest from previous work,6

while the duct height and spanwise spacing bounds are selected based on estimates of where optimal
solutions are expected. The injection angle bounds were selected based on the optimization effort of
Ogawa.7

COMPUTATIONAL METHODOLOGY

The numerical simulations were performed using the Viscous Upwind aLgorithm for Complex flow ANalysis
(VULCAN-CFD) code.12 VULCAN-CFD is a cell-centered, finite-volume solver widely used for high-speed
flow simulations. For this work, Reynolds-averaged simulations (RAS) were performed using structured,
multiblock grids. The advective terms were computed using the Monotone Upstream-Centered Scheme
for Conservation Laws (MUSCL) scheme13 with the Low-Dissipation Flux-Split Scheme (LDFSS) of Ed-
wards.14 The thermodynamic properties of the mixture components were computed using the curve fits
of McBride et al.15 The governing equations were integrated using an implicit diagonalized approximate
factorization (DAF) method.16 The current work used the Menter Baseline two-equation turbulent physics
model.17 The Reynolds heat and species mass fluxes were modeled using a gradient diffusion model with
turbulent Prandtl and Schmidt numbers of 0.9 and 0.5, respectively. The chemical reactions are modeled
using the nine-species / nineteen-reaction hydrogen air kinetic model of Ó Conaire and Westbrook,18 with
turbulent-chemistry interactions not modeled. Wilcox wall matching functions19 were also used, however,
their implementation in VULCAN-CFD includes a modification that allows the simulations to recover the
integrate-to-the-wall behavior as the value of normalized wall-distance, y+, approaches one. All simulations
were converged until the total integrated mass flow rate and the total integrated heat flux on the walls
remained constant to at least 4 decimal points. This typically occurred when the value of the L2-norm
of the steady-state equation-set residual decreased by about 3–4 orders of magnitude. To conserve the
available computational resources, all the simulations were split into elliptic and space-marching regions.
The elliptic region contained the inflow of the domain, the injector bodies, and up to 6.5 inches downstream
of the injection plane. The computational cell count was about equal in both regions, but the computational
cost associated with solving the space-marching region was about an order of magnitude lower than that
for the elliptic region. Past experience for similar interdigitated injector configurations have shown that this
approach accurately simulates the flow features and integrated values from the one-dimensional metrics of
interest when compared against simulations obtained from using a single, fully elliptic region.6
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(a) View showing entire combustor with relevant boundary conditions and
streamwise stations.

(b) Detailed view of injector port and combustor plates.

Figure 3. Computational domain of the combustor with relevant details. All dimensions are in
inches.

The computational domain for these interdigitated flushwall injectors is illustrated in Fig. 3. The inflow and
outflow planes are placed at 9 inches upstream and 25 inches downstream, respectively, of the fuel injection
plane, which is located at X = 0. The left symmetry plane bisects the port laterally and the right symmetry
plane is coincident with the plane halfway between adjacent injectors ports intersecting the same plate.
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These lateral symmetry planes are w/2 apart. The interdigitated symmetry is taken advantage by placing
a pair of polar periodic boundary conditions at h/2 above the bottom combustor plate (halfway to the top
plate). The cross-sectional area of the computational domain corresponds to half the IFA and is shaded in
gray in Fig. 2.

Efficient sampling of the design space was accomplished by utilizing DAKOTA’s Latin hypercube sampling
(LHS).20 The LHS is a design-of-experiments (DoE) method that generates space-filling samples over a
multidimensional design space. Here, fifty samples were chosen to cover the entire design space over the
four design variables. Additionally, sixteen corner points of the four-variable hypercube were also chosen
to anchor the surrogate models and improve accuracy near the corners. A computational grid dependence
study was previously conducted by Drozda et al.5 showing that a nominal spacing of 0.01 inches obtained
sufficiently low errors (approx. 5%) for total pressure recovery and mixing efficiency.

