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Abstract. The problem of determining whether or not a point lies inside
a given polygon occurs in many applications. In air traffic management
concepts, a correct solution to the point-in-polygon problem is critical to
geofencing systems for Unmanned Aerial Vehicles and in weather avoid-
ance applications. Many mathematical methods can be used to solve
the point-in-polygon problem. Unfortunately, a straightforward floating-
point implementation of these methods can lead to incorrect results due
to round-off errors. In particular, these errors may cause the control
flow of the program to diverge with respect to the ideal real-number
algorithm. This divergence potentially results in an incorrect point-in-
polygon determination even when the point is far from the edges of
the polygon. This paper presents a provably correct implementation of a
point-in-polygon method that is based on the computation of the winding
number. This implementation is mechanically generated from a source-
to-source transformation of the ideal real-number specification of the
algorithm. The correctness of this implementation is formally verified
within the Frama-C analyzer, where the proof obligations are discharged
using the Prototype Verification System (PVS).

1 Introduction

PolyCARP (Algorithms for Computations with Polygons) [25,27] is a NASA de-
veloped open source software library for geo-containment applications based on
polygons.3 One of the main applications of PolyCARP is to provide geofencing
capabilities to unmanned aerial vehicles (UAV), i.e., detecting whether a UAV
is inside or outside a given geographical region, which is modeled using a 2D
polygon with a minimum and a maximum altitude. Another application is de-
tecting if an aircraft’s trajectory encounters weather cells, which are modeled as
moving polygons.

PolyCARP implements point-in-polygon methods, i.e., methods for checking
whether or not a point lies inside a polygon, that are based on the winding num-
ber computation. The winding number of a point p with respect to a polygon

⋆ Research by the first three authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

3 https://shemesh.larc.nasa.gov/fm/PolyCARP.
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is the number of times any point traveling counterclockwise along the perimeter
of the polygon winds around p. Properties of these methods have been formally
verified in the Prototype Verification System (PVS) [28]. A correct implementa-
tion of these methods is essential to safety-critical geo-containment applications
that rely on PolyCARP.

When an algorithm involving real numbers is implemented using floating-
point numbers, round-off errors arising from the difference between real-number
computations and their floating-point counterparts may affect the correctness of
the algorithm. In fact, floating-point implementations of point-in-polygon meth-
ods are very sensitive to round-off errors. For instance, the presence of floating-
point computations in Boolean expressions of conditional statements may cause
the control flow of the floating-point program to diverge from the ideal real-
number program, resulting in the wrong computation of the winding number.
This may happen even when the point is far from the edges of the polygon.

This paper presents a formally verified floating-point C implementation of
the winding number algorithm. This implementation is obtained by applying a
program transformation to the original algorithm. This transformation replaces
numerically unstable conditions with more restrictive ones that preserve the
control flow of the ideal real number specification. The transformed program is
guaranteed to return a warning when real and floating-point flows may diverge.
The program transformation used is an extension of the one defined in [32] and
it has been implemented within PRECiSA4 (Program Round-off Error Certifier
via Static Analysis), a static analyzer of floating-point programs [24,30].

Frama-C [20] is used to formally verify the correctness of the generated C
program. Frama-C is a collaborative platform that hosts several plugins for the
verification and analysis of C code. In particular, in this work, an extension
of the Frama-C/WP (Weakest Precondition calculus) plugin is implemented to
automatically generate verification conditions that can be discharged in PVS.

The rest of this paper is organized as follows. Section 2 presents the definition
of the winding number. An extension of the program transformation defined in
[30] is presented in Section 3. In Section 4, the transformed floating-point version
of the winding number is introduced. The verification approach used to prove the
correctness of the C floating-point implementation of the transformed program is
explained in Section 5. Related work is discussed in Section 6. Finally, Section 7
concludes the paper.

2 The Winding Number Algorithm

The winding number of a point s with respect to a polygon P is defined as the
number of times the perimeter of P travels counterclockwise around s. For simple
polygons, i.e., the ones that do not contain intersecting edges, this function can
be used to determine whether s is inside or outside P . In [25], the winding number
of s with respect to P is computed by applying a geometric translation that sets

4 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.
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(b) The sum of the contributions
is 4 and the point is inside.

Fig. 1: Winding number edge contributions

s as the origin of coordinates. For each edge e of P , the algorithm counts how
many axes e intersects. This contribution can be positive or negative, depending
on the direction of the edge e. If the sum of all contributions from all edges is
0 then s is outside the perimeter of P , otherwise, it is inside. Fig. 1 shows the
edge contributions in the computation of the winding number for two different
polygons.

