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Amethod is presented for computing frequency responses ofmultiple-inputmultiple-output

bare-airframe dynamics from flight test data containing feedback control and/or mixing of

control effectors. Orthogonal phase-optimized multisines are used to simultaneously excite

each input with unique harmonic frequencies, at which frequency responses are computed

as ratios of output-to-input Fourier transform data. The confounding effects of feedback and

mixing for frequency response estimation are resolved by interpolating the frequency responses

among all the harmonic frequencies. The method can be run in batch for post-flight analysis,

or in real time as the aircraft is flying. The effectiveness of the method was verified using

closed-loop simulations of the subscale NASA T-2 generic transport airplane. The method was

also demonstrated using flight test data from the X-56AMUTT aeroelastic airplane, which was

flown with feedback control and mixing.

I. Nomenclature

j = imaginary number, =
√
−1

s = Laplace variable

t = time, s

|.| = magnitude or absolute value

II. Introduction
A common goal in the system identification analysis of aircraft is to determine a bare-airframe dynamics model

from measured flight data. However, it is often necessary to fly the aircraft with a control system active, and/or with

mixing applied to multiple control effectors. In these cases, inputs become correlated and system identification results

degrade [1–3].
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One solution to this problem is to add different perturbations to each input command, after the control system and

mixer. If the perturbations lower the input pairwise correlations below about 0.9 in absolute value, parameter estimation

methods such as equation error and output error can be applied in the usual manner to identify bare-airframe dynamics

from closed-loop data [1, 2]. This approach was first applied during testing of the open-loop unstable X-29A airplane

and has been successfully used in subsequent flight tests with the F-18 HARV, X-31, F-15B ACTIVE, X-43A Hyper-X,

T-2 generic transport, X-56A MUTT, and many others.

If frequency responses are used for identification of multiple-input bare-airframe dynamics instead of equation error

or output error, additional considerations are necessary when feedback or mixing are present, such as those discussed in

Ref. [3] using spectral methods. For moderately correlated inputs, corrections can be applied to condition the data

and improve the estimation results. For highly correlated inputs, the indirect approach [4] can be used to retrieve the

bare-airframe model from an identified closed-loop model and known control law, or the joint input-output approach

can be used to treat the inputs and outputs together as outputs of a separate dynamical system driven by a reference input

[4–6]. These additional considerations are irrelevant when the analysis is performed using equation error or output error,

with either time series or Fourier transform data [1]. Despite the additional complexity, a non-parametric analysis from

frequency responses may be warranted and advantageous in some cases, such as for identifying high-order systems,

determining the model structure, and obtaining starting values for model parameters without additional information [3].

A method for frequency response estimation, not using spectral methods, was introduced in Refs. [1, 7]. Orthogonal

phase-optimized multisine inputs were used to excite the aircraft dynamics by moving multiple control effectors at the

same time but with different harmonic frequencies. Frequency responses were then computed by dividing Fourier

transforms of measured output and input data evaluated at the harmonic frequencies in the respective inputs. As noted

in Ref. [6], the accuracy of these estimates degrades for multiple-input systems when feedback or mixing is present

because an output at a particular harmonic frequency can no longer be uniquely attributed to a single input, which biases

the frequency response estimates.

In this paper, the frequency response method in Refs. [1, 7] is extended to account for the effects of feedback

and mixing. The estimation problem, involving Fourier transform data of inputs and outputs evaluated at the input

harmonic frequencies, was cast as a system of linear equations. When feedback or mixing is present, there are additional

evaluations of the frequency responses involved that render the system underdetermined. Interpolation of the frequency

responses was developed to provide the supplementary information, and the fully-determined system of linear equations

was efficiently solved for the unknown frequency responses using standard numerical routines. In the limit as the

amounts of feedback and mixing decrease, the procedure in Refs. [1, 7] is recovered.

The method is useful for estimating frequency responses of multiple-input multiple output (MIMO) systems, with or

without feedback and mixing. Because all control effectors can be excited at the same time, rather than sequentially

such as with conventional doublet or frequency sweep inputs, flight test durations can be reduced to save time and cost.
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Estimated frequency responses can be analyzed post-flight for parametric modeling with transfer function or state-space

models [8], or can be computed in real time to check results and data information during a flight test, monitor adaptive

control laws, detect sensor and actuator faults, or verify stability margins to expedite envelope expansion testing.

This paper is organized as follows. Section III summarizes the experiment design and the Fourier transform methods.