Geometries and grids for these DoE simulations were generated using the GoHypersonic Inc., LINK3D
software,21 which enables efficient, parallel grid generation that is amenable to geometric modifications
and design optimization. A methodology was developed that automatically generates the required geometry
and performs grid smoothing and clustering based on the geometrical design parameters of each case in
the DoE. First, using the geometric design variables, i.e., the duct height, spanwise spacing, and injection
angle, geometry curves and surfaces are generated. Since topology nodes reside in one-dimensional and
two-dimensional coordinates with respect to their associated geometry curves and surfaces, respectively,
the nodal locations can be automatically updated in response to a geometric modification. This allows
for the same topology to be used for all the geometries in the DoE. The second step involved assigning
dimensions for a small group of edge families in the topology so that a nominal spacing of 0.01 inches was
achieved. Finally, the grids, which ranged between 4.8 million cells to 23.8 million cells, were smoothed and
clustered using LINK3D’s parallel grid engine on a desktop machine, typically in one hour. Figure 4 shows
slices of the grid at the left symmetry plane for two different geometric configurations from the DoE. While
the first case has a small injection angle and a large duct height, the second has a large injection angle and
a smaller height.

(a) Case with h = 1.5266 and α = 32.892◦. (b) Case with h = 1.2497 and α = 80.261◦.

Figure 4. Grid slices at the left symmetry plane foe two DoE configurations.
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RESULTS AND DISCUSSION

The responses of the two objective functions, i.e., the thrust potential and the combustion efficiency, are
plotted against the different design variables for the fifty (interior) DoE points in Fig. 5. Although these
responses are functions of four independent variables, they are plotted as projections over two-dimensional
space for convenience in visualization as well as to highlight the main effects due to changes in the individual
design variables. These responses are plotted in the form of scatter plots as well as being interpolated onto
a two-dimensional grid. The left column shows plots of the thrust potential, while the right column displays
the combustion efficiency. The duct height is shown as a variable in all plots because the data indicated that
both objective functions were strongly influenced by this variable. Increasing duct height tends to increase
the thrust potential, while decreasing it tends to increase the combustion efficiency. Both objective functions
show desirable values over a wide range of height values, suggesting that duct height can be a variable
of compromise. Desirable values of the thrust potential can be found at both the lower and higher ends of
the flight Mach number spectrum, while desirable values of combustion efficiency can be found over the full
range of flight Mach numbers for lower values of duct height. As the injector angle increases, the thrust
potential tends to decrease and the combustion efficiency tends to increase. This is expected since aligning
the flow closer to the air stream (i.e., when the injector angle is low) would contribute more streamwise
momentum, whereas directing the fuel in a more transverse fashion to the air stream would promote more
mixing (and thereby combustion) by increasing fuel penetration. High injection angles, however, decrease
the thrust due to minimal axial fuel injection while increasing the total pressure losses due to stronger bow
shocks, which offset the thrust gains from heat release obtained from increased combustion efficiency.
Varying the spanwise spacing produced multiple maxima for the thrust potential and desirable values of
combustion efficiency over the entire spanwise spacing range, when the duct height is small. The spanwise
spacing appears to be less influential when compared against the other design variables.

Four different surrogate models are applied to fit the data using DAKOTA’s surrogate model capabilities.
These are the quadratic and cubic polynomial models, the Kriging or Gaussian process model with a
reduced quadratic trend option, and the artificial neural network (ANN) model. The models are fitted to
approximate both objective functions and root-mean-squared errors are computed. These errors, listed in
Table 2, are computed by two methods: residuals and 10-fold cross-validation. The residual method obtains
the deviation of the observed data from the model’s predictions using the full set of training data. Cross-
validation (CV) is a technique used to predict how well a model performs when tested against unseen data.
Using 10-fold CV, the training data is randomly divided into ten partitions. For each partition, the data set
of the partition is reserved for validating a model, which is computed using the data set from the remaining
nine partitions. In this way, ten separate models are computed for the ten partitions. The errors of these
ten models are averaged to compute the CV error metric. The residual errors are similar between the
ANN and quadratic polynomial models, and are lower for the cubic polynomial model. The Kriging model,
by definition, will have zero residual error. Using the 10-fold CV method, the ANN and cubic polynomial
models perform the worst, while the Kriging model exhibits the least error.

