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Anthropogenic air pollutants such as nitrogen oxides (NOx = NO + NO>), sulfur dioxide (SO,),
and volatile organic compounds (VOC), among others, are emitted to the atmosphere
throughout the year from energy production and use, transportation, and agriculture. These
primary pollutants lead to the formation of secondary pollutants such as fine particulate
matter (PMzs) and ozone (Os) [Seinfeld, 1989; Dabdub et al., 1997; Jacobson et al., 2000;
Volkamer et al., 2006;], as well as to acid and nutrient deposition to ecosystems [Schofield,
1976; Irwin et al., 1988; Menz et al., 2004; Greaver et al., 2012;] and perturbations to the
abundance and lifetimes of short-lived greenhouse gases [Wang et al., 1976; Fishman et al.,
1980; Jacob & Winner, 2009; Ramanathan et al., 2009;]. Free radical oxidation reactions
driven by solar radiation govern the atmospheric lifetimes and transformations of most
primary pollutants and thus their spatial distributions [Weinstock, 1969; Levy, 1971; Seinfeld,
1989; Collins et al., 2002;]. During winter in the mid and high latitudes, where a large fraction
of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly
slower [Levy et al., 1985; Klonecki & Levy, 1997; Yienger et al., 1999]. Using observations
from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase
NOy reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities,
lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted
winter air, and thus, the distribution and fate of primary pollutants on a regional to global
scale.

In the warmer and more photochemically active summer months, the photolysis of ozone (Os) in
the presence of water vapor leads to production of hydroxyl radicals (OH).

03 + hv (A< 320 nm) + H,0 — 20H + O; 1)

OH radicals initiate the rapid formation of multiple secondary pollutants such as O3 and secondary
organic aerosols (SOA) during volatile organic compound (VOC) degradation, as well as sulfuric
acid and nitric acid (HNO3) from reaction with sulfur dioxide and nitrogen dioxide (NO.). During
winter, primary radical production via R1 is reduced by more than an order of magnitude due to
the combination of reduced sunlight and water vapor [Klonecki & Levy, 1997; Yienger et al., 1999].
Therefore, pollutants, such as nitrogen oxides (NOx = NO + NOy), VOC, and SO,, oxidize more
slowly during winter and spread over wider geographic areas than during summer. The overall
lower radical production expected during winter suggests a higher sensitivity to the presence of less
common radical sources. Yet, few observational constraints of wintertime radical precursors exist
on scales suitable to test models of pollutant transport and transformations.

During winter, multiphase processes and direct emissions of photo-labile molecules significantly
influence the primary radical budget. For example, at night, nitrogen dioxide (NO_) reacts with O3
to generate the nitrate radical (NOs), which subsequently reacts with NO- to form dinitrogen
pentoxide (N20s). In winter, N2Os is a major nocturnal reservoir of NOy radicals and known to
react on aerosol particles, clouds, and ground surfaces, but not in the gas-phase. Aerosol particles
often have significant liquid water, catalyzing the hydrolysis of N2Os to two HNO3; molecules,
thereby limiting the lifetime of NO, and impacting PM2s and acid deposition through subsequent
gas-particle partitioning of HNOs to form particulate nitrate (opNO3") or deposition of HNO; to the
ground [Platt and Heintz, 1994; Richards, 1983; Dentener and Crutzen, 1993; Smith et al., 1995;
Alexander et al., 2009;]. In particles with sufficient chloride content (pCI-), N.Os will react
predominantly to form nitryl chloride and pNOs™ [Finlayson-Pitts et al., 1989; Behnke & Zetzsch,
1990; Zetzsch & Behnke, 1992]. During the morning hours, CINO- undergoes photolysis
recycling NO,, increasing its lifetime and transport from source regions, while also releasing
highly reactive chlorine radicals (Cl), which initiate the oxidation of hydrocarbons as fast or even
10 to 100 times faster than OH [Orlando et al., 2003; Platt & Honninger, 2003; Simpson et al.,
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2015]. N2Os that does not react overnight quickly becomes NOx during the subsequent day due to
NOs radical photochemistry.