Mathematical functions that define the winding number algorithm are pre-
sented in Fig. 2. Given a point v = (vx, vy), the function Quadrant returns
the quadrant in which v is located. Given the endpoints of an edge e, v =
(vx, vy) and v′ = (v′x, v′y), and the point under test s = (sx, sy), the function
EdgeContrib(vx, vy, v′x, v′y, sx, sy) computes the number of axes e intersects in
the coordinate system centered in s. This function checks in which quadrants v
and v′ are located and counts how many axes are crossed by the edge e. If v
and v′ belong to the same quadrant, the contribution of the edge to the winding
number is 0 since no axis is crossed. If v and v′ lie in adjacent quadrants, the
contribution is 1 (respectively -1) if moving from v to v′ along the edge is in
counterclockwise (respectively clockwise) direction. In the case v and v′ are in
opposite quadrants, the determinant is computed to check the direction of the
edge. If it is counterclockwise, the contribution is 2; otherwise, it is -2. The func-
tion WindingNumber takes as input a point s = (sx, sy) and a polygon P of size
n, which is represented as a couple of arrays ⟨Px, Py⟩ modeling the coordinates
of its vertices (Px(0), Py(0)) . . . (Px(n − 1), Py(n − 1)). The size of a polygon is
defined as the number of its vertices. The winding number of s with respect to
the polygon P is obtained as the sum of the contributions of all the edges in
P . The result of the winding number is 0 if and only if the polygon P does not
wind around the point s, hence s lies outside P .
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Quadrant(vx, vy) = if vx ≥ 0 ∧ vy ≥ 0 then 1

elsif vx < 0 ∧ vy ≥ 0 then 2

elsif vx < 0 ∧ vy < 0 then 3

else 4

EdgeContrib(vx, vy, v
′

x, v
′

y, sx, sy) =

let thisx = vx − sx, thisy = vy − sy,nextx = v′x − sx,nexty = v′y − sy,

distx = nextx − thisx,disty = nexty − thisy,

det = distx ⋅ thisy − disty ⋅ thisx

qthis = Quadrant(thisx, thisy), qnext = Quadrant(nextx,nexty) in

if qthis = qnext then 0

elsif qnext − 1 = mod (qthis ,4)) then 1

elsif qthis − 1 = mod (qnext ,4)) then −1

elsif det ≤ 0 then 2

else −2

WindingNumber(Px, Py, sx, sy, i) =

if i < size(Px) − 1

then EdgeContrib(Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy)

+WindingNumber(Px, Py, sx, sy, i + 1)

else EdgeContrib(Px(i), Py(i), Px(0), Py(0), sx, sy)

Fig. 2: Winding number algorithm

It has been formally verified in PVS, that the algorithm presented in Fig. 2 is
equivalent to an alternative point-in-polygon algorithm.5 The following property
is therefore assumed.

Property 1. Given a simple polygon P = ⟨Px, Py⟩ and a point s = (sx, sy), s lies
outside P if and only if WindingNumber(Px, Py, sx, sy,0) = 0.

A formal proof of Property 1 that does not rely on an alternative algorith-
mic method to check point containment is a hard problem beyond the scope of
this paper. In particular, a proof of this statement involving a non-algorithmic
definition of containment may require the formal development of fundamental
topological concepts such as the Jordan Curve theorem.

3 Program Transformation to Avoid Unstable Tests

Floating-point numbers are widely used to represent real numbers in computer
programs since they offer a good trade-off between efficiency and precision. A

5 https://github.com/nasa/PolyCARP.
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floating-point number can be formalized as a pair of integers (m, e) ∈ Z2, where
m is called the significand and e the exponent of the float [7,13]. Henceforth, F
will denote the set of floating-point numbers. A conversion function R ∶ F→ R is
defined to refer to the real number represented by a given float, i.e., R((m, e)) =
m ⋅ be where b is the base of the representation. According to the IEEE-754
standard [19], each floating-point operation must be computed as if its result is
first calculated correct to infinite precision and with unbounded range and then
rounded to fit a particular floating-point format.

The main drawback of using floating-point numbers is the presence of round-
off errors that originate from the difference between the ideal computation in
real arithmetic and the actual floating-point computation. Let ṽ be a floating-
point number that represents a real number r , the difference ∣R(ṽ)− r ∣ is called
the round-off error (or rounding error) of ṽ with respect to r . Rounding errors
accumulate during the program execution and may affect the evaluation of both
arithmetic and Boolean expressions. As a consequence, when guards of if-then-
else statements contain floating-point expressions, as in the case of the winding
number, the output of a program is not only directly influenced by rounding
errors, but also by the error of taking the opposite branch with respect to the
real number intended behavior. This problem is known as test instability. A
conditional statement (or test) if φ̃ then S1 else S2 is said to be unstable when
φ̃ evaluates to a different Boolean value than its real-valued counterpart.

In [32], a formally proven6 program transformation is proposed to detect and
correct the effects of unstable tests for a simple language with conditionals and
let-in expressions. The output of the transformation is a floating-point program
that is guaranteed to return either the result of the original floating-point one,
when it can be assured that both the real and its floating-point flows agree,
or a warning, when these flows may diverge. In this paper, the transformation
defined in [32] has been extended to handle non-recursive function calls and
simple for-loops. This extended transformation is then applied to the winding
number algorithm.