Table 2. Root-mean-squared errors for the different surrogate models.

Residual 10-fold CV
TPm ηc TPm ηc

ANN 21.9 0.043 46.4 0.071
Cubic 12.8 0.031 43.7 0.102

Kriging - - 25.4 0.057
Quadratic 21.0 0.044 32.2 0.059

The coefficients of the polynomial bases for the cubic, quadratic, and Kriging models are plotted in Fig. 6
in order to assess the sensitivity of the models to varying the number of samples required to generate
the model. The cubic polynomial fit’s coefficients for both the thrust potential and combustion efficiency
appear to change with increasing samples, suggesting that a larger number of samples are required to
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Figure 5. Variations of both objective functions in response to different combinations of design
variables.
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generate an accurate response model. The coefficients for the quadratic fit for the thrust potential appear
to be insensitive to adding new samples after around 55 samples, while some of the coefficients for the
combustion efficiency still change by small amounts as samples increase. The Kriging model’s coefficients
appear more sensitive to the number of samples for the thrust potential than for the combustion efficiency,
although more samples may be required before the model is insensitive to addition of new samples.

DAKOTA enables sensitivity assessment using variance-based decomposition, which is a global sensitivity
analysis method that gives a measure of how a model’s variability can be attributed to variations in individual
input design variables.20 Variance-based decomposition utilizes the first-order sensitivity index Si and the
total-effect index Ti, also known as Sobol indices. The fraction of the variability in the output, Y , that can be
attributed solely to an individual input variable, xi, is described by the first-order sensitivity index, while the
total-effect index describes the fraction of the variability in the output that can be attributed to a given input
variable as well as its interactions with other variables. The formulas for these indices are:

Si =
V ar[E(Y |x∼i)]

V ar(Y )
(4)

and
Ti =

E[V ar(Y |x∼i)]
V ar(Y )

=
V ar(Y )− V ar[E(Y |x∼i)]

V ar(Y )
(5)

where x∼i denotes the set of all input variables except xi. Using the four different surrogate models, Sobol
indices are computed and plotted in Fig. 7. It is noticeable that the duct height has a major influence on both
the thrust potential and combustion efficiency. The flight Mach number and injection angle have a secondary
influence on both objective functions, while the spanwise spacing has the least significant influence. The
models do not show significant deviation from one another except for the quadratic polynomial fit of the
thrust potential, where the spanwise spacing appears even less influential than for the other surrogate fits.
The total-effect indices for the thrust potential are significantly greater than their first-order counterparts
indicating that the design variables have interactional effects that contribute to the thrust potential output.
Specifically, it is clear that the total-effect indices of the duct height and flight Mach number are greater than
their first order indices. As observed in Fig. 5, for a low duct height and a higher flight Mach number, thrust
potential is low, whereas, for higher values of duct height and lower values of flight Mach number, thrust
potential is generally high. Unlike, the thrust potential, the total-effect indices for the combustion efficiency
show smaller interactional effects from the design variables, suggesting that these variables, in comparison,
are relatively independent in affecting this output.

Multiobjective design optimization is performed using these four surrogate models using DAKOTA’s multiob-
jective genetic algorithm. The algorithm starts with a randomly generated population over the design space
using the surrogate model, instead of CFD, to obtain objective function responses. The best design points
are then allowed to survive over several generations by performing crossover and mutation operations, and
assessing the fitness of each member in the population. The algorithm is terminated when a convergence
criteria is met. In this effort, an initial population size of 100 is selected and reproduction requires that two
parents generate two offspring. The crossover and mutation rates are set to 0.8 and 0.1, respectively.

