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Anthropogenic air pollutants such as nitrogen oxides (NOx = NO + NO2), sulfur dioxide (SO2), 50 
and volatile organic compounds (VOC), among others, are emitted to the atmosphere 51 
throughout the year from energy production and use, transportation, and agriculture. These 52 
primary pollutants lead to the formation of secondary pollutants such as fine particulate 53 
matter (PM2.5) and ozone (O3) [Seinfeld, 1989; Dabdub et al., 1997; Jacobson et al., 2000; 54 
Volkamer et al., 2006;], as well as to acid and nutrient deposition to ecosystems [Schofield, 55 
1976; Irwin et al., 1988; Menz et al., 2004; Greaver et al., 2012;] and perturbations to the 56 
abundance and lifetimes of short-lived greenhouse gases [Wang et al., 1976; Fishman et al., 57 
1980; Jacob & Winner, 2009; Ramanathan et al., 2009;]. Free radical oxidation reactions 58 
driven by solar radiation govern the atmospheric lifetimes and transformations of most 59 
primary pollutants and thus their spatial distributions [Weinstock, 1969; Levy, 1971; Seinfeld, 60 
1989; Collins et al., 2002;]. During winter in the mid and high latitudes, where a large fraction 61 
of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly 62 
slower [Levy et al., 1985; Klonecki & Levy, 1997; Yienger et al., 1999]. Using observations 63 
from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase 64 
NOx reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, 65 
lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted 66 
winter air, and thus, the distribution and fate of primary pollutants on a regional to global 67 
scale.  68 
 69 
In the warmer and more photochemically active summer months, the photolysis of ozone (O3) in 70 
the presence of water vapor leads to production of hydroxyl radicals (OH).  71 
 72 
                                    O3 + h (< 320 nm) + H2O → 2OH + O2                     (1) 73 
 74 
OH radicals initiate the rapid formation of multiple secondary pollutants such as O3 and secondary 75 
organic aerosols (SOA) during volatile organic compound (VOC) degradation, as well as sulfuric 76 
acid and nitric acid (HNO3) from reaction with sulfur dioxide and nitrogen dioxide (NO2). During 77 
winter, primary radical production via R1 is reduced by more than an order of magnitude due to 78 
the combination of reduced sunlight and water vapor [Klonecki & Levy, 1997; Yienger et al., 1999]. 79 
Therefore, pollutants, such as nitrogen oxides (NOx = NO + NO2), VOC, and SO2, oxidize more 80 
slowly during winter and spread over wider geographic areas than during summer. The overall 81 
lower radical production expected during winter suggests a higher sensitivity to the presence of less 82 
common radical sources. Yet, few observational constraints of wintertime radical precursors exist 83 
on scales suitable to test models of pollutant transport and transformations.  84 
 85 
During winter, multiphase processes and direct emissions of photo-labile molecules significantly 86 
influence the primary radical budget. For example, at night, nitrogen dioxide (NO2) reacts with O3 87 
to generate the nitrate radical (NO3), which subsequently reacts with NO2 to form dinitrogen 88 
pentoxide (N2O5). In winter, N2O5 is a major nocturnal reservoir of NOx radicals and known to 89 
react on aerosol particles, clouds, and ground surfaces, but not in the gas-phase. Aerosol particles 90 
often have significant liquid water, catalyzing the hydrolysis of N2O5 to two HNO3 molecules, 91 
thereby limiting the lifetime of NOx and impacting PM2.5 and acid deposition through subsequent 92 
gas-particle partitioning of HNO3 to form particulate nitrate (pNO3

-) or deposition of HNO3 to the 93 
ground [Platt and Heintz, 1994; Richards, 1983; Dentener and Crutzen, 1993; Smith et al., 1995; 94 
Alexander et al., 2009;]. In particles with sufficient chloride content (pCl-), N2O5 will react 95 
predominantly to form nitryl chloride and pNO3