Henceforth, the symbols A and Ã denote the domain of arithmetic expres-
sions over real and floating-point numbers, respectively. It is assumed that there
is a function χr ∶ Ṽ → V that associates to each floating-point variable x̃ a vari-
able x ∈ V representing the real value of x̃. The function RÃ ∶ Ã → A converts
an arithmetic expression on floating-point numbers to an arithmetic expression
on real numbers. This function is defined by simply replacing each floating-
point operation with the corresponding one on real numbers and by applying
R and χr to floating-point values and variables, respectively. By abuse of nota-
tion, floating-point expressions are interpreted as their real number evaluation
when occurring inside a real-valued expression. The symbols B and B̃ denote
the domain of Boolean expressions over real and floating-point numbers, respec-
tively. The function RB̃ ∶ B̃ → B converts a Boolean expression on floating-point
numbers to a Boolean expression on real numbers. Given a variable assignment

6 The PVS formalization is available at https://shemesh.larc.nasa.gov/fm/

PRECiSA.
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σ ∶ V→ R, evalB(σ,B) ∈ {true, false} denotes the evaluation of the real Boolean
expression B. Similarly, given B̃ ∈ B̃ and σ̃ ∶ Ṽ → F, ẽval B̃(σ̃, B̃) ∈ {true, false}
denotes the evaluation of the floating-point Boolean expression B̃. A program
is defined as a set of function declarations of the form f(x̃1, . . . , x̃n) = S , where
S is a program expression that can contain binary and n-ary conditionals, let
expressions, arithmetic expressions, non-recursive function calls, for-loops, and a
warning exceptional statement ω. Given a set Σ of function symbols, the syntax
of program expressions S is given by the following grammar.

S ∶∶=Ã ∣ if B̃ then S else S ∣ if B̃ then S [elsif B̃ then S ]mi=1 else S

∣ let x̃ = Ã in S ∣ for(i0, in,acc0, λ(i,acc).S) ∣ g(Ã, . . . , Ã) ∣ ω,
(3.1)

where Ã ∈ Ã, B̃ ∈ B̃, x̃, i,acc ∈ Ṽ, g ∈ Σ, m ∈ N>0, and i0, in,acc0 ∈ N. The
notation [elsif B̃ then S ]mi=1 denotes a list of m elsif branches. The for expression
emulates a for loop where i is the control variable that ranges from i0 to in, acc
is the variable where the result is accumulated with initial value acc0, and S is
the body of the loop. For instance, for(1,10,0, λ(i,acc).i + acc) represents the
value f(1,0), where f is the recursive function f(i,acc) ≡ if i > 10 then acc else
f(i+ 1,acc + i). The set of program expressions is denoted as S, while the set of
programs is denoted as P.

The proposed transformation takes into account round-off errors by replac-
ing the Boolean expressions in the guards of the original program with more
restrictive ones. This is done by means of two abstractions β+, β− ∶ B̃ → B̃ de-
fined as follows for conjunctions and disjunctions of sign tests, where ẽxpr ∈ Ã
and ε ∈ Ṽ is a variable that represents the rounding error of ẽxpr such that
∣ẽxpr −RA(ẽxpr)∣ ≤ ε and ε ≥ 0.

β+(ẽxpr ≤ 0) = ẽxpr ≤ −ε β−(ẽxpr ≤ 0) = ẽxpr > ε
β+(ẽxpr ≥ 0) = ẽxpr ≥ ε β−(ẽxpr ≥ 0) = ẽxpr < −ε
β+(ẽxpr < 0) = ẽxpr < −ε β−(ẽxpr < 0) = ẽxpr ≥ ε
β+(ẽxpr > 0) = ẽxpr > ε β−(ẽxpr > 0) = ẽxpr ≤ −ε
β+(φ̃1 ∧ φ̃2) = β+(φ̃1) ∧ β+(φ̃2) β−(φ̃1 ∧ φ̃2) = β−(φ̃1) ∨ β−(φ̃2)
β+(φ̃1 ∨ φ̃2) = β+(φ̃1) ∨ β+(φ̃2) β−(φ̃1 ∨ φ̃2) = β−(φ̃1) ∧ β−(φ̃2)
β+(¬φ̃) = β−(φ̃) β−(¬φ̃) = β+(φ̃)

Generic inequalities of the form a < b are handled by replacing them with their
equivalent sign-test form a − b < 0.

The following lemma states that β+(φ̃) implies both φ̃ and its real counter-
part, while β−(φ̃) implies both the negation of φ̃ and the negation of its real
counterpart. The proof is available as part of the PVS formalization defined in
[32].