NO; + O3 - NOs; + O (R2)
NO; + NO3 & N20s (R3)
N2Os + H0O (het) —» 2HNO; (R4a)
N:Os + CI = NOs + CINO, (R4b)
CINO, + hv > ClI + NO, (R5)
Cl+RH > HCI + RO (R6)

Utilizing the NSF/NCAR C-130 aircraft during the WINTER campaign, simultaneous airborne
observations of all components involved in the conversion of NOyx to N>Os and its corresponding
multiphase reactants and products were made (See Figure 1 and supplemental information, SlI).
Mixing ratios of speciated nitrogen oxides measured by mass spectrometry including CINO-,
N20s, HNOs, and nitrous acid (HONO), together with NO and NO, measured by
chemiluminescence (Figure 1, top panels) explain the independently measured sum total reactive
nitrogen abundance (NOy= NOy + 2* N,Os +CINO, +HNO3; +HONO + ...) at all points along the
flight track (Figure 1, bottom). Westerly winds export NOx emissions from the polluted urban
corridor of the Northeast U.S. into the marine boundary layer (MBL) over the Atlantic Ocean.
Over the course of a winter night, our observations show that ~25-50% of NOy is converted to
N2Os, much of which reacts in the MBL to form HNO; and CINO; (see SI).

Using the suite of in situ observations, we can directly assess the importance of each radical
source to the oxidative capacity of the wintertime atmosphere (See Sl for details). An example set
of results from such calculations is shown in Figure 1 (c). We use observed nighttime
concentrations of Os, humidity, CINO,, formaldehyde (HCHO), and HONO together with
modeled photolysis frequencies to calculate the total integrated concentraion of radicals that
would be produced by these precursors over the following day. Other radical sources, such as
from alkene ozonolysis or dihalogen photolysis were small on a regional basis during WINTER
(see SI). While the nocturnal atmosphere near the surface over land is poorly mixed (See Sl),
vertical profiling provided by the aircraft allowed us to uniquely assess the vertical extent of these
radical precursors. As expected, we found that over relatively warmer water in the MBL, air is
relatively well mixed up to 800-1500 m altitude (e.g. Figure 2), allowing more straightforward
calculations of radical budgets from measured concentrations.

As pollution is transported offshore overnight, and CINO; formation continues, we find that
CINO; photolysis (R5) becomes the single largest source of radical oxidants. The latest pollution
intercept occurred before midnight local time, and several more hours of N,Os production and
multiphase chemistry could be expected. Estimates of N»Os reactivity on aerosol particles and
CINO: yield derived from in situ observations [McDuffie et al., 2018a; McDuffie et al., 2018b;]
suggest CINO; concentrations would have continued to increase overnight, accounting for as
much as 80% of the daytime radical source the next day.

Other important observed radical sources are Oz via R1, HCHO via R6 and HONO via R7.

HCHO + hv (A< 324 nm) + 202 — 2HO, + CO (R6)
HONO + hv (A< 578 nm) — OH + NO (R7)
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HCHO photolysis leads to the net formation of two HO, radicals, which rapidly cycle to OH in
the presence of NO. Annual HCHO sources are dominated by in situ VOC oxidation, but during
winter, negligible biogenic emissions of isoprene [Goldstein et al., 1998; Luecken et al., 2012;],
and overall lower radical concentrations, reduce the secondary production of HCHO. HCHO is
directly emitted from a variety of anthropogenic activities, e.g. inefficient combustion and
manufacturing processes [Sigsby et al., 1987; Altshuller, 1993; Anderson et al., 1996; Kelly et al.,
1999], but with currently uncertain magnitudes and spatial distributions. The GEOS-Chem global
transport model underestimates the observed WINTER HCHO by a factor of 2 on average (see
SI). Increasing the direct anthropogenic emission of HCHO in the model by a factor of 5 brings
the model into good agreement with the observations, with approximately half the HCHO in the
model arising from secondary oxidation of anthropogenic VOC and half from direct emissions.
Increasing the emissions of anthropogenic VOC that react on an hour timescale to produce
HCHO instead of direct emissions of HCHO would also be consistent with the observations,
though appropriate observational constraints are lacking. There is strong evidence that emissions
of HCHO and related oxygenated VOC from automobiles are significantly higher in the
wintertime due to the inefficient combustion associated with cold engine starts [Anderson et al.,
1994; Anderson et al., 1996; Li et al., 2010; Clairotte et al., 2013]. Moreover, the observed
HCHO is strongly correlated with tracers of fossil fuel and wood combustion (See SI). While
smaller than the summertime HCHO sources from biogenic VOC degradation [Fortems-Cheiney
etal., 2012; Luecken et al., 2012; Wolfe et al., 2016;], the wintertime anthropogenic emissions of
HCHO or its precursors that we infer are very important to the regional source of radicals.