- [Finlayson-Pitts et al., 1989; Behnke & Zetzsch, 96 
1990; Zetzsch & Behnke, 1992]. During the morning hours, ClNO2 undergoes photolysis 97 
recycling NOx, increasing its lifetime and transport from source regions, while also releasing 98 
highly reactive chlorine radicals (Cl), which initiate the oxidation of hydrocarbons as fast or even 99 
10 to 100 times faster than OH [Orlando et al., 2003; Platt & Hönninger, 2003; Simpson et al., 100 
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2015]. N2O5 that does not react overnight quickly becomes NOx during the subsequent day due to 101 
NO3 radical photochemistry.  102 
 103 

NO2  +  O3  →  NO3  +  O2     (R2) 104 
NO2  +  NO3  ⇋   N2O5                                                   (R3) 105 
N2O5  +  H2O (het)  →  2HNO3                 (R4a) 106 
N2O5  + Cl- →  NO3

- +  ClNO2                             (R4b) 107 
ClNO2 + h →  Cl  +  NO2                     (R5) 108 
Cl + RH → HCl + RO                                                                    (R6) 109 

 110 
Utilizing the NSF/NCAR C-130 aircraft during the WINTER campaign, simultaneous airborne 111 
observations of all components involved in the conversion of NOx to N2O5 and its corresponding 112 
multiphase reactants and products were made (See Figure 1 and supplemental information, SI). 113 
Mixing ratios of speciated nitrogen oxides measured by mass spectrometry including ClNO2, 114 
N2O5, HNO3, and nitrous acid (HONO), together with NO and NO2 measured by 115 
chemiluminescence (Figure 1, top panels) explain the independently measured sum total reactive 116 
nitrogen abundance (NOy= NOx + 2* N2O5 +ClNO2 +HNO3 +HONO + …) at all points along the 117 
flight track (Figure 1, bottom). Westerly winds export NOx emissions from the polluted urban 118 
corridor of the Northeast U.S. into the marine boundary layer (MBL) over the Atlantic Ocean. 119 
Over the course of a winter night, our observations show that ~25-50% of NOx is converted to 120 
N2O5, much of which reacts in the MBL to form HNO3 and ClNO2 (see SI). 121 
 122 
Using the suite of in situ observations, we can directly assess the importance of each radical 123 
source to the oxidative capacity of the wintertime atmosphere (See SI for details). An example set 124 
of results from such calculations is shown in Figure 1 (c). We use observed nighttime 125 
concentrations of O3, humidity, ClNO2, formaldehyde (HCHO), and HONO together with 126 
modeled photolysis frequencies to calculate the total integrated concentraion of radicals that 127 
would be produced by these precursors over the following day. Other radical sources, such as 128 
from alkene ozonolysis or dihalogen photolysis were small on a regional basis during WINTER 129 
(see SI). While the nocturnal atmosphere near the surface over land is poorly mixed (See SI), 130 
vertical profiling provided by the aircraft allowed us to uniquely assess the vertical extent of these 131 
radical precursors. As expected, we found that over relatively warmer water in the MBL, air is 132 
relatively well mixed up to 800-1500 m altitude (e.g. Figure 2), allowing more straightforward 133 
calculations of radical budgets from measured concentrations.  134 
 135 
As pollution is transported offshore overnight, and ClNO2 formation continues, we find that 136 
ClNO2 photolysis (R5) becomes the single largest source of radical oxidants. The latest pollution 137 
intercept occurred before midnight local time, and several more hours of N2O5 production and 138 
multiphase chemistry could be expected. Estimates of N2O5 reactivity on aerosol particles and 139 
ClNO2 yield derived from in situ observations [McDuffie et al., 2018a; McDuffie et al., 2018b;] 140 
suggest ClNO2 concentrations would have continued to increase overnight, accounting for as 141 
much as 80% of the daytime radical source the next day.  142 
 143 
Other important observed radical sources are O3 via R1, HCHO via R6 and HONO via R7.  144 
 145 