Section IV develops the frequency response method using a series of simulation examples based on the NASA T-2

airplane. Section V demonstrates the method using flight test data for the X-56A airplane, which was flown under

closed-loop control and with control surface mixing. All simulation and flight test results showed close agreement with

an output-error analysis in the frequency domain, which was not subject to the same issues for identifying bare-airframe

models from closed-loop data. Lastly, Section VI discusses conclusions. The MATLAB®-based software package

called System IDentification Programs for AirCraft, or SIDPAC [9], was used for the multisine input design, Fourier

transforms, and output-error analysis.

III. Experiment Design and Data Analysis

A. Orthogonal Phase-Optimized Multisine Inputs

The orthogonal phase-optimized multisine inputs, subsequently referred to as multisines, were first presented in

Refs. [10, 11]. This section summarizes the design of those inputs and discusses advantages and implications for

frequency response estimation. For more details on multisines or flight test examples, see Ref. [1] and the references

therein.

Multisine inputs are applied over a time duration T , which defines the fundamental frequency 1/T of the data record.

Harmonic frequencies k/T are included in the multisines, where k is the integer harmonic number. For frequency

response estimation, T is a compromise between meeting operational requirements and achieving a fine frequency

resolution. The set of n f included harmonics, K , is selected to span the bandwidth of interest. Good modeling results

usually need at least two cycles of each frequency, making k = 2 a practical lower limit, although higher values are

preferable. If lower frequencies or a finer frequency resolution is desired, T should be increased. When designing

multisines for multiple inputs, K is divided into the subsets K1, K2, . . . , Knu , each containing n fj frequencies. Harmonics

are typically assigned to these subsets in an alternating manner so that each input has wide coverage over the excitation

bandwidth.

Once the harmonics have been assigned to the inputs, each multisine is constructed as the sum of sinusoids

µj(t) =
∑
k∈K j

ak sin
(
2πk
T

t + φk

)
, for j = 1, 2, . . . , nu (1)

The amplitudes ak are designed according to desired power spectra for each input. A uniform distribution could be

chosen or values of ak could be tailored for specific applications, such as avoiding known structural resonances or
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reducing excessive airspeed variation from phugoid motions. The phase angles φk are optimized for each input to

minimize the ratio of peak-to-peak amplitude to a measure of input energy, called relative peak factor (RPF). This

optimization helps to keep the aircraft near the target flight condition, which is important for linear modeling.

Multisine inputs have many characteristics that are advantageous for frequency response estimation. Because they

are summations of unique harmonic sinusoids, multisines are mutually orthogonal and therefore can be applied to

multiple inputs simultaneously for system identification. Although a control law will raise the level of input correlation,

adding orthogonal perturbations to the input commands typically results in inputs with low correlations. Another benefit

is that after initial transient responses decay, multisines elicit steady-state responses, which is the information needed

to estimate frequency responses. Multisines are analogous to single-sinusoid dwells used in early experiments for

frequency response identification [12], but can include many frequencies on many inputs instead of a single frequency

on a single input, significantly reducing flight time and cost. In addition, multisines are symmetric and small-amplitude

perturbations that keep the aircraft near the target flight condition. Lastly, no more prior information about the system is

needed to design a multisine than is needed to design multi-step or frequency sweep inputs.

B. Fourier Transforms

To estimate frequency responses, measured data are first transformed from the time domain to the frequency domain.

The analytical tool for this process is the finite Fourier transform

x(ω) =
∫ T

0
x(t) e−jωtdt (2)

where x(t) and x(ω) are Fourier transform pairs, and where ω is the radian frequency.

Equation (2) can be evaluated in several ways. Fast Fourier transform (FFT) routines are often too coarse in the

bandwidth of interest for flight dynamics applications. Rather, a high-accuracy finite Fourier transform based on the

chirp z-transform and cubic interpolation of the measured data can be used in post-flight analysis when the entire data

record is available [1]. Alternatively, when the sampling rate is much higher than the bandwidth of interest, the Euler

approximation

x(ω) ' ∆t
N∑
i=1

x(ti) e−jωti (3)

can be used to approximate Eq. (2), where ∆t is the sampling period and N is the number of samples. This form can be

made recursive for real-time analysis during flight as

xi(ω) = λ xi−1(ω) + x(ti) e−jωti (4)

where transforms are updated with each new data sample. The term λ is an exponential forgetting factor that can
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Fig. 1 NASA T-2 airplane (credit: NASA Langley Research Center).

be adjusted between 0 and 1 to systematically discard past data and adapt more quickly to recent information. The

computational simplicity of Eq. (4) enables the analysis of many measurements and many frequencies with low

computational requirements.

