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Cognitive state detection and its relationship to observable physiologically telemetry has
been utilized for many human-machine and human-cybernetic applications. This paper aims
at understanding and addressing if there are unique psychophysiological patterns over time,
a ”’physiological temporal fingerprint”, that is associated with specific cognitive states. This
preliminary work involves commercial airline pilots completing experimental benchmark task
inductions of three cognitive states: 1) Channelized Attention (CA); 2) High Workload (HW);
and 3) Low Workload (LW). We approach this objective by modeling these ''fingerprints'
through the use of Hidden Markov Models and Entropy analysis to evaluate if the transitions
over time are complex or rhythmic/predictable by nature. Our results indicate that cognitive
states do have unique complexity of physiological sequences that are statistically different from
other cognitive states. More specifically, CA has a significantly higher temporal psychophys-
iological complexity than HW and LW in EEG and ECG telemetry signals. With regards to
respiration telemetry, CA has a lower temporal psychophysiological complexity than HW and
LW. Through our preliminary work, addressing this unique underpinning can inform whether
these underlying dynamics can be utilized to understand how humans transition between
cognitive states and for improved detection of cognitive states.

I. Introduction

This study seeks to gain an understanding of the underlying physiological sub-states associated with cognitive states
(the physiological temporal fingerprint of a cognitive state) using multi-modal physiological sensing and statistical models
well-suited for time-dependent data. These temporal sub-states can be thought of as distributions of psychophysiological
discriminators, or specific regions within the feature space, as a given cognitive state occurs over time. The ability
to understand these underlying regions within the feature space of cognitive states can improve training for vehicle
operators and pilots [1, 2] and feedback systems for simulators involving human subjects [3]. Further understanding the
underlying physiological temporal fingerprint of a cognitive state, can increase the understanding of what physiological
systems within the human body are associated with these cognitive states and how humans transition from one cognitive
state to the next. This can help drive research for improving the predictability of these states and alleviating undesired
cognitive states through mitigations and countermeasures.

Prior Work: Cognitive states are not directly measurable, but can be inferred through physiological and behavioral
data from the subject such as eye movement, electroencephalogram, electrocardiogram, heart rate, galvanic skin response,
respiration rate, and other directly measurable modalities [4-15]. The majority of the current work within cognitive
state prediction focuses on a fixed set of modalities (e.g., one or more modalities such as EEG and ECG). However
within the community we have not fully characterized how different combinations of modalities affect overall predictive
accuracy or how different modalities provide the necessary information to distinguish specific types of cognitive states.
As such, current work focuses on prediction of cognitive state from these modalities, but does not seek an understanding
of the associated physiological signatures of these cognitive states.

While there is much research in the time-dependent nature of physiological data, there is little work which focuses on
the relation of this time-dependent physiological data to a corresponding cognitive state. The work which includes the
time-dependent aspect of cognitive studies does not contain a thorough analysis of how multiple modalities can affect the



overall understanding of sub-state transitions and their underlying physiological distributions within the feature space.
In addition, the work which does take into account the time-dependent nature of the data does so in a way which seeks
only to predict cognitive states but not to understand the underlying dynamics of the physiological states [3} |16l [17].

Challenges: Research to date has focused on experimental designs which incorporate singular physiological
modalities or machine learning methodologies which do not take advantage of the time-dependent nature of the data. Of
the research which has incorporated multi-modal physiological sensing and machine learning methodologies which do
incorporate the time-dependent nature of the data, the emphasis of analysis was on prediction of cognitive state instead
of a deeper understanding of the physiological fingerprints associated with those cognitive states [[18]]. Modeling has
focused on cognitive state as the first-order latent state instead of an underlying physiological state whose transitions
could dictate a second-order latent state attributable to the current cognitive state. Therefore, this raised three questions
when evaluating underlying sub-state physiological dynamics of cognitive states: 1) What physiological features should
be examined for evaluating underlying sub-state physiological dynamics of cognitive states; 2) Does modeling these
temporal dynamics help improve the predictive nature of cognitive state modeling; 3) Do sub-state physiological
dynamics of cognitive states have a unique underlying fingerprint when compared to other cognitive states?