Figure 8 (a) shows the final populations of nondominated solutions from the four different surrogate models.
For the two objective functions, TPm and ηc, a nondominated solution means that no further improvement of
one function was found without a tradeoff from the other function. The set of these nondominated solutions
obtained from each model is also known as a Pareto front. The plots also show the interior points obtained
from the LHS DoE method marked by open circles as well as the sixteen corner points of the hypercube
marked by plus signs (+). The Pareto fronts resulting from the different models show discontinuities, which
result due to the generation of concave sections of the objective function fronts during the genetic algorithm
iterations. These concave sections contain solutions that are dominated by other (nondominated) solutions
for both objective functions. The quadratic and cubic polynomial models show optimal designs that obtain
combustion efficiencies greater than one, which is nonphysical. This is because the surrogate models
applied were not constrained by known physical limits. This modeling shortcoming could indicate possible
model underfitting or that the utilization of physical constraints within the model is necessary for an accurate
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(a) Cubic polynomial coefficients for TPm. (b) Cubic polynomial coefficients for ηc.

(c) Quadratic polynomial coefficients for TPm. (d) Quadratic polynomial coefficients for ηc.

(e) Kriging coefficients for TPm. (f) Kriging polynomial coefficients for ηc.

Figure 6. Variation of the model coefficients in response to varying the number of samples.
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(a) First-order and total-effect indices for TPm

(b) First-order and total-effect indices for ηc

Figure 7. Sensitivity indices computed for the different surrogate models for the effect of design
variables on the two objective functions.

fit. The Pareto front resulting from the ANN and quadratic model results in designs that are suboptimal
than two designs from training data, which have values of thrust potential and combustion efficiency of
approximately 245 m/s and 0.90, respectively. Unlike the cubic and Kriging models, these models did not fit
these training data adequately, resulting in suboptimal Pareto fronts. The ANN, cubic, and quadratic models
all show a similar clustering of the Pareto front region where thrust potential is high (between approx. 250
m/s and 310 m/s) and combustion efficiency is low (between approx. 0.4 and 0.5). The Kriging model yields
an interesting solution set for the Pareto front, where both the thrust potential and combustion efficiency
are high, that is not predicted by the other three models. The variance in the ranges of these Pareto fronts
illustrate that further iterations of sampling and optimization are warranted.

Figures 8 (b)–(e) show the same Pareto fronts and training data with symbols colored by the design
variables. The four models show that optimal solutions arise for the upper and lower flight Mach number
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(a) Comparison of the solutions from different models.

(b) Solutions with symbols colored by flight Mach num-
ber.

(c) Solutions with symbols colored by duct height.

(d) Solutions with symbols colored by spanwise spacing. (e) Solutions with symbols colored by injection angle.

Figure 8. Optimization solutions and training data with the different surrogate models obtained from
the final population of the optimization algorithm.
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limits, except the ANN model, which shows only a small range of Mach numbers close to the upper end.
The duct height for these optimal solution sets are similar for the ANN, cubic, and quadratic models, where
low duct height results in optimal solutions that yield high combustion efficiency at the expense of thrust
potential (in the southeast region of the plot), and high duct height results in optimal solutions that yield high
thrust potential at the expense of combustion efficiency (in the northwest region of the plot). The Kriging
solutions show that over the middle range of the duct height, high values of both the thrust potential and
combustion efficiency are predicted. The spanwise spacing values are in the middle range for the optimal
solutions resulting from the ANN, cubic, and quadratic model, whereas for the Kriging model, low values
of spanwise spacing yields high thrust and high combustion efficiency. The injection angle values vary
from low values to midrange values for the optimal solutions resulting from the ANN, cubic, and quadratic
models, while the Kriging solutions show the full range of the injection angle values. As expected, the lower
the injection angle, the higher the resulting thrust potential, whereas the higher the injection angle, the
higher the combustion efficiency and lower the thrust potential due to greater losses.