HONO is both directly emitted from combustion [Kirchstetter et al., 1996; Stutz et al., 2002;],
and formed in situ from multiphase chemistry of NO- as well as pNO3™ photolysis [Kleffmann,
2007; Zhou et al., 2011;]. Figure 1 shows that the measured nighttime HONO concentrations are
a small contributor to the primary daytime radical source over the surveyed domain. HONO is
more important near the urban areas, very close to the surface (<100 m), and more generally
enhanced over land than in the MBL (see SI). Our observations suggest a smaller role for HONO
on a regional basis in the daily integrated radical budget than might be inferred from ground-
based observations due to the poorly mixed nocturnal atmosphere [Febo et al., 1996; Stutz et al.,
2002; Wong et al., 2012]. However, the estimates in Figure 1 neglect a potential source from
pPNOs photolysis, which we assess below.

The above estimates of daytime radical sources shown in Figure 1 evolve as expected at sunrise
as shown in Figure 2. A stalled high-pressure system offshore of New Jersey allowed us a unique
opportunity to make multiple transects throughout the morning (Figure 2a) of pollution from the
greater New York City area that had aged overnight in the MBL (see SlI). As the sun rose during
the flight, vertical profiles (Figure 2b) conducted along various segments revealed that the
instantaneous radical source from CINO; photolysis was 60-80% of the total primary radical
source throughout the entire MBL. The importance of CINO; as a radical source decreased
substantially at altitudes above the MBL, while that of O3 via R1 increased as expected given the
steep gradients in CINO; precursors (NOx and aerosol particles) between the polluted boundary
layer and overlying free troposphere. The observed instantaneous production rate of radicals
from CINO; was a factor of 5 to 10 larger than the other radical sources throughout the morning
as the aircraft made multiple intercepts of the pollution plume. HONO photolysis was the next
largest instantaneous radical source, in part due to its larger photolysis rate coefficient compared
to HCHO. Nighttime N2Os chemistry is a removal mechanism for O; (R2-R4) [Platt et al., 1984;
Brown et al., 2004] and as such Oz mixing ratios are often suppressed in NOy-rich air masses
during the night and morning [Stutz et al., 2004], which contributes in part to the negligible
instantaneous source of radicals from R1 in the polluted MBL. The aircraft returned to its base
(segment E, Figure 2A) by flying above the MBL, where we find that the background
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tropospheric source of radicals is dominated by that from O3 photolysis (R1), consistent with
expectations.

We extend this instantaneous observational analysis during this flight using the Framework for 0-
D Atmospheric Modeling (FOAM) (Wolfe et al., 2016) , which is based on the master chemical
mechanism version 3.3.1 that explicitly tracks over 5800 chemical species in over 17,000
reactions (Bloss et al., 2005; Jenkin et al., 1997, 2003; Saunders et al., 2003) by preforming two
simulations; one including and one excluding reactions from chlorine and heterogeneous N2Os
formation described in Riedel et al., (2014). Initializing FOAM with WINTER measurements of
VOCs and inorganic gas phase species (see Sl for details), Figure 3 shows the radical budget
occurring the day following our interception of the maximum CINO- concentration observed,
which occurred on this flight at 6:40am in Figure 2c at point D in Figure 2a. Consistent with our
observational analysis, the FOAM predicted instantaneous radical production rate from CINO;
was a factor of 5 to 12 larger than the other largest radical source throughout the morning, shown
in Figure 3. Excluding reactions involving chlorine in FOAM caused an underestimate in the
integrated daily radical budget the following day of 1.8 ppbv, or a factor of 3.75. This
underestimate occurs primarily from excluding the early morning source of Cl radicals from
CINO; photolysis, but also from a 114% enhancement (0.62 ppbv) in the integrated daily
[HCHOY] that occurred because of an increase in VOC oxidation by those Cl radicals (see Sl), and
an increase in the daily integrated ozone production of 4.7 ppbv, thereby increasing the local
source of OH from O3 photolysis. These results highlight the importance of nocturnal
heterogeneous chlorine chemistry in coupling the secondary oxidation of VOCs, NOy and HOx
cycling, in the overall predicted daily radical budget within the WINTER domain.