IV. Method Development and Simulation Results
This section develops the frequency response estimation method using a series of simulation examples based on

the short period dynamics of the NASA T-2 subscale airplane. First, the simulation model and multisine inputs are

presented. Second, the model was simulated in the open-loop configuration and frequency responses were estimated

using the basic approach introduced in Refs. [1, 7]. Next, pitch rate was fed back to one input, and the inadequacy of the

basic approach in this situation is discussed, as well as solution strategies. Pitch rate was then fed back to both inputs

and the general approach for frequency response estimation with arbitrary feedback and mixing is formalized. Lastly,

real-time estimation is demonstrated using the general approach with both inputs containing feedback.

A. T-2 Short Period Simulation

The NASA T-2 airplane, shown in Fig. 1, is a dynamically-scaled 5.5% version of a generic commercial transport

aircraft and has been used extensively for flight test research. Its short period dynamics were selected for investigation

because they are relatively simple but exhibit the relevant issues when identifying MIMO bare-airframe dynamics from

closed-loop data using frequency responses.

The two inputs of the short period model were the symmetric pairs of outboard and inboard elevator surfaces δeo

and δei , and the two outputs were pitch rate, q, and vertical acceleration at the center of mass, az . Stability and control

derivatives were identified from flight test data with the aircraft undergoing small perturbations about straight and level

flight at 4.0 deg angle of attack, 130 ft/s airspeed, 1270 ft altitude, and with 1.59 slug mass. The transfer function matrix
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Table 1 Measurement noise levels for the T-2 simulation.

Measurement Standard deviation Unit

δeo, δei 0.031 deg
q 0.41 deg/s
az 0.010 g

representation of the bare-airframe dynamics was

H(s) =


q(s)
δeo (s)

q(s)
δei (s)

az (s)
δeo (s)

az (s)
δei (s)

 =


−18.1s − 36.0 −18.1s − 36.0

−0.382s2 − 0.401s + 146 −0.382s2 − 0.401s + 146


s2 + 5.13s + 35.1

(5)

The transfer functions involving δeo were the same for δei because the identified control derivatives were statistically

identical between the two pairs of surfaces. The short period mode had damping ratio 0.43 and natural frequency 5.9

rad/s (0.94 Hz).

Figure 2 shows a block diagram of a pitch-rate feedback control architecture surrounding the bare airframe, which

was simulated at 50 Hz. The inputs u1 and u2 were δeo and δei , and the outputs y1 and y2 were q and az . Each of these

four signals was passed through sensor dynamics, S, and was added to Gaussian white noise sequences, v, to model the

measurements, which are denoted with the m subscript. The sensor dynamics were negligible but were included to

discuss their effects in the next section. Measurement noise levels are listed in Table 1 and were identified from flight

test data in calm air. Actuator models were previously identified from flight test data as

Aj(s) =
u j(s)
u jc (s)

=
31.4

s + 31.4
e−0.01s (6)

where the actuator commands, u jc , consist of inputs from the pilot, η, multisine inputs, µ, and pitch-rate feedback

signals. The blue and red colors for the multisine inputs are used throughout the simulation examples to distinguish

between sets of harmonic frequencies.

The multisines used for all simulation examples are parameterized in Table 2. A duration of T = 20 s was chosen to

give a relatively fine frequency resolution. The bandwidth of excitation was between 0.2–1.55 Hz, in 0.05 Hz increments,

which resulted in 28 harmonic frequencies or 14 frequencies per input. The amplitude spectra had equal power at each

frequency and were scaled to realistic values used in flight tests.
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Fig. 2 Block diagram for the T-2 simulation.

Table 2 Multisine design parameters for the T-2 simulation, T = 20 s.

Outboard elevator Inboard elevator
RPF = 1.01 RPF = 1.06

ak , deg k k/T , Hz φk , rad ak , deg k k/T , Hz φk , rad

0.5345 4 0.20 0.6210 0.5345 5 0.25 4.9405
0.5345 6 0.30 5.1588 0.5345 7 0.35 3.2615
0.5345 8 0.40 1.6756 0.5345 9 0.45 2.0905
0.5345 10 0.50 6.2174 0.5345 11 0.55 2.9055
0.5345 12 0.60 2.6949 0.5345 13 0.65 2.5789
0.5345 14 0.70 3.4949 0.5345 15 0.75 0.2588
0.5345 16 0.80 3.5085 0.5345 17 0.85 4.5254
0.5345 18 0.90 4.2438 0.5345 19 0.95 2.7021
0.5345 20 1.00 3.2842 0.5345 21 1.05 3.2274
0.5345 22 1.10 1.9731 0.5345 23 1.15 4.1436
0.5345 24 1.20 1.5450 0.5345 25 1.25 5.5348
0.5345 26 1.30 4.2009 0.5345 27 1.35 2.7004
0.5345 28 1.40 5.3651 0.5345 29 1.45 6.2552
0.5345 30 1.50 2.6818 0.5345 31 1.55 1.3213
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Fig. 3 T-2 simulation data in the open-loop configuration.