Insights: Hidden Markov models (HMMs) are one highly utilized machine learning method that fuses data and
examines temporal transition of data. HMMs are known for their ability to infer latent states through observable
emissions [19, 20]]. These models have been recently used for cognitive state detection, where the cognitive states in
question are the latent states and the physiological data are the observable emissions [3,[16}[17]. However, there are
numerous typologies and evaluation methods of HMM from speech recognition to molecular biology [[19-21]]. The
HMM method proposed by Duda [22], "the learning and evaluation process", builds an HMM model for each proposed
cognitive state and predicts the "true" cognitive state using maximum likelihood. By leveraging this HMM design (a
specific HMM is trained for each cognitive state) and equating the hidden state of the HMM to psychophysiological
sub-states, we can address sub-state changes by evaluating how the HMM model transitions overtime. The transition of
the underlying psychophysiological dynamics of the cognitive states (i.e., the temporal fingerprint) can be estimated
using an HMM decoding algorithm, generating the discrete sequence of psychophysiological dynamics. We can then
evaluate if the psychophysiological dynamics are repetitive/predictive or random/chaotic through a proposed complexity
analysis called permutation entropy [4]. Through our insight of utilizing hidden Markov analysis, we hypothesis that
we will be able to demonstrate that the underlying psychophysiological temporal fingerprint has a statistically unique
complexity of underlying dynamics for each proposed cognitive state.

I1. Methods

A. Experimental Design and Data Collection:

Twenty-one (21) commercial aviation pilots were asked to perform benchmark tasks while wearing physiological
sensors which were intended to establish ground truths for cognitive state testing. The cognitive states of interest for this
analysis include Channelized Attention (CA), Low Workload (LW), and High Workload (HW). These benchmark tasks
include Tetris for channelized attention, and MATB (Multi-Attribute Task Battery: available at http://matb.larc.nasa.gov/)
for high and low workload tasks for the high and low workload cognitive states. These benchmark tasks have been
discussed previously [23]]. Each task was used to induce cognitive states under controlled conditions for six minutes
each and were given with the full knowledge of the participant, with exception to the difference between the high and low
workload task. Many of these tasks have been used in previous task-oriented research [24H28]]. Multiple modalities were
utilized for data collection. The Advanced Brain Monitoring B-Alert X24 was used to collect electroencephalogram
data at a frequency of 256 Hz. The MindMedia NeXus-10 system was used to collect electrocardiogram and respiration
data at 256 Hz. All measured time series were recorded using MAPPS (EyesDx, Inc., Coralville, IA), a software suite
designed to collect aircraft and simulator state, event markers, video, and pilot physiological and behavioral data. The
software time synchronizes all data channels for real-time review.

B. Developing HMMs for Cognitive State Detection:

The proposed HMM method is partitioned into four key modeling processes: 1) feature engineering and preprocessing;
2) feature selection; 3) HMM learning and design; and 4) model fusion via HMM stacking. (This stacking concept is
commonly used for modeling EEG data with HMMs [29H32]].)
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Fig. 1 Stacked HMM Classifier.

1. Feature Engineering and Preprocessing:

The three modalities examined for this study were ECG, Respiration and EEG data, where the first 90 seconds of the
data was removed from the benchmark tasks. This was to ensure that the subject was fully within their intended induced
cognitive state (i.e., CA, HW, or LW). The ECG data were pre-processed with a bandpass butterworth filter (described
in [15]) and the heart rate variability (HRV) was calculated (described in [4]). The ECG data heart rate complexity was
calculated using a 90 second moving window, in which the HRV was extracted and sample entropy was calculated for
the windowed segment. The EEG data were processed into their respective frequency bands, rank order complexity
(ROC) and the engagement index was also calculated (described in [33H35]). Additionally, the respiration complexity,
a novel way to examine respiration dynamics and sudden changes in breathing patterns, was also utilized (described
in [35]). The data was then normalized per subject per day.