We conducted 13 research flights, equally covering daytime and nighttime conditions, over land
and the ocean, throughout the eastern U.S. domain (see Figure 1). Applying the above
instantaneous radical source analysis to the wider set of flights illustrates the major importance of
HCHO and CINO; as radical precursors, with both being more important in polluted air,
represented by increasing NOy mixing ratios as shown in Figure 4. These results illustrate the
control of wintertime radical sources by anthropogenic emissions of NOy and VOC, and
subsequent multiphase chemistry, with > 70% of the radical source stemming not from the
canonical reaction R1, but from CINO2, HCHO, and HONO photolysis. Daytime observations
underestimate the overall contributions of HONO and CINO; to the total primary radical source
because both species photolyze rapidly and may not be reformed until night. Over land, this effect
causes an approximately 10% underestimate of the daily radical source from CINO..

More over, recent studies suggest photolysis of pNOs™ may be an important daytime HONO
source, which would not be captured by our strictly observational approach. If daytime
production of HONO from pNOj3™ photolysis occurs at the seasonally adjusted rate recently
suggested from summertime observations [Ye et al., 2016;], and which our observations do not
contradict (see Sl), then HONO photolysis integrated over the day would increase the total radical
source shown in Figure 4 by ~50% over land, with smaller but non-negligible contributions in the
polluted MBL (See SI). Thus, the primary radical budget during winter may well be larger, with
even stronger connection to anthropogenic pollution and atypical radical sources than indicated
by our conservative estimate shown in Figure 4.

HCHO emissions and the multiphase chemistry of nitrogen oxides that produces CINO,, pNOs’,
and HONO, are highly parameterized components of air quality or chemistry climate models, if
included at all [Behnke et al., 1997; Perice et al., 1998; Evans & Jacob et al., 2005; Riemer et al.,
2003; Anttila et al., 2006; Guenther et al., 2006; Davis et al., 2008; Bertram & Thornton, 2009;
Griffiths et al., 2009; Roberts et al., 2009; Vinken et al., 2011; Barkley et al., 2012; Ryder et al.,
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2015;]. Incorporating only CINO, and HCHO sources consistent with the observations from the
WINTER campaign into the GEOS-Chem model of global atmospheric chemistry and transport,
we find significant impacts on climate and air quality quantities. For example, PM.s components,
such as SOA and sulfate increase, while nitrate decreases (see Sl), and NOy shifts further into its
labile reservoirs, such as peroxy acetyl nitrate (PAN, see Figure 5). These changes are driven by
subsequent increased concentrations of oxidant initiators such as HOx (OH + HO,) radicals,
which increase by 40-80% over the WINTER domain from increased HCHO photolysis and VOC
+ Cl reactions, with concomitant increases in o0zone production (see SI).

Wintertime sulfate is often underestimated by air quality models, while pNO3™ and nitrate
deposition over land have been overestimated [Tesche et al., 2002; Heald et al., 2012; Walker et
al., 2012; Gao et al., 2016;]. Additionally, the split between primary and secondary OA remains
poorly tested on a regional basis during winter [Fuzzi et al., 2006; Jimenez et al., 2009;]. The
increases in regional radical oxidants and changes to NOx multiphase chemistry implied by our
observations reduce such discrepancies and uncertainties. Moreover, these changes halve model
underestimates (from 30% to 15% bias) of total peroxy nitrates (such as PAN) measured during
WINTER, providing additional support for increased oxidation initiated by atypical radical
sources, and increased export of NOx reservoirs to the global free troposphere.