B. Open Loop

The simulation model was first run in the open-loop configuration without feedback control, i.e. C11 = C21 = 0, and

measurements are shown in Fig. 3(a). The multisines, shown in the first two plots, had a pairwise correlation of 0. The

signal-to-noise ratios for all signals were high at above 17, and the response perturbation magnitudes were similar to

those in flight test data.

Fourier transform magnitudes of the measurements are shown in Fig. 3(b). The transforms were only evaluated at

the 28 harmonic frequencies because only those frequencies contained power in the inputs and steady-state responses.

For these plots, blue circles indicate harmonic frequencies used for δeo, and red squares indicate harmonic frequencies

used for δei . Note the control surface deflections each contained power for a single set of unique harmonic frequencies

— this will not be the case in later examples with feedback. The responses, however, contained power at all 28 harmonic

frequencies because of the MIMO coupling of the dynamics.

To compute frequency response estimates of the bare-airframe dynamics from this data, each of the ny outputs can
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be expanded using transfer function algebra as

yim = Syi yi + vyi

= Syi [Hi1u1 + Hi2u2] + vyi

= Syi
[
Hi1 S−1

u1

(
u1m − vu1

)
+ Hi2 S−1

u2

(
u2m − vu2

) ]
+ vyi (7)

to show contributions of the sensor dynamics, measurements, and bare-airframe frequency responses. Measurement

noise or error in the sensor models can degrade the accuracy of frequency response estimates. However, sensors

can typically be characterized well and are usually selected to have negligible dynamics in the bandwidth of interest.

Furthermore, good multisine designs achieve high signal-to-noise ratios. Although measurement noise and sensor

dynamics may be considered in the analysis, these effects can often be neglected (which was done in the remaining

development) so that yim ' yi , u jm ' u j , and Syi = Su j = 1, simplifying Eq. (7) to

yi = Hi1 u1 + Hi2 u2 (8)

Evaluating Eq. (8) at each harmonic frequency results in a system of linear equations of the form b = Ax, which is a

fundamental problem of linear algebra. For the open-loop case, A has dimensions (ny · n f ) × (ny · nu · n f ) and is not a

square matrix. The system can be partitioned as


b1

b2

 =


A11 0

0 A22




x1

x2

 (9)

Letting vectors ω1 and ω2 represent the respective frequencies in K1 and K2, the (ny · n fi ) × 1 partitions

b1 =


y1(ω1)

y2(ω1)

 , b2 =


y1(ω2)

y2(ω2)

 (10)

are the measured outputs, evaluated at the two sets of harmonic frequencies. Similarly, the (ny · nu · n fi ) × 1 partitions

x1 =



H11(ω1)

H21(ω1)

H12(ω1)

H22(ω1)


, x2 =



H11(ω2)

H21(ω2)

H12(ω2)

H22(ω2)


(11)
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are evaluations of the bare-airframe frequency responses at ω1 and ω2. Lastly, the (ny · n fi ) × (ny · nu · n fi ) partitions

A11 =


d{u1(ω1)} 0 d{u2(ω1)} 0

0 d{u1(ω1)} 0 d{u2(ω1)}

 (12a)

A22 =


d{u1(ω2)} 0 d{u2(ω2)} 0

0 d{u1(ω2)} 0 d{u2(ω2)}

 (12b)

are assembled from the measured inputs, where d{.} constructs a diagonal matrix from the argument.

The frequency responses at the harmonic frequencies are computed by solving the system for x. Normally, Eq. (9) is

underdetermined because there are nu times as many unknowns as there are equations. However, in the open-loop case

with no pilot input,

u1(ω2) = A1(ω2) µ1(ω2) = 0 (13a)

u2(ω1) = A2(ω1) µ2(ω1) = 0 (13b)

by definition and as seen in Figs. 2 and 3(b). Applying this substitution nulls half the elements along diagonals of A11

and A22, reducing the system to



y1(ω1)

y2(ω1)

y1(ω2)

y2(ω2)


=



d{u1(ω1)} 0 0 0

0 d{u1(ω1)} 0 0

0 0 d{u2(ω2)} 0

0 0 0 d{u2(ω2)}





H11(ω1)

H21(ω1)

H12(ω2)