Lemma 1. Given φ̃ ∈ B̃ , let fv(φ̃) be the set of free variables in φ̃. For all
σ ∶ {χr(x̃) ∣ x̃ ∈ fv(φ̃)} → R, σ̃ ∶ fv(φ̃) → F, and x̃ ∈ fv(φ̃) such that R(σ̃(x̃)) =
σ(χr(x̃)), β+ and β− satisfy the following properties.
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1. ẽval B̃(σ̃, β+(φ̃))⇒ ẽval B̃(σ̃, φ̃) ∧ evalB(σ,RB(φ̃)).

2. ẽval B̃(σ̃, β−(φ̃))⇒ ẽval B̃(σ̃,¬φ̃) ∧ evalB(σ,¬RB(φ̃)).

The transformation function τ ∶ S→ S applies β+ and β− to the guards in the
conditionals. For binary conditional statements, τ is defined as follows.

– If φ̃ ≠ β+(φ̃) or φ̃ ≠ β−(φ̃):

τ(if φ̃ then S1 else S2) =
if β+(φ̃) then τ(S1) elseif β−(φ̃) then τ(S2) else ω;

– If φ̃ = β+(φ̃) and φ̃ = β−(φ̃):

τ(if φ̃ then S1 else S2) =if φ̃ then τ(S1) else τ(S2).

When the round-off error does not affect the evaluation of the Boolean expres-
sion, i.e., φ̃ = β+(φ̃) and φ̃ = β−(φ̃), the transformation is just applied to the
subprograms S1 and S2. Otherwise, the then branch of the transformed program
is taken when β+(φ̃) is satisfied. From Lemma 1, it follows that both φ̃ and R(φ̃)
hold and, thus, the then branch is taken in both real and floating-point control
flows. Similarly, the else branch of the transformed program is taken when β−(φ̃)
holds. This means that in the original program the else branch is taken in both
real and floating-point control flows. When neither β+(φ̃) nor β−(φ̃) is satisfied,
a warning ω is issued indicating that floating-point and real flows may diverge.
In the case of the for-loop, the transformation is applied to the body of the loop.

τ(for(i0, in,acc0, λ(i,acc).S)) = for(i0, in,acc0, λ(i,acc). τ(S)). (3.2)

Given a program P ∈ P, the transformation τ̄ ∶ P→ P is defined as follows.

τ̄(P ) =⋃{fτ(x̃1, . . . , x̃n, e1, . . . , em) = τ(S) ∣ f(x̃1, . . . , x̃n) = S ∈ P}, (3.3)

where τ is applied to the body of the function and new arguments e1, . . . , em
are added to represent the round-off error of the arithmetic expressions occur-
ring in the body of each test in S. When either β+ or β− is applied to a test
in the body of S, e.g. ẽxpr < 0, a new fresh variable e is introduced represent-
ing the round-off error of the arithmetic expression occurring in the test. This
fresh variable becomes a new argument of the function and a pre-condition is
imposed stating that ∣ẽxpr − RA(ẽxpr)∣ ≤ e. In addition, for every function call
g(A1, . . . ,An, e

′

1, . . . , e
′

k) occurring in S, the error variables of g, e′1, . . . , e
′

k, are
added as additional arguments to f .

When a function g is called, it is necessary to check if the returning value
is a warning ω. Let g(A1, . . . ,An) be a call to the function g(x1, . . . , xn) = S
in the original program with actual parameters A1, . . . ,An ∈ Ã. Additionally,
let gτ(x1, . . . , xn, e1, . . . , em) = τ(S) be the corresponding function declaration
in the transformed program such that for all i = 1 . . .m, ẽxpr i is an arithmetic
expression occurring in a transformed test and ∣ẽxpr i − RA(ẽxpr i)∣ ≤ ei. The
transformation of the function call is defined as follows:

τ(g(A1, . . . ,An)) = if A1 = ω then ω
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⋮
elsif An = ω then ω

else gτ(A1, . . . ,An, e
′

1, . . . , e
′

m),

where for all i = 1 . . .m, e′i is such that ∣ẽxpr i[xi/Ai]ni=1 −RA(ẽxpr i[xi/Ai]ni=1)∣ ≤
e′i. In this case, the information regarding the error variables is instantiated with
the actual parameters of the function.

The following theorem states the correctness of the program transformation.
The transformed program is guaranteed to return either the result of the original
floating-point program, when it can be assured that both its real and floating-
point flows agree or a warning ω when these flows may diverge.

Theorem 1 (Program Transformation Correctness). Given P ∈ P, for all
f(x̃1,. . . ,x̃n)=S ∈ P , σ ∶ {x1 . . . xn} → R, and σ̃ ∶ {x̃1 . . . x̃n} → F, such that for
all i ∈ {1, . . . , n}, R(σ̃(x̃i)) = σ(xi):

fτ(x̃1, . . . , x̃n, e1, . . . , em) ≠ ω ⇐⇒ f(x1, . . . , xn) = fτ(x̃1, . . . , x̃n, e1, . . . , em)

where fτ(x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P ).