In order to assess the accuracy of the Pareto fronts, three challenge design points that were predicted by the
cubic and Kriging models were selected so that CFD-generated solutions may be obtained and compared
against the predictions given by the models. These challenge points are provided in Table 3. Only the cubic
and Kriging models are challenged because these models predicted the greatest improvement with respect
to the training data. The first challenge point selected was a point predicted by the cubic model where thrust
potential is high and combustion efficiency is moderate. The second challenge point selected was a point
predicted by the Kriging model where both the thrust potential and combustion efficiency are high, while the
third challenge point selected was a point predicted by the Kriging model where the thrust potential is low
but the combustion efficiency very high.

Table 3. Challenge points listed with model prediction and CFD-generated solution. The model
challenged is denoted in parentheses.

Design Variables Model CFD
Point (Model) M h w α TPm ηc TPm ηc

1 (Cubic) 14.940 2.9690 1.2771 30.312 304.8 0.4286 271.9 0.4308
2 (Kriging) 8.020 1.5160 0.8044 50.298 309.4 0.9234 270.4 0.8913
3 (Kriging) 8.028 1.0740 1.3933 89.940 200.1 0.9753 199.5 0.9156

Confidence intervals were generated by post-processing all 66 training data points using five sets of 10-
fold CV analyses. This ensembled CV method enables the generation of 50 surrogate models for each
model type that may be sampled over the entire design space. Using the mean and standard deviation of
these models evaluated at the solution points of the different Pareto fronts, one can obtain 95% confidence
intervals that provide an estimate of the error at these points. It is important to note that these error
estimates are obtained by approximating only the training data and, thus, will not be as accurate for points
sufficiently far away from the training data. Figure 9 shows the Pareto fronts resulting from the cubic
and Kriging models with error bars denoting the 95% confidence interval error estimate. The character
X indicates the CFD-generated solution, while the circle highlights the design point on the Pareto front that
is being challenged. The first challenge point obtains a good approximation of the CFD-observed value
for combustion efficiency, but overpredicts the thrust potential by approximately 32 m/s (nearly 12%). This
point falls within its confidence interval estimate. When compared against Fig. 8 (a), this point is close
to a corner training data point, where flight Mach number and duct height are at their maximum values
and spanwise spacing and injection angle are at their minimum values. The second challenge point falls
within the error estimate bounds of combustion efficiency, but is slightly outside of the error bounds of thrust
potential. However, it is interesting to note that this point generated high values for both the thrust potential
and the combustion efficiency that show improvement in both thrust potential and combustion efficiency
with respect to the training data that none of the other models predicted. The third challenge point closely
approximates the CFD-observed value for the thrust potential but overpredicts the combustion efficiency by
nearly 6% and falls outside of its error bounds.
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(a) Challenge point 1. (b) Challenge points 2 and 3.

Figure 9. Comparison of CFD-generated observations at challenge points versus model prediction
on Pareto front.

The error estimates given for each of the models based on the available training data are not sufficiently
low enough to perform surrogate-based optimization that can accurately deliver optimal designs. In order
to drive these errors lower, a set of design points predicted by this first iteration of the optimization would
need to be used to augment the training data set, such as those obtained by the challenge point analysis, in
order to perform a second optimization iteration. This process may need to be repeated until the surrogate
models are sufficiently converged and the optimization yields an accurate representation of the Pareto front.

It is also important to note that the current problem formulation optimizes for the best design point over the
flight envelope, i.e., the best flight Mach numbers to fly at along with the best corresponding geometries.
This is different from performing optimization over a range of flight Mach numbers. One alternate optimiza-
tion strategy would be to perform the same optimization over a series of fixed flight Mach numbers in order
to obtain a variable geometry that is optimal over this range of flight conditions. Another strategy would
be to optimize a fixed geometry across the flight Mach number range, in which for every combination of
geometry design variables, maximize the average values of the thrust potential and combustion efficiency
over the flight Mach number range. Future efforts will explore such optimization strategies that will enable
optimal designs over a range of flight conditions.