H22(ω2)


(14)

in which the reduced A has the square dimensions (ny × n f ) × (ny × n f ). The decoupled, fully-determined system has

the solution x = A−1b, or



H11(ω1)

H21(ω1)

H12(ω2)

H22(ω2)


=



d{ 1
u1(ω1)

} 0 0 0

0 d{ 1
u1(ω1)

} 0 0

0 0 d{ 1
u2(ω2)

} 0

0 0 0 d{ 1
u2(ω2)

}





y1(ω1)

y2(ω1)

y1(ω2)

y2(ω2)


(15)
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More generally, this solution is also expressed as

Hi j(ω j) =
yi(ω j)

u j(ω j)
(16)

which is the ratio of output and input Fourier transforms at the frequencies contained in the input. This basic approach

for frequency response estimation was developed in Refs. [1, 7]. Equation (16) is applied for each harmonic in each

input and the frequency response matrix is computed at the corresponding frequencies. This method can be used when

the test data is representative of a linear system operating in steady state and when each harmonic frequency is applied

to a single input.

Computing frequency responses in this manner has several advantages. The analysis is straightforward and does not

require tuning or using engineering judgement to select parameters in the calculations. It is applicable to MIMO systems

and is simple enough to run in real time during flight with low computational resources. For good signal-to-noise ratios

and sufficient time durations, these estimates of the frequency response are accurate and unbiased [4, 13].

Figure 4 shows frequency response estimates for the data from Fig. 3. The plots in the left column, shown as blue

circles, had δeo as input and were computed at harmonics in K1. Likewise, the plots in the right column, shown as red

squares, correspond to δei and were computed at the harmonics in K2. These estimates were practically equal to the true

frequency responses of the bare-airframe simulation model, which were computed from Eq. (5) with s = jω and shown

as solid black lines. Errors from measurement noise and transient responses were small.

Overlaying the true frequency responses in Fig. 4 are dashed purple lines, which are the results of an output-error

analysis [1, 14] to estimate stability and control derivatives in a state-space representation of Eq. (5) that best match

the model output Fourier transforms to measured frequency-domain output data in a maximum likelihood sense. This

analysis was included in these simulation examples to establish a baseline for comparison later in Section V, where

actual flight test data was analyzed. When applying output error in this way, it is important that the input correlations

remain less than about 0.9 in absolute value, which was the case here. Otherwise, the output-error estimation of

bare-airframe models from closed-loop data proceeds normally.

C. Single Loop Closure

In this second simulation example, q was fed back to δei with C11 = 0 and C21 = −0.2. The closed-loop short period

mode had damping ratio 0.70 and frequency 8.0 rad/s (1.3 Hz).

Simulated time histories and Fourier transforms of measurements for this case are shown in Fig. 5(a). Data for

δeo were the same as in the previous example, whereas δei contained additional contributions from the feedback. The

feedback increased the input pairwise correlation from 0.0 to 0.4, reduced the response amplitudes, and resulted in

harmonic frequency content from both K1 and K2 on δei .
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Fig. 4 Frequency response estimates for the T-2 simulation in open-loop configuration.
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Fig. 5 T-2 simulation data with single loop closure.

To compute frequency responses from this data, the output responses can again be written as in Eq. (8). From the

block diagram for this example, u1(ω2) = 0 as before, whereas

u2(ω1) = A2(ω1) [µ2(ω1) − C21(ω1) y1(ω1)]

= −A2(ω1)C21(ω1) y1(ω1) (17)

which is nonzero because the steady-state outputs contained power at both sets of harmonic frequencies. In this case, the

frequency responses from u2 (containing feedback) were ratios of Fourier transforms, as in Eq. (16) for the open-loop

configuration. However, the frequency responses from u1 (not containing feedback) were

Hi1(ω1) =
yi(ω1)

u1(ω1)
−

Hi2(ω1) u2(ω1)

u1(ω1)
(18)

and had additional contributions over the open-loop case. Therefore, Hi2(ω2) can be calculated using the basic approach,

but Hi1(ω1) needs more information. Note that it is the frequency response with the input not containing feedback that

is in error when estimated using the basic approach. Also note that as C21 → 0, u2(ω1) → 0 and the basic approach is

recovered.