Theorem 1 follows from Lemma 1 and the definition of the program trans-
formation τ̄ . It has been formally proved in PVS for the particular case of the
winding number transformation. A general PVS proof of this statement for an
arbitrary program is under development.

4 Test-Stable Version of the Winding Number

The use of floating-point numbers to represent real values introduces test insta-
bility in the program defined in Section 2. A technique used in PolyCARP to
mitigate the uncertainty of floating-point computations in the winding number
algorithm is to consider a buffer area around the perimeter of the polygon that is
assumed to contain the points that may produce instability. As part of this work,
the PRECiSA static analyzer is used to validate if a buffer that protects against
instability exists. PRECiSA accepts as input a floating-point program and com-
putes a sound over-approximation of the floating-point accumulated round-off
error that may occur in each computational path of the program. In addition,
the corresponding path conditions are also collected for both stable and unsta-
ble cases. When real and floating-point flows diverge, PRECiSA outputs the
Boolean conditions under which the instability occurs.

Given the unstable conditions produced by PRECiSA for the winding number
algorithm, an over-approximation of the region of instability is generated by
using the paving functionality of the Kodiak global optimizer [26]. Concrete
examples for these instability conditions are searched in the instability region
by using the FPRoCK [29] solver, a tool able to check the satisfiability of mixed
real and floating-point Boolean expressions. As an example, consider the edge
(v, v′), where v = (1,1) and v′ = (3,2), in the polygon depicted in Fig. 3. The
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Fig. 3: Points that cause instability in EdgeContrib and WindingNumber .

red lines represent a guaranteed over-approximation of the values for sx and
sy that may cause instability in the function EdgeContrib with respect to the
considered edge. The black aircraft denotes a case in which the contribution of
the edge (v, v′) has a different value in real and floating-point arithmetic. In fact,
when sx = 4 and sy ≈ 1.0000000000000001, the real function EdgeContrib returns
-1, indicating that v and v′ are located in adjacent quadrants. However, its
floating-point counterpart returns 0 meaning that the vertices are located in the
same quadrant. The red aircraft represents the point sx ≈ 2.0000000000000002,
sy = 1.5, for which the main function WindingNumber returns 0, i.e., the point
is outside, when evaluated with real arithmetics, and it returns 4, i.e., the point
is inside, when evaluated in floating-point arithmetic. This figure suggests that
simply considering a buffer around the edge is not enough to guarantee the
correct behavior of the EdgeContrib function since errors in the contribution can
happen also when the point is far from the boundaries. It has been conjectured
that, for this algorithm, when the checked point is far from the edges of the
polygon, the error occurring in one edge is compensated with the error of another
edge of the polygon in the computation of the winding number. To the authors’
knowledge, no formal proof of this statement exists.

The floating-point program depicted in Fig. 4 is obtained by applying the
transformation τ̄ from Section 3 to the real-number winding number algorithm
presented in Fig. 2. The function Quadrantτ has two additional arguments, ex
and ey, modeling the round-off errors of vx and vy, respectively. Thus,

∣vx − χr(vx)∣ ≤ ex, ∣vy − χr(vy)∣ ≤ ey, and ex, ev ≥ 0. (4.1)

The tests are approximated by means of the functions β+ and β− by replacing
the value 0 with the error variables ex and ey.

The function EdgeContribτ contains two calls to Quadrantτ . Therefore, it is
necessary to check if any of these calls return a warning ω. If this is the case,
EdgeContribτ also returns ω since a potential instability has been detected in
the calculation of Quadrantτ . The function EdgeContribτ has five additional
arguments with respect to its real number counterpart EdgeContrib. Besides
edet that represents the error of the expression calculating the determinant, the
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error variables appearing in the calls to Quadrantτ are considered: ethisx , ethisy ,
enextx , and enexty . The new parameters are such that:

∣thisx −RA(thisx)∣ ≤ ethisx , ∣thisy −RA(thisy)∣ ≤ ethisy ,
∣nextx −RA(nextx)∣ ≤ enextx ∣nexty −RA(nexty)∣ ≤ enexty
∣det −RA(det)∣ ≤ edet , and ethisx , ethisy , enextx , enexty , edet ≥ 0.

(4.2)

The conditional in the main function WindingNumberτ does not introduce any
new error variable, therefore just the error parameters in the calls to EdgeContrib
are considered. Let n = size(Px) be the size of the polygon P , and let fdet be
the function calculating the determinant, which is defined as follows

fdet(vx, vy, v′x, v′y, sx, sy) = ((vx − sx) − (v′x − sx)) ⋅ (v′y − sy)
−((vy − sy) − (v′y − sy)) ⋅ (v′x − sx).