Flowfields of the three challenge points are shown in the form of Mach contours in Figs. 10 – 12 in order
to highlight the varied physics occuring. The black isolines denote the stoichiometric value of the fuel mass
fraction. The design of the first challenge point (Fig. 10) is at the upper bound of the flight Mach number
and duct height and lower bound of the injection angle. A relatively high thrust potential is obtained by
opening up the duct, which reduces the total pressure losses that result from shock reflections, as well as
the low injection angle that augments the fuel in the streamwise direction. A low value of mixing efficiency
results due to the fuel not penetrating into the airstream and the fuel plume (denoted by the extent of the
black isolines) extending up to the combustor exit. The second challenge point (Fig. 11) occurs at the lower
bound of the flight Mach number, moderate duct height, and moderate injection angle. The thrust potential
is relatively high because the total pressure losses from the shocks are not as high, allowing a small portion
of the flow to have a relatively high Mach number up to the combustor exit. The combustion efficiency is
high as the fuel plume mixes well with airstream and depletes well upstream of the combustor exit. The third
challenge point (Fig. 12) occurs at the lower bound of the flight Mach number and duct height, and upper
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(a) Side view of the port symmetry plane.
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(b) Cross-stream planes.

Figure 10. Mach contours with black isolines denoting stoichiometric value of the fuel mass fraction
for challenge point 1.

bound of the injection angle. The small duct height in conjunction with the large injection angle results in
lower thrust potential (high total pressure losses) and greater combustion efficiency as fuel depletes further
upstream of the combustor exit than for the second challenge point.

SUMMARY AND CONCLUSIONS

A numerical investigation has been conducted in order to find optimal designs for an interdigitated flush
wall injector. The flight Mach number, duct height, spanwise spacing, and injection angle are the design
variables for optimizing thrust potential and the combustion efficiency of the injector. The training design
points were generated using Latin hypercube sampling augmented with the corners of the hypercube.
Using a newly developed automated geometry and grid generation methodology, computational grids were
efficiently created. The objective functions at the training points were obtained from the resulting Reynolds-
averaged simulations using one-dimensional performance metrics. Four surrogate models were obtained
to fit the data and error estimates of these models were tabulated. Errors obtained from cross-validation
showed that the Kriging model exhibited the least error, while the artificial neural network and the cubic mod-
els had the greatest errors. Variance-based decomposition was performed to obtain sensitivity indices. This
analysis showed that duct height is the primary driver of both the thrust potential and combustion efficiency.
Additionally, the design variables have interactional effects that contribute to the thrust potential response.
Multiobjective design optimization was performed using the surrogate models using a multiobjective genetic
algorithm. The models showed that optimal solutions are obtained at both the upper and lower flight Mach
number limits. The Kriging model resulted in a Pareto front that yielded high values for the both the thrust
potential and combustion efficiency that was not captured by the other models. Three challenge points
were selected to challenge the optimal solutions predicted by the cubic and Kriging models. The second and
third challenge points that assessed the Kriging model did not fall within both objective function’s confidence
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(a) Challenge point 2: Side view of the port symmetry plane.
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(b) Challenge point 2: Cross-stream planes.

Figure 11. Mach contours with black isolines denoting stoichiometric value of the fuel mass fraction
for challenge point 2.
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(a) Challenge point 3: Side view of the port symmetry plane.

-6.0
-4.5

-3.0
-1.5

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5
12.0

13.5
15.0

16.5
18.0

19.5
21.0

22.5
24.0

(b) Challenge point 3: Cross-stream planes.

Figure 12. Mach contours with black isolines denoting stoichiometric value of the fuel mass fraction
for challenge point 3.
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intervals. Further sampling among the designs predicted by the Pareto fronts of these models are warranted
in order to drive the error estimates down and perform more accurate surrogate-based optimization.
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