There are several strategies for obtaining Hi2(ω1) from Hi2(ω2) to compute Hi1(ω1). Multiple maneuvers using
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single-input excitations at the same target flight condition could be combined. Alternatively, the data for Hi2(ω2) could

be fit with a parametric model, such as a transfer function, and then evaluated at the frequencies ω1. As another option,

Hi2(ω2) could be linearly interpolated for the frequencies ω1 by recasting the system of linear equations as



b1

b2

0


=



A11 0

0 A22

A31 A32




x1

x2

 (19)

where the third partitioned row interpolates Hi2 at frequencies ω1. Specifically for this example, half the elements in

A22 are nulled, A31 has values of 1/2 along the diagonal and either the super-diagonal or sub-diagonal (depending on

the ordering of frequencies), and A32 has values of −1 along the diagonal. The interpolation equations in this general

approach add enough information to make the reduced system fully determined so that a solution can be computed. For

cases of lightly damped modes and coarse frequency resolution, approximation errors from linear interpolation can be

reduced by redesigning the multisine inputs for a longer T or using higher-order interpolation.

Frequency response estimates using the simulation data are shown in Fig. 6 using linear interpolation. Estimates

computed using the general approach, shown as solid markers, agreed with the true bare-airframe frequency responses.

Estimates using the basic approach, shown as open markers, were correct for δei but exhibited significant magnitude and

phase errors for δeo, as expected. Cubic interpolation was also investigated, but the estimates had negligible increases

in accuracy. Results from an output-error analysis matched the true frequency responses because the control surface

correlations were low. Figure 6 shows that the results from the general method with feedback control are of the same

excellent quality seen earlier using the basic approach in the open-loop case.

Frequency responses computed from closed-loop data using the basic approach would be correct for Hi2(ω2) but

incorrect for Hi1(ω1). This was demonstrated in Ref. [6] and is the result of neglecting the second term on the right side

of Eq. (18). When considering multiple inputs with feedback or mixing, the bare-airframe dynamics can be accurately

computed from closed-loop data using the general approach.

In general, as feedback gains increase, the open-loop and closed-loop frequency responses become more different

and the errors incurred from not accounting for feedback or mixing on multiple inputs become larger. However, as

shown in this example, even small amounts of feedback can lead to significant errors in the frequency response estimates

of the bare-airframe dynamics. This characteristic is sensitive to fewer inputs because each input impacts a larger

fraction of the total response.

When conducting flight tests with multisines, pilots are directed not to supply additional inputs, so that η = 0. The

multisines are balanced about zero and keep the aircraft near the target flight condition. If additional inputs are deemed

necessary, pilots are asked to make them “low and slow” to keep the added frequency content low in amplitude and
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Fig. 6 Frequency response estimates for T-2 simulation with single loop closure.
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Fig. 7 T-2 simulation data with multiple loop closures.

below the bandwidth of the multisines.

In the limit for high feedback gains or high amounts of noise, u2 ' −(u1 + vy1 ), which essentially cancels the first

input and adds measurement noise into the command path. The frequency response estimates then degrade because the

outputs exhibit lower signal-to-noise ratios. In these cases, the multisine amplitudes should be increased to excite the

system, but should remain within flight test operational limits and regions of linearity.

D. Multiple Loop Closures

In this third simulation example, q was fed back to both δeo and δei , with C11 = C21 = −0.1. The closed-loop short

period mode had damping ratio 0.68 and frequency 7.7 rad/s (1.2 Hz), similar to the previous example.

Simulated measurements for this case are shown in Fig. 7. The control surface deflections had a pairwise correlation

of 0.3, which was less than in the previous simulation example because the feedback gain was lower in value, even though

both inputs contained feedback. The measured outputs had approximately the same magnitude as the previous case

because roughly the same closed-loop dynamics were achieved. The inputs contained power at harmonic frequencies in

both K1 and K2, due to the feedback.
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To solve for the frequency responses, the output measurements were again expanded as in Eq. (8). In this case

u1(ω2) = A1(ω2) [µ1(ω2) − C11(ω2)y1(ω2)]

= −A1(ω2)C11(ω2)y1(ω2) (20a)

u2(ω1) = A2(ω1) [µ2(ω1) − C21(ω1)y1(ω1)]

= −A2(ω1)C21(ω1)y1(ω1) (20b)

which are both non-zero due to the feedback on all inputs. Solving for the frequency responses results in

Hi1(ω1) =
yi(ω1)

u1(ω1)
−

Hi2(ω1) u2(ω1)

u1(ω1)
(21a)

Hi2(ω2) =
yi(ω2)

u2(ω2)
−

Hi1(ω2) u1(ω2)

u2(ω2)
(21b)

Unlike the previous example, one frequency response can not be computed first and then substituted into the remaining

equation; rather, more information must be obtained using interpolation and the entire set of unknown frequency

responses solved simultaneously. In the limit as both control gains decrease, the basic approach is again recovered.