(4.3)

The error variables ex, ey, and edet are such that:

ex, ey, edet ≥ 0,

∀i = 0 . . . n − 1 ∶ ∣(Px(i) − sx) −RA(Px(i) − sx)∣ ≤ ex,
∣(Py(i) − sy) −RA(Py(i) − sy)∣ ≤ ey,

(4.4)

∀i = 0 . . . n − 2 ∶ ∣fdet(Px(i + 1), Py(i + 1), Px(i), Py(i), sx, sy)
−RA(fdet(Px(i + 1), Py(i + 1), Px(i), Py(i), sx, sy))∣ ≤ edet ,
∣fdet(Px(0), Py(0), Px(n − 1), Py(n − 1), sx, sy)
−RA(fdet(Px(0), Py(0), Px(n − 1), Py(n − 1), sx, sy))∣ ≤ edet .

5 Verification Approach

This section presents the approach used to obtain a formally verified test-stable C
implementation of the winding number algorithm that uses floating-point num-
bers. The toolchain is comprised of the PVS interactive prover, the static ana-
lyzer PRECiSA, and the Frama-C analyzer. The input is a real-valued program
P expressed in the PVS specification language. The output is a C implementa-
tion of P that correctly detects and corrects unstable tests. An overview of the
approach is depicted in Fig. 5.

As already mentioned, PRECiSA is a static analyzer that computes an over-
estimation of the round-off error that may occur in a program. In addition,
it automatically generates a PVS proof certificate ensuring the correctness of
the computed bound. In this work, PRECiSA is extended to implement the
transformation defined in Section 3 and to generate the corresponding C code.
Given a desired floating-point format (single or double precision), PRECiSA is
used to convert the PVS real-number version of the winding-number algorithm
defined in Section 2 into a floating-point program. This is done by replacing all
the real operators with their floating-point counterpart and by approximating
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Quadrantτ(vx, vy, ex, ey) = if vx ≥ ex ∧ vy ≥ ey then 1

elsif vx < −ex ∧ vy ≥ ey then 2

elsif vx < −ex ∧ vy < −ey then 3

elsif vx ≥ ex ∧ vy < −ey then 4

else ω

EdgeContribτ(vx, vy, v
′

x, v
′

y, sx, sy, ethisx , ethisy , enextx , enexty , edet) =

let thisx = vx − sx, thisy = vy − sy,nextx = v′x − sx,nexty = v′y − sy,

distx = nextx − thisx,disty = nexty − thisy,det = distx ⋅ thisy − disty ⋅ thisx,

qthis = Quadrantτ(thisx, thisy, ethisx , ethisy),

qnext = Quadrantτ(nextx,nexty, enextx , enexty) in

if qthis = ω or qnext = ω then ω

elsif qthis = qnext then 0

elsif qnext − 1 = mod (qthis ,4) then 1

elsif qthis − 1 = mod (qnext ,4) then −1

elsif (det ≤ −edet) then 2

elsif (det > edet) then −2

else ω

WindingNumberτ(Px, Py, sx, sy, i, ex, ey, edet) =

if i < n − 1 then

(if EdgeContribτ(Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy, ex, ey, ex, ey, edet) = ω

then ω

else EdgeContribτ(Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy, ex, ey, ex, ey, edet)

+WindingNumberτ(Px, Py, sx, sy, i + 1, ex, ey, ex, ey, edet))

else

(if EdgeContribτ(Px(i), Py(i), Px(0), Py(0), sx, sy, ex, ey, ex, ey, edet) = ω

then ω

else EdgeContribτ(Px(i), Py(i), Px(0), Py(0), sx, sy, ex, ey, ex, ey, edet)

Fig. 4: Pseudo-code on floating-point arithmetic of the transformed winding num-
ber algorithm
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Fig. 5: Verification approach.

the real variables and constants with their floating-point representation. The
integer operations, variables, and constants are left unchanged since they do not
carry round-off errors. Subsequently, the transformation presented in Section 3
is applied. To facilitate the translation from PVS to C syntax, the function
WindingNumber has been reformulated using the for-iterate scheme introduced
in Equation (3.1) that emulates an imperative for-loop in a functional setting.

WindingNumber(Px, Py, sx, sy, i) =
for(0, size(Px) − 1,0, λi,acc. if i < size(Px) − 2

then acc +EdgeContrib(Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy)
else acc +EdgeContrib(Px(i), Py(i), Px(0), Py(0), sx, sy)).

(5.1)

The result of the transformation is the program shown in Fig. 4 where a for-loop
replaces the recursive call in the main function WindingNumberτ .

The transformed program is then converted in C syntax with ACSL annota-
tions. The ANSI/ISO C Specification Langage (ACSL [1]) is a behavioral specifi-
cation language for C programs centered on the notion of function contract. For
each function in the transformed program, a C procedure is automatically gen-
erated. In addition, the functions in the original version of the winding number
algorithm, defined in Section 2, are rephrased as ACSL axiomatic logic functions.
For each function, ACSL preconditions are added to relate C floating-point ex-
pressions with their corresponding logic real-valued counterpart through the er-
ror variable representing their round-off error. As mentioned in Section 4, a fresh
error variable e is introduced for each floating-point arithmetic expression ẽxpr
occurring in the conditional tests. For each new error variable, a precondition
stating that ∣ẽxpr −RA(ẽxpr)∣ ≤ e is added.