2. Feature Selection:

The applied feature engineering methods produced 285 observed time-series features for each subject’s data and
cognitive benchmark task. Selecting which features of the observation are relevant and should be used for modeling the
data using an HMM can be a difficult problem [36]. One method is to utilize domain knowledge and select features based
on the practitioners’ intuition about the process being modeled. Another method uses the concept of feature saliency
[37.138]]. Feature saliency is essentially a weight between a state-dependent emission distribution and a state-independent
emission distribution. Features with a high saliency are more effectively modeled by the state-dependent distribution,
and thus assumed to be relevant features for modeling an HMM. The emission distribution for the feature saliency HMM
(FSHMM) is written as

L
Fo o0 = [ | Gl o) + (1= pr)g(vucle ), (1)
I=1

where L is the number of features in the observation vector, x; represents the state at time ¢, y;; represents observation
of the I'"* features at t, p; is the feature saliency for the I’ feature, r(-|-) is the state-dependent Gaussian emission
distribution with mean u and standard deviation o, and g(-|-) is the state-independent Gaussian emission distribution
with mean € and standard deviation 7. In this study, a combination of domain knowledge and feature saliency was used
to select features for the HMMs.



3. HMM Framework and Training:

Once a specific set of features is chosen, an HMM can be trained using the selected features as the observed data.
HMMs have been widely used to model time-series data and are composed of two sequences of random variables.
The state sequence, represented by X, is assumed to be a latent or unobserved variable and modeled as a Markov
chain. The emission sequence, represented by Y, are observed and assumed to be correlated with the state sequence.
The components of an HMM are the initial state distribution for the Markov chain x, the transition probabilities of
the Markov chain which are often combined into a transition matrix, A, and the parameters of emission distribution.
When the emission probabilities are modeled as a Gaussian distribution, these parameters are the mean and standard
deviation of the state-conditional distribution. There are three core problems that could be solved when modeling
data using HMMSs. The first is estimating the probability that the observed sequence, Y, was generated by a specific
HMM. This problem can be solved by computing the forward probabilities. The second is estimating an optimal state
sequence given Y and an HMM. This problem can be solved using the Viterbi algorithm [39]. The third is estimating
the parameters of an HMM given Y. There are numerous solutions to this problem but the most common is to use the
expectation-maximization (EM) algorithm.

The HMM stage uses the time series features S as the observations of an HMM. S can be any group of features in
the larger feature set, but we generally subset the features by sensor and denote the features from sensor i as S;. For each
feature subset, there are three associated HMMs, one for each class {LW, HW, CA}. The HMMs are trained on data
associated with each class (HMM problem 3). The training algorithm is the maximum a posteriori (MAP) formulation of
the Baum Welch algorithm [40]. The likelihood of the observation sequence £ = P(Y|1) using the forward probabilities
of the forward backward algorithm [[19| [20], where A represents the parameters of the HMM (HMM problem 1). The
likelihood that the observation sequence was generated by each HMM is combined in a sub-feature vector and passed to
the second stage of the method

v=[Lw Law Lcal. 2)

The sub-feature vector can be combined with other sub-feature vectors from other feature subsets to form V, e.g.
V =[veceG vrpil-

4. Stacking HMM Classifiers
The classifier stage uses the sub-features v calculated in the HMM stage as inputs into a classifier. Let i represent
the number of sub-feature vectors, then V = [v| v, ... v;]. As previously mentioned, any type of classifier could be used

in this stage, but the proposed implementation uses the random forest algorithm [41]]. Figure[I]displays the workflow for
the stacked HMM classifier.

C. Complexity Analysis of Psychophysiological Temporal Dynamics of the Hidden Layer

Once the HMM'’s are trained for the three proposed cognitive states, the underlying state sequence is estimated
(HMM problem 2) characterizing the psychophysiological dynamics. In order to analyze an arbitrary discrete integer
sequence, we apply permutation entropy, which analyzes how the permutations of the rank order changes to quantify the
complexity of time series [42,!43]]. We deploy Permutation Entropy, by,

n!
Hy == )" p}log, p}, (3)
j=1

where p;. is the proportion of the occurrence of th j* template (of length m) in the signal [42} 43]). A template length of
M =3 and M = 4, was utilized to explore the complexity changes of the discretized sequence.