Expanding the system of linear equations for this case yields



b1

b2

0

0


=



A11 0

0 A22

A31 A32

A41 A42




x1

x2

 (22)

The fourth partitioned row interpolates Hi1(ω2) from Hi1(ω1), similar to the third partitioned row. The interpolated

equations make A a square matrix in this case without eliminating any variables or reducing the system.

The frequency response estimates computed using this method are shown in Fig. 8. Estimates using the general

approach and output error matched the true frequency responses. Estimates using the basic approach were incorrect for

both inputs, but were less inaccurate than for the previous example because the feedback gains were lower and used on

both inputs.

The effect of frequency resolution on the interpolation was also investigated. For this example, as harmonic

frequencies were discarded, frequency response estimates were accurate until all but five harmonic frequencies per

input were discarded. For fewer harmonics, interpolation error was significant due to the relatively coarse frequency

resolution.
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Fig. 8 Frequency response estimates for T-2 simulation with multiple loop closures.
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E. Real-Time Estimation with Multiple Loop Closures

Although the preceeding cases were for batch estimation after all data were measured, this estimation can also be

performed in real-time during the flight test. As input and output data are measured, recursive Fourier transforms are

computed using Eq. (4). Then the system of linear equations in Eq. (22) is updated based on the new data, and estimates

of the frequency responses evolve in time.

Although the matrix A can become large for many inputs, outputs, and frequencies, there are several aspects that

reduce the computational burden for real-time computation. First, for a given experimental setup, the matrices A31, A32,

A41, and A42 are computed and assembled once, before any data are collected, and remain fixed over time. As data are

recorded, only b1, b2, A11, and A22 are updated from the measurements. Second, although Fourier transforms need to

be computed at a sufficiently high rate, frequency responses can often be updated at a slower rate. For example, Fourier

transforms describing rigid-body dynamics could be computed at 25 Hz, but then frequency responses can be computed

and displayed at a slower rate such as 1 Hz. Last, the matrix A is sparse, so efficient routines for solving sparse systems

can significantly reduce the amount of time needed to solve for the frequency responses when many inputs, outputs, and

frequencies are considered.

An example real-time estimation is shown for the az/δeo frequency response in Fig. 9 using the data in the previous

section where C11 = C21 = −0.1. Frequency responses are plotted for every data sample after the excitation began at

2.5 s. As more data are collected and the system attains steady-state oscillation, the frequency responses converge

on the final estimates, which match the true curves and those estimated using output error. Errors in evaluating the

Fourier transform with the Euler approximation and the chirp z-transform were negligible in this case. As discussed in

Refs. [7, 15], some of the oscillations in the frequency response evolutions are due to evaluating the Fourier transforms

at non-integer multiples of the harmonic frequencies. If desired, these errors and computation time can be reduced by

only evaluating the estimates at times corresponding to integer numbers of cycles for each harmonic frequency. On

average, about 0.1% of the sample period was needed to transform the data into the frequency domain, and 20% of the

sample period was needed to solve for the frequency responses using a standard laptop computer running MATLAB®.

The remaining 80% of the sample period could be used for refreshing displays, computing stability margins, or for

processing additional outputs, inputs, and frequencies.

V. X-56A Flight Test Results
This section presents results using flight test data from the X-56A Multi-Use Technology Testbed (MUTT) airplane,

which is shown in Fig. 10. The aircraft is a subscale aeroelastic demonstrator, designed for studying aeroelastic modeling

and control technologies [16].

The maneuver analyzed was flown during Phase 1, Flight 11 and included multisines on five symmetric control

surface pairs, applied after the aircraft was trimmed for straight and level flight at 48% fuel and 63% of the flutter speed.
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Fig. 9 Real-time frequency response estimates for T-2 simulation with multiple loop closures.

Fig. 10 X-56A in flight (credit: NASA / Jim Ross).
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Fig. 11 X-56A flight test data with feedback and mixing.

Measured pitch rate and combinations of measured vertical accelerations were fed back to the inner and outer control

surface pairs δb f s and δwf 4s. This feedback was also applied to the virtual elevator command, which was sent to the

midspan surface pairs δwf 2s and δwf 3s equally. Therefore, both feedback and mixing were present during this maneuver.

The effects of lateral-directional dynamics and pilot inputs were small for this maneuver.

The multisine perturbations, designated flight test aid (FTA) 503, were summed with other commands from the pilot

and flight control system just before the actuator command position limiters. Time histories of the measured control

surface deflections for one excitation period T are shown in Fig. 11(a). The inputs had correlations less than 0.24 in

absolute value. Also shown is the output time history of a pitch-rate gyroscope, located near the nose of the aircraft. No

numbers are given on the axes because the X-56A flight test data is ITAR restricted. However, these data represented

small amplitude perturbations about the target flight condition.