The loop invariant of the function WindingNumberτ is specified as an ACSL
annotation before the for-loop as follows

∀i = 0 . . . size(Px). if acc = 0 then 0

else acc = WindingNumberτ(Px, Py, sx, sy, i − 1, ex, ey, edet).

This information is required in order to prove the correctness of each iteration of
the for-loop and has to be provided as an input to PRECiSA together with the
input program. In addition, PRECiSA identifies the for-loop variant size(Px)− i
that is also needed for the verification of the loop. For each function, a post-
condition is added stating that if the result is different from ω, then the result
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of the C function is the same as the real-valued logic function that corresponds
to the initial PVS specification.

To verify the correctness of the C code generated by PRECiSA with respect
to the accompanying ACSL contracts, an extension of the Weakest Precondi-
tion (WP) plug-in of Frama-C has been developed. This plug-in implements the
weakest precondition calculus for ACSL annotations of C programs. For each
ACSL annotation, the plug-in generates a set of verification conditions (VCs)
that can be discharged by a suite of external provers. In this work, support for
generating PVS VCs is added to the Frama-C/WP plug-in. This extension links
the generated VCs with the formal certificates generated by PRECiSA regarding
the round-off errors and the original PVS formalization of the winding number.
Frama-C/WP generates a set of PVS declarations from the ACSL logic defi-
nitions. These declarations are proved to be mathematically equivalent to the
original winding number PVS formalization (Fig. 2) in the PVS theorem prover.
In addition, Frama-C/WP computes a set of verification conditions from the pre
and post conditions stating the correctness of the C program with respect to the
ACSL logic definitions. The verification conditions generated for the functions
Quadrantτ and EdgeContribτ are formalized in the following lemmas.

Lemma 2. Let vx, vy, ex, ey ∈ Ṽ such that ∣vx−χr(vx)∣≤ ex and ∣vy−χr(vy)∣≤ ey,
if Quadrantτ(vx, vy, ex, ey) ≠ ω, then Quadrant(vx, vy) = Quadrantτ(vx, vy, ex, ey).

Lemma 3. Let vx, vy, v
′

x, v
′

y, sx, sy, ethisx , ethisy , enextx , enexty , edet ∈ Ṽ such that
the inequalities in Equation (4.2) hold.

If EdgeContribτ(vx, vy, v′x, v′y, sx, sy, ethisx , ethisy , enextx , enexty , edet) ≠ ω, then
EdgeContrib(vx, vy, v′x, v′y, sx, sy) = EdgeContribτ(vx, vy, v′x, v′y, sx, sy, ethisx, ethisy ,
enextx , enexty , edet).

The following theorem summarizes the verification conditions generated for
the main function WindingNumberτ . All these verification conditions are proven
with the help of the PVS theorem prover7.

Theorem 2. Let vx, vy, v
′

x, v
′

y, sx, sy, ex, ey, edet ∈ Ṽ and P = ⟨Px, Py⟩ a polygon

of size n such that for all i = 0 . . . n − 1 Px(i), Py(i) ∈ Ṽ and the inequalities in
Equation (4.4) hold.

If WindingNumberτ(Px, Py, sx, sy, i, ex, ey, ex, ey, edet) ≠ ω, then
WindingNumber(Px, Py, sx, sy, i) =WindingNumberτ(Px, Py, sx, sy, i, ex, ey, edet).

The parameters representing the round-off errors of the arithmetic expres-
sions occurring in the body of each function can be instantiated with concrete
numerical values. Given numerical bounds for the input variables, the numerical
error values are automatically computed by PRECiSA by means of the Ko-
diak global optimizer [26]. For example, assuming Px(i), sx ∈ [−1000,1000] for
all i = 0..size(Px), PRECiSA computes the upper bound 3.637978807091714 ×
10−12 for the error variable ex meaning that ∣(Px(i) − sx) − RA(Px(i) − sx)∣ ≤
7 The PVS verification conditions generated by Frama-C and their proofs can be found

at https://shemesh.larc.nasa.gov/fm/PolyCARP.
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3.637978807091714 × 10−12. PRECiSA also emits the proof certificates ensuring
that the numerical result computed by Kodiak is a correct over-approximation
of the round-off error occurring in the considered expression.

The PRECiSA certificates prove the correctness of the round-off error bounds
used in the program transformation. They are essential to ensure that the trans-
formed program is correct, i.e., the Boolean abstractions β+ and β− are correctly
over-estimating the conditional tests and, thus, Lemma 1 holds. Additionally,
they are used to prove the verification conditions generated by Frama-C/WP,
for instance, the preconditions on the error defined in Equations (4.2) and (4.3).