I11. Results
This section outlines the numerical experiments performed on the data which addresses the following research
questions:
1) What features are useful for producing FSHMMs with the distinct pyscho-physiological sub-states?
2) How do different modalities and combinations of modalities affect the classification performance of the cognitive
states?
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Fig. 2 Estimated feature saliencies for each cognitive state. There is a pattern across all cognitive states. The
respiration and ECG features have low saliency. The engagement index and ROC for each EEG lead also have
low saliency. The first filter for each lead generally has high saliency. The saliency for each successive filter
decreases and then begins to rise towards the higher filters. Generally, HW has lower saliency values than the
other cognitive states.

3) Does the temporal complexity of the underlying pyschophysiological dynamics of the HMM alter or vary across
the three cognitive states (i.e., HW, LW, and CA)?

A. RQ1: Feature Saliency

The MAP formulation of the FSHMM is used to estimate feature saliencies for each feature. The data is not divided
into testing and training sets for this analysis. First, for each class a single FSHMM with five states is trained using
all 285 possible features. The FSHMM is initialized with even probabilities for the initial state distribution and the
transition matrix. The means of the state-dependent emission distributions are initialized using the K-means algorithm,
and the standard deviation is initialized by dividing the standard deviation of the data by the number of states. The
feature saliencies are initialized as 0.5, and the parameters of the state-independent emission distribution are initialized
as the mean and standard deviation of the data. For the hyperparameters, 8 = @ = 2, m = Uinir, { = Oinits b = €nits
YV = Tipit, S =1 =c =4 = 1, and k = 100. Due to the randomness in the K-means algorithm, the training of the
FSHMM is repeated ten times with different initial means for the state-dependent distribution.

Figure 2] displays the estimated feature saliencies for each class and the average across the classes. The order of the
features is the respiration features, the ECG features, and then the features for each lead of the EEG with engagement
index first, ROC second, and then filters 1 through 12. The order of the leads is as listed in FigureE[

In general, the respiration and ECG features have low saliency. For the EEG features, ROC and engage index
also have low saliency. The first filter and the last filter generally have higher saliency than the middle filters. Figure
[3| provides details for the estimated saliencies for the EEG filter features. When looking across the cognitive states,
high workload generally has lower saliency across all features. This means that the features for high workload have
features that are more likely to fit the state-independent distribution than the state-dependent distribution. This could be
interpreted as having less activity in the emissions as the state changes or that the emissions tend to change less as the
state changes.

When individual FSHMMs are trained using only the respiration features and the ECG features separately, the
estimated features saliencies are all above 0.7. We hypothesize that the state sequence in the full model is dominated by
the features associated with the EGG leads and therefore minimizes the change in the feature distributions for the ECG
and respiration features with respect to the state.

B. RQ2: Classification Performance

A leave-one-out cross validation (LOOCYV) testing framework was used to evaluate the classification model proposed
in Section[[.B] An observation is considered to be the time series for the selected feature subset for each participant on
each day. Using this scheme, there are 63 observation sequences. Each LOOCYV experiment is run 10 times in order to
characterize the variability in classification accuracy due to the random initialization of the HMMs. The HMMs are