The Fourier transform magnitudes for the input and output data are shown in Fig. 11(b). The multisines had 25

harmonics per input, uniform power, and a bandwidth spanning the short period (SP) and first symmetric wing bending

mode (SW1B). Different colors are used to distinguish between the multisine design frequencies, as in the previous

simulation examples. The plot is annotated with the identified SP and SW1B modal frequencies. The actuator dynamics

created a mild roll-off in amplitude with frequency. The effects of feedback and mixing are evident in the additional

frequency content of the signals, shown using multiple colors. The measured pitch rate contained content from all
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Fig. 12 Frequency response estimates for X-56A flight test data with feedback and mixing.

harmonic frequencies, especially from the surface pairs δwf 2s , δwf 3s , and δwf 4s .

Estimated frequency responses from the three outermost surfaces to the measured pitch rate are shown in Fig. 12.

The same magnitude, phase, and frequency scales were used for each Bode plot. The amplitudes of the δb f s and δwf 1s

surfaces were too small to compute accurate frequency responses, as seen by the small magnitudes in the pitch-rate data

in Fig. 11(b). The solid markers are estimates using the general approach, whereas the open markers are estimates

using the basic approach. There are differences in the Bode plots for each frequency response, most prominently for

qgyr/δwf 4s . These differences occur near the SP and SW1B modes, which is the bandwidth in which the control system

operated. Results using the basic approach increased the SP frequency, lowered the SW1B frequency, and increased the

phase angle. These characteristics are similar to the closed-loop results observed earlier for the T-2 simulation.

The dashed purple lines in Fig. 12 are the frequency responses for a state-space model identified using output error

to match Fourier transforms of gyroscope and vertical accelerometer data in the frequency domain. In addition to

estimating nondimensional stability and control derivatives for the aeroelastic model, time delays for each of the outputs

were also estimated. More information about these results can be found in Ref. [17]. The frequency responses obtained

using output error agreed with the frequency responses computed using the general method, similar to the previous T-2

simulation results.
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VI. Conclusions
A method was developed for computing multiple-input multiple-output frequency response estimates of dynamic

systems when the excitation inputs are orthogonal phase-optimized multisines injected at the actuator commands and

feedback control or mixing is present. An earlier approach based on dividing Fourier transforms of measured output by

input data at the frequencies in the multisine inputs was extended in this paper. The problem formulation began with an

underdetermined system of linear equations. The system was made fully determined by including linear interpolations of

the frequency responses between the multisine frequencies. The method was developed using example simulation data

for the T-2 airplane in the open-loop and closed-loop configurations, using both post-flight and real-time computations.

The method was also demonstrated using flight test data from the X-56A airplane flying under closed-loop control with

control surface mixing.

The main findings of this research may be summarized as follows:

1) The method accurately estimates frequency responses when orthogonal phase-optimized multisines are used and

when there is feedback or mixing present. Simulation and flight test results agreed with frequency responses

obtained using an output-error analysis with frequency-domain data.

2) High multiple-input correlation was not detrimental for frequency response estimation using the general approach

provided high signal-to-noise ratios were achieved. High multiple-input correlation was not detrimental for

output-error parameter estimation provided all correlations were less than 0.9 in absolute value.

3) Linear interpolation was an adequate approach for obtaining additional information to solve for the unknown

frequency response evaluations. Finer frequency resolution or higher-order interpolation should be used when

there are lightly damped modes.

4) The basic approach for frequency response estimation was recovered in the limit as feedback and mixing decrease.

5) The method is suitable for real-time estimation during flight tests.

The method requires automated orthogonal, phase-optimized multisine inputs, good signal-to-noise ratios, and small

pilot inputs to produce accurate results. Because frequency responses are used, steady-state and small-perturbation

response data is needed. In addition, changes to the bare-airframe dynamics over the experiment duration, such as from

fuel burn or variation in airspeed, must be small.

The method is procedural and does not require tuning parameters or engineering judgement to carry out the analysis.

No specific knowledge of the control law or mixing scheme is needed. Feedback gains can be arbitrarily large so long as

the multisines create responses with good signal-to-noise ratios. The general approach discussed extends the method

from the previous basic approach, which is appropriate only for open-loop systems or single-input closed-loop systems.

The real-time formulation can be used in applications such as real-time estimation, monitoring adaptive control laws

during flight, sensor and actuator fault detection, real-time stability margin estimation during envelope expansion flights,

and others.
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