We have shown that anthropogenic emissions of NO, and of HCHO and its analogues exert
control over the primary source of radical oxidants in polluted air during winter. In the case of
HCHO, the dormant wintertime biosphere strongly implies its wintertime sources are dominated
by anthropogenic emissions, which are likely enhanced due to inefficient combustion, such as
during vehicular cold-starts and residential wood smoke. In the case of NOy, the natural shift
towards nocturnal multi-phase processing and an availability of sea-spray derived particulate
chloride allowed the first observational confirmation that its conversion to CINO- represents a
critically important wintertime radical source throughout the polluted MBL that also serves to
enhance [HCHQ]. A daytime source of HONO from pNOs photolysis, where the pNO3
enhancements stem from multi-phase processing of NOx emissions would only increase the
importance of local and regional anthropogenic emissions over the wintertime radical budget.

The coupling of NOyx emissions, multiphase conversion to pNOs;™ and CINO,, and subsequent
pNOs photolysis to HONO represent a potentially dominant source of radicals in polluted
wintertime air. These insights lead to predictions of increased PM2s and increased export of NOx
to the remote troposphere via PAN, where short-lived greenhouse gases such as Oz and CH, are
far more sensitive to its presence [Singh et al., 1981; Roberts et al., 1990]. Other regions of the
world, such as China, Europe, and northern India also experience high NOx, VOC sources from
inefficient combustion and reactive chlorine during winter [Sarwar et al., 2014; Lowe et al., 2015;
Li et al., 2016;]. Our findings therefore suggest important global scale revisions to our
understanding of wintertime pollution transformations, transport and deposition.
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Figure 1. Top panels: evolution of nitrogen oxide reservoirs downwind of New York City observed
aboard the NSF/NCAR C-130 aircraft during Research Flight 3 (RF; February 7, 2015) of the WINTER
campaign. Observations are from below 2 km altitude only, and correspond to 7pm to 11pm local time.
NOy represents the sum of all forms of oxidized nitrogen that can be converted to NO at high
temperatures (a) NO; represents the sum of all oxidized nitrogen species expect for NOx (NO + NOz) and
is derived from the measured NOy — NOx (b). The gap between total NO; and the sum of individual
components that occurs near to NYC, while within the total calibration uncertainty of the sum, can likely
be explained by a combination of pNOs™ and peroxynitrates (see Sl). (c) map of the flight track colored
and sized by the measured mixing ratio of CINOz. The nearly straight trajectory between points A
through F consisted of periodic ascents and descents of the aircraft between 500 and 2000 m altitude,
profiling the vertical extent of the polluted atmospheric boundary layer. Pie charts show the
observationally constrained contributions of different radical precursors to the integrated daytime
radical source (see text).
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659  Figure 2. (a) Flight track of the NSF/NCAR C-130 on Research Flight 8 of the WINTER campaign, colored by local
660 time of day. Sunrise occurred at approximately 6:30 AM local time. Only portions with altitudes <2000 m are
661 shown. (b) Vertical profiles of the instantaneous radical source calculated from observations of solar radiation

and radical precursors. (c) Time series of the instantaneous radical source (left axis, stacked color), CINO2 mixing
22; ratios (right axis, ppb), and the O3 photolysis frequency (orange circles, right axis, 10 = s*)
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Figure 3. Summary of daily, net primary radical production rates calculated the day following our
interception of the peak CINO:z concentrations on RFO8 using the FOAM box model initialized with WINTER
observations without including chlorine reactions (a) and including chlorine reactions (b).
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Figure 4. Summary of daily primary radical source calculated from observations of Os, H>0, CINO2, HONO,
and HCHO made during the daytime in the continental boundary layer (a), and at night within the MBL (b).
Data are binned as a function of observed NOx mixing ratios with lower values indicating less polluted air
and higher values indicating more polluted air. In the left pane, we show only daytime observations over
land, as these better reflect a well-mixed polluted boundary layer. For comparison, we show estimates
based on nighttime observations within the MBL in the right panel. These two regimes are a fair
representation of the typical importance of each radical source over the entire data set. See Sl for
additional statistics and calculations).
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Figure 5. Relative changes in GEOS-Chem model predicted sulfate, SOA, NOx and PAN abundances between
runs using standard emissions and chemistry, and those using updated emissions of HCHO and CINO:
chemistry based on the WINTER observations. Enhanced oxidative capacity in the boundary layer from
enhanced HCHO (over land) and CINO: (in the MBL) leads to increased conversion of SO: to sulfate aerosol
mass, VOC to secondary organic aerosol mass, and increased conversion of NOx into reservoirs such as PAN

which in turn affects its global distribution.
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