HCHO + h (< 324 nm) + 2O2 → 2HO2 + CO     (R6) 146 

HONO + h (< 578 nm) → OH + NO      (R7) 147 
 148 
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HCHO photolysis leads to the net formation of two HO2 radicals, which rapidly cycle to OH in 149 
the presence of NO. Annual HCHO sources are dominated by in situ VOC oxidation, but during 150 
winter, negligible biogenic emissions of isoprene [Goldstein et al., 1998; Luecken et al., 2012;], 151 
and overall lower radical concentrations, reduce the secondary production of HCHO. HCHO is 152 
directly emitted from a variety of anthropogenic activities, e.g. inefficient combustion and 153 
manufacturing processes [Sigsby et al., 1987; Altshuller, 1993; Anderson et al., 1996; Kelly et al., 154 
1999], but with currently uncertain magnitudes and spatial distributions. The GEOS-Chem global 155 
transport model underestimates the observed WINTER HCHO by a factor of 2 on average (see 156 
SI). Increasing the direct anthropogenic emission of HCHO in the model by a factor of 5 brings 157 
the model into good agreement with the observations, with approximately half the HCHO in the 158 
model arising from secondary oxidation of anthropogenic VOC and half from direct emissions. 159 
Increasing the emissions of anthropogenic VOC that react on an hour timescale to produce 160 
HCHO instead of direct emissions of HCHO would also be consistent with the observations, 161 
though appropriate observational constraints are lacking. There is strong evidence that emissions 162 
of HCHO and related oxygenated VOC from automobiles are significantly higher in the 163 
wintertime due to the inefficient combustion associated with cold engine starts [Anderson et al., 164 
1994; Anderson et al., 1996; Li et al., 2010; Clairotte et al., 2013]. Moreover, the observed 165 
HCHO is strongly correlated with tracers of fossil fuel and wood combustion (See SI). While 166 
smaller than the summertime HCHO sources from biogenic VOC degradation [Fortems-Cheiney 167 
et al., 2012; Luecken et al., 2012; Wolfe et al., 2016;], the wintertime anthropogenic emissions of 168 
HCHO or its precursors that we infer are very important to the regional source of radicals.  169 
 170 
HONO is both directly emitted from combustion [Kirchstetter et al., 1996; Stutz et al., 2002;], 171 
and formed in situ from multiphase chemistry of NO2 as well as pNO3

- photolysis [Kleffmann, 172 
2007; Zhou et al., 2011;]. Figure 1 shows that the measured nighttime HONO concentrations are 173 
a small contributor to the primary daytime radical source over the surveyed domain. HONO is 174 
more important near the urban areas, very close to the surface (<100 m), and more generally 175 
enhanced over land than in the MBL (see SI). Our observations suggest a smaller role for HONO 176 
on a regional basis in the daily integrated radical budget than might be inferred from ground-177 
based observations due to the poorly mixed nocturnal atmosphere [Febo et al., 1996; Stutz et al., 178 
2002; Wong et al., 2012]. However, the estimates in Figure 1 neglect a potential source from 179 
pNO3