6 Related Work

Several techniques and tools have been developed to formally verify properties
of C programs related to floating-point numbers. Fluctuat and Astrée are com-
mercial tools based on abstract interpretation [11], which have been successfully
used to verify and analyze numerical properties for industrial and safety-critical
C code, including aerospace software. Fluctuat [18] is a static analyzer that com-
putes round-off error bounds for C programs with annotations. Astrée [12] is a
fully-automatic static analyzer that uses sound floating-point abstract domains
[9,23] to uncover the presence of run-time exceptions such as division by zero and
under and over-flows. Astrée has been applied to automatically check the ab-
sence of runtime errors associated with floating-point computations in aerospace
control software [2]. For instance, the fly-by-wire primary software of commercial
airplanes is verified with the help of Astrée [14]. Moreover, Astrée and Fluctuat
have been used in combination to analyze on-board software acting in the Moni-
toring and Safing Unit of the ATV space vehicle [8]. In contrast to the technique
presented in this paper, the above-mentioned approaches do not provide formal
proof certificates that can be discharged in an external prover. This is partic-
ularly useful for safety-critical systems since the proof certificates improve the
trustworthiness of the approach. In addition, in contrast with the tools used in
this paper, Fluctuat and Astrée are not open-source.

Caduceus [5,16] is a tool that produces verification conditions from anno-
tated C code with the help of the platform Why [3]. Similarly, in [6], a chain of
tools composed of Frama-C, the Jessie plug-in [22], and Why is used to auto-
matically generate verification conditions, which are checked by several external
provers. These approaches were used to formally verify wave propagation differ-
ential equations [4], a pairwise state-based conflict detection algorithm [17], and
numerical properties of industrial software related to inertial navigation [21].
In [31], a combination of Frama-C and PVS was used to verify a numerically
improved version of the Compact Position Reporting (CPR) algorithm, a key
component of the ADS-B protocol allowing aircraft to share their position. In
this case, Frama-C was used to generate verification conditions discharged using
the SMT solver Alt-Ergo [10] and the prover Gappa [15]. PVS was employed
to prove the equivalence between the original implementation of the CPR algo-
rithm and the improved one. In contrast to [31], the verified C code presented in

14



this paper is automatically generated from the PVS specification. None of the
approaches mentioned before tackles the problem of detecting unstable tests.

7 Conclusion

In this paper, a formal approach is proposed to generate and to verify a test-
stable version of the winding number algorithm. This version is obtained by
applying an extension of the program transformation defined in [30] that over-
approximates the Boolean expressions occurring in conditional statements. The
over-approximation soundly handles round-off errors that may occur in the nu-
merical computation of the expression. The transformed program is guaranteed
to return the same output with respect to the original algorithm when real
and floating-point flows match. When the correct output cannot be guaranteed,
a warning is issued. The static analyzer PRECiSA [24,30] is enhanced with a
module implementing this transformation and with a C/ACSL code generator.
Thus, given the PVS program specification of the winding number assuming real
numbers arithmetics, PRECiSA automatically generates its test-stable floating-
point version in C syntax enriched with ACSL annotations. This approach can be
applied to generic algorithms involving non-recursive function calls, conditionals,
and let-in expressions.

The generated C implementation of the winding number is analyzed within
the Frama-C tool suite. In this work, the Frama-C/WP [20] plug-in is extended
to generate verification conditions in PVS syntax. These verification conditions
state that the transformed floating-point version of the winding number is correct
with respect to its real-valued specification, meaning that if the C implementa-
tion answers that a point is inside (or outside) a polygon the same answer would
be obtained in the ideal real number implementation of the original algorithm.
The verification conditions generated by Frama-C are proven correct within the
PVS theorem prover.

The verification of the correctness of the transformed C program relies on
three different tools: the PVS interactive prover, the Frama-C analyzer, and
PRECiSA. All of these tools are based on rigorous mathematical foundations
and have been used in the verification of industrial and safety-critical systems.
The C floating-point transformed program, the PVS verification conditions, and
the round-off errors bounds are automatically generated. However, the verifica-
tion approach proposed in this work requires some level of expertise for proving
the PVS verification conditions generated by Frama-C. In the future, the au-
thors plan to define proof strategies that automatically discharge these PVS
verification conditions.
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Static Analysis and Verification of Aerospace Software by Abstract Interpretation.
Foundations and Trends in Programming Languages 2(2-3), 71–190 (2015)
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16. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In: Proceedings
of the 6th International Conference on Formal Engineering Methods, ICFEM 2004.
Lecture Notes in Computer Science, vol. 3308, pp. 15–29. Springer (2004)
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26. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Revised Selected Papers of VSTTE 2013. Lecture Notes
in Computer Science, vol. 8164, pp. 326–343. Springer (2013)

27. Narkawicz, A., Muñoz, C., Dutle, A.: The MINERVA software development pro-
cess. In: 6th Workshop on Automated Formal Methods, AFM 2017 (2017)

28. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Pro-
ceedings of CADE 1992. vol. 607, pp. 748–752. Springer (1992)
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