- photolysis, which we assess below. 180 
 181 
The above estimates of daytime radical sources shown in Figure 1 evolve as expected at sunrise 182 
as shown in Figure 2. A stalled high-pressure system offshore of New Jersey allowed us a unique 183 
opportunity to make multiple transects throughout the morning (Figure 2a) of pollution from the 184 
greater New York City area that had aged overnight in the MBL (see SI). As the sun rose during 185 
the flight, vertical profiles (Figure 2b) conducted along various segments revealed that the 186 
instantaneous radical source from ClNO2 photolysis was 60-80% of the total primary radical 187 
source throughout the entire MBL. The importance of ClNO2 as a radical source decreased 188 
substantially at altitudes above the MBL, while that of O3 via R1 increased as expected given the 189 
steep gradients in ClNO2 precursors (NOx and aerosol particles) between the polluted boundary 190 
layer and overlying free troposphere.  The observed instantaneous production rate of radicals 191 
from ClNO2 was a factor of 5 to 10 larger than the other radical sources throughout the morning 192 
as the aircraft made multiple intercepts of the pollution plume. HONO photolysis was the next 193 
largest instantaneous radical source, in part due to its larger photolysis rate coefficient compared 194 
to HCHO. Nighttime N2O5 chemistry is a removal mechanism for O3 (R2-R4) [Platt et al., 1984; 195 
Brown et al., 2004] and as such O3 mixing ratios are often suppressed in NOx-rich air masses 196 
during the night and morning [Stutz et al., 2004], which contributes in part to the negligible 197 
instantaneous source of radicals from R1 in the polluted MBL. The aircraft returned to its base 198 
(segment E, Figure 2A) by flying above the MBL, where we find that the background 199 
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tropospheric source of radicals is dominated by that from O3 photolysis (R1), consistent with 200 
expectations.  201 
 202 
We extend this instantaneous observational analysis during this flight using the Framework for 0-203 
D Atmospheric Modeling (F0AM) (Wolfe et al., 2016) , which is based on the master chemical 204 
mechanism version 3.3.1 that explicitly tracks over 5800 chemical species in over 17,000 205 
reactions (Bloss et al., 2005; Jenkin et al., 1997, 2003; Saunders et al., 2003) by preforming two 206 
simulations; one including and one excluding reactions from chlorine and heterogeneous N2O5 207 
formation described in Riedel et al., (2014). Initializing F0AM with WINTER measurements of 208 
VOCs and inorganic gas phase species (see SI for details), Figure 3 shows the radical budget 209 
occurring the day following our interception of the maximum ClNO2 concentration observed, 210 
which occurred on this flight at 6:40am in Figure 2c at point D in Figure 2a. Consistent with our 211 
observational analysis, the F0AM predicted instantaneous radical production rate from ClNO2 212 
was a factor of 5 to 12 larger than the other largest radical source throughout the morning, shown 213 
in Figure 3. Excluding reactions involving chlorine in F0AM caused an underestimate in the 214 
integrated daily radical budget the following day of 1.8 ppbv, or a factor of 3.75. This 215 
underestimate occurs primarily from excluding the early morning source of Cl radicals from 216 
ClNO2 photolysis, but also from a 114% enhancement (0.62 ppbv) in the integrated daily 217 
[HCHO] that occurred because of an increase in VOC oxidation by those Cl radicals (see SI), and 218 
an increase in the daily integrated ozone production of 4.7 ppbv, thereby increasing the local 219 
source of OH from O3 photolysis. These results highlight the importance of nocturnal 220 
heterogeneous chlorine chemistry in coupling the secondary oxidation of VOCs, NOy and HOx 221 
cycling, in the overall predicted daily radical budget within the WINTER domain.  222 
 223 
We conducted 13 research flights, equally covering daytime and nighttime conditions, over land 224 
and the ocean, throughout the eastern U.S. domain (see Figure 1). Applying the above 225 
instantaneous radical source analysis to the wider set of flights illustrates the major importance of 226 
HCHO and ClNO2 as radical precursors, with both being more important in polluted air, 227 
represented by increasing NOx mixing ratios as shown in Figure 4. These results illustrate the 228 
control of wintertime radical sources by anthropogenic emissions of NOx and VOC, and 229 
subsequent multiphase chemistry, with > 70% of the radical source stemming not from the 230 
canonical reaction R1, but from ClNO2, HCHO, and HONO photolysis. Daytime observations 231 
underestimate the overall contributions of HONO and ClNO2 to the total primary radical source 232 
because both species photolyze rapidly and may not be reformed until night. Over land, this effect 233 
causes an approximately 10% underestimate of the daily radical source from ClNO2.  234 
 235 
More over, recent studies suggest photolysis of pNO3

- may be an important daytime HONO 236 
source, which would not be captured by our strictly observational approach. If daytime 237 
production of HONO from pNO3

- photolysis occurs at the seasonally adjusted rate recently 238 
suggested from summertime observations [Ye et al., 2016;], and which our observations do not 239 
contradict (see SI), then HONO photolysis integrated over the day would increase the total radical 240 
source shown in Figure 4 by ~50% over land, with smaller but non-negligible contributions in the 241 
polluted MBL (See SI). Thus, the primary radical budget during winter may well be larger, with 242 
even stronger connection to anthropogenic pollution and atypical radical sources than indicated 243 
by our conservative estimate shown in Figure 4.  244 
 245 
HCHO emissions and the multiphase chemistry of nitrogen oxides that produces ClNO2, pNO3

-, 246 
and HONO, are highly parameterized components of air quality or chemistry climate models, if 247 
included at all [Behnke et al., 1997; Perice et al., 1998; Evans & Jacob et al., 2005; Riemer et al., 248 
2003; Anttila et al., 2006; Guenther et al., 2006; Davis et al., 2008; Bertram & Thornton, 2009; 249 
Griffiths et al., 2009; Roberts et al., 2009; Vinken et al., 2011; Barkley et al., 2012; Ryder et al., 250 
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2015;]. Incorporating only ClNO2 and HCHO sources consistent with the observations from the 251 
WINTER campaign into the GEOS-Chem model of global atmospheric chemistry and transport, 252 
we find significant impacts on climate and air quality quantities. For example, PM2.5 components, 253 
such as SOA and sulfate increase, while nitrate decreases (see SI), and NOx shifts further into its 254 
labile reservoirs, such as peroxy acetyl nitrate (PAN, see Figure 5). These changes are driven by 255 
subsequent increased concentrations of oxidant initiators such as HOx (OH + HO2) radicals, 256 
which increase by 40-80% over the WINTER domain from increased HCHO photolysis and VOC 257 
+ Cl reactions, with concomitant increases in ozone production (see SI).  258 
 259 
Wintertime sulfate is often underestimated by air quality models, while pNO3

- and nitrate 260 
deposition over land have been overestimated [Tesche et al., 2002; Heald et al., 2012; Walker et 261 
al., 2012; Gao et al., 2016;].  Additionally, the split between primary and secondary OA remains 262 
poorly tested on a regional basis during winter [Fuzzi et al., 2006; Jimenez et al., 2009;]. The 263 
increases in regional radical oxidants and changes to NOx multiphase chemistry implied by our 264 
observations reduce such discrepancies and uncertainties. Moreover, these changes halve model 265 
underestimates (from 30% to 15% bias) of total peroxy nitrates (such as PAN) measured during 266 
WINTER, providing additional support for increased oxidation initiated by atypical radical 267 
sources, and increased export of NOx reservoirs to the global free troposphere. 268 
 269 
We have shown that anthropogenic emissions of NOx and of HCHO and its analogues exert 270 
control over the primary source of radical oxidants in polluted air during winter. In the case of 271 
HCHO, the dormant wintertime biosphere strongly implies its wintertime sources are dominated 272 
by anthropogenic emissions, which are likely enhanced due to inefficient combustion, such as 273 
during vehicular cold-starts and residential wood smoke. In the case of NOx, the natural shift 274 
towards nocturnal multi-phase processing and an availability of sea-spray derived particulate 275 
chloride allowed the first observational confirmation that its conversion to ClNO2 represents a 276 
critically important wintertime radical source throughout the polluted MBL that also serves to 277 
enhance [HCHO]. A daytime source of HONO from pNO3

- photolysis, where the pNO3
- 278 

enhancements stem from multi-phase processing of NOx emissions would only increase the 279 
importance of local and regional anthropogenic emissions over the wintertime radical budget.  280 
 281 
The coupling of NOx emissions, multiphase conversion to pNO3

- and ClNO2, and subsequent 282 
pNO3

- photolysis to HONO represent a potentially dominant source of radicals in polluted 283 
wintertime air.  These insights lead to predictions of increased PM2.5 and increased export of NOx 284 
to the remote troposphere via PAN, where short-lived greenhouse gases such as O3 and CH4 are 285 
far more sensitive to its presence [Singh et al., 1981; Roberts et al., 1990]. Other regions of the 286 
world, such as China, Europe, and northern India also experience high NOx, VOC sources from 287 
inefficient combustion and reactive chlorine during winter [Sarwar et al., 2014; Lowe et al., 2015; 288 
Li et al., 2016;]. Our findings therefore suggest important global scale revisions to our 289 
understanding of wintertime pollution transformations, transport and deposition. 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
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  641 

Figure 1. Top panels:  evolution of nitrogen oxide reservoirs downwind of New York City observed 
aboard the NSF/NCAR C-130 aircraft during Research Flight 3 (RF; February 7, 2015) of the WINTER 
campaign. Observations are from below 2 km altitude only, and correspond to 7pm to 11pm local time. 
NOy represents the sum of all forms of oxidized nitrogen that can be converted to NO at high 
temperatures (a) NOz represents the sum of all oxidized nitrogen species expect for NOx (NO + NO2) and 
is derived from the measured NOy – NOx (b). The gap between total NOz and the sum of individual 
components that occurs near to NYC, while within the total calibration uncertainty of the sum, can likely 
be explained by a combination of pNO3

- and peroxynitrates (see SI). (c)  map of the flight track colored 
and sized by the measured mixing ratio of ClNO2. The nearly straight trajectory between points A 
through F consisted of periodic ascents and descents of the aircraft between 500 and 2000 m altitude, 
profiling the vertical extent of the polluted atmospheric boundary layer. Pie charts show the 
observationally constrained contributions of different radical precursors to the integrated daytime 
radical source (see text).  
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 Figure 2. (a) Flight track of the NSF/NCAR C-130 on Research Flight 8 of the WINTER campaign, colored by local 
time of day. Sunrise occurred at approximately 6:30 AM local time. Only portions with altitudes <2000 m are 
shown. (b) Vertical profiles of the instantaneous radical source calculated from observations of solar radiation 
and radical precursors. (c) Time series of the instantaneous radical source (left axis, stacked color), ClNO2 mixing 
ratios (right axis, ppb), and the O3 photolysis frequency (orange circles, right axis, 10 -5 s-1) 
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Figure 3. Summary of daily, net primary radical production rates calculated the day following our 
interception of the peak ClNO2 concentrations on RF08 using the F0AM box model initialized with WINTER 
observations without including chlorine reactions (a) and including chlorine reactions (b). 
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Figure 4. Summary of daily primary radical source calculated from observations of O3, H2O,, ClNO2, HONO,  
and HCHO made during the daytime in the continental boundary layer (a), and at night within the MBL (b). 
Data are binned as a function of observed NOx mixing ratios with lower values indicating less polluted air 
and higher values indicating more polluted air. In the left pane, we show only daytime observations over 
land, as these better reflect a well-mixed polluted boundary layer. For comparison, we show estimates 
based on nighttime observations within the MBL in the right panel. These two regimes are a fair 
representation of the typical importance of each radical source over the entire data set. See SI for 
additional statistics and calculations). 

a) b) 
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Figure 5. Relative changes in GEOS-Chem model predicted sulfate, SOA, NOx and PAN abundances between 
runs using standard emissions and chemistry, and those using updated emissions of HCHO and ClNO2 
chemistry based on the WINTER observations. Enhanced oxidative capacity in the boundary layer from 
enhanced HCHO (over land) and ClNO2 (in the MBL) leads to increased conversion of SO2 to sulfate aerosol 
mass, VOC to secondary organic aerosol mass, and increased conversion of NOx into reservoirs such as PAN 
which in turn affects its global distribution. 