Filter

EEG Lead| f1 f2 f3 fa | f5 f6 17 8 f9 | f10 | f11 | f12 |Average| Std
FP1 0.86|0.670.50(0.42|0.37|0.40 | 0.37|0.51|0.56| 0.70|0.71|0.71| 0.56 |0.16
F7 0.88|0.71| 0.46 |0.41|0.37|0.41 | 0.45|0.61|0.60| 0.70 | 0.68 | 0.68 | 0.58 |0.16
F8 0.89/0.72|0.38|0.34|0.36| 0.35 | 0.40| 0.57 | 0.55| 0.59 | 0.55|0.54 | 0.52 |0.17
T4 0.89|0.70(0.32 |0.34|0.31|0.36 | 0.36|0.42| 0.49| 0.54 | 0.54 | 0.52| 0.48 |0.17
T6 0.82|0.54|0.35|0.40|0.36|0.39 | 0.41|0.48|0.48|0.53|0.52|0.61| 0.49 |0.13
T5 0.86 0.48|0.39|0.35/0.30| 0.34 | 0.40| 0.46 | 0.45| 0.48 | 0.57 | 0.59| 0.47 |0.15
T3 0.90/0.66| 0.36|0.32]/0.31|0.35|0.43|0.48|0.53| 0.63 |0.62 | 0.64| 0.52 |0.18
FP2 0.87|0.68|0.550.40/0.35|0.34 | 0.38|0.50| 0.54| 0.63 | 0.57|0.70| 0.54 |0.16
01 0.67|0.37|0.28 (0.31/0.29| 0.38 | 0.38|0.44| 0.39| 0.44 | 0.55|0.57| 0.42 |0.12
P3 0.79/0.37|0.38|0.38/0.31| 0.35 | 0.45| 0.53|0.58| 0.70 |0.70|0.79| 0.53 |0.18
Pz 0.73/0.45/0.35]0.36/0.37|0.37 | 0.37|0.47[0.49| 0.62 | 0.66 | 0.65| 0.49 |0.14
F3 0.87|0.79|0.48 |0.54|0.47 | 0.51 | 0.49|0.54|0.54| 0.63 | 0.65|0.68| 0.60 |0.13
Fz 0.90|0.63|0.44 |0.45/0.41|0.40 | 0.35|0.49|0.56| 0.66 | 0.73|0.70| 0.56 |0.17
F4 0.91/0.68| 0.49 |0.45|0.40| 0.36 | 0.40| 0.48|0.49| 0.60 | 0.60 | 0.55| 0.53 |0.15
c4 0.890.67 | 0.420.40/0.39|0.47 | 0.52|0.58|0.60| 0.67 | 0.61 |0.61| 0.57 |0.14
P4 0.82|0.47|0.30(0.32|/0.32|0.43 | 0.47|0.59|0.57| 0.68 | 0.66 | 0.77| 0.53 |0.18
Pz 0.74/0.41|0.31|0.27|0.32|0.33 |0.36|0.39|0.46| 0.59 | 0.61 | 0.64| 0.45 |0.16
c3 0.89 | 0.65| 0.47 |0.50/0.41| 0.52 | 0.58|0.67[0.61|0.73|0.75|0.74| 0.63 |0.14
Cz 0.88/0.490.35|0.33]/0.28|0.36 | 0.38|0.47|0.56| 0.69 | 0.75|0.75| 0.52 |0.20
02 0.67|0.37|0.29 |0.30|0.38 | 0.39 | 0.38|0.41|0.35| 0.52 | 0.55|0.58 | 0.43 |0.12

Average | 0.84 0.58 0.39 0.38 0.35 0.39 0.42 0.50 0.52 0.62 0.63 0.65
Std 0.07 0.14 0.08 0.07 0.05 0.05 0.06 0.07 0.07 0.08 0.07 0.08

Fig. 3 Table of Estimated Feature Saliencies for EGG filter features.

initialized and have the same hyperparameters as in the previous section but exclude the state-independent distributions
and the feature saliencies. The number of states for the HMMs was varied 3 to 8. The random forest algorithm grew
100 trees.

The four sensor groups (SGs) are listed in Table[d For each sensor group containing an EEG lead, five feature
subsets are evaluated. Filter 1 was selected based on the feature saliency analysis. The other feature subsets were
selected based on domain knowledge. Table ] contains the mean classification accuracy for the outlined evaluation. The
highest accuracy for this numerical experiments was 50%, which was achieved by several models of different modalities.
This occurred three times when the number of states in the HMM was 5, specifically for SG1, SG3, and SG4. This
would indicate that adding modalities does not necessarily increase the classification accuracy. To further investigate the
predictive ability of these models, Figure [6]displays the confusion matrices for these models. The predictive ability per
cognitive state is relatively stable across the sensor groups. All of the models have significant difficulty in classifying
the high workload cognitive state. Furthermore, low workload is often confused with channelized attention.

States

Sensor Group Features 3 4 5 5] 7 8
Full 0.37 0.39 0.40 043 0.39 0.42
61 Engage Index [ 0.40 0.44 047 047 0.45 0.48
£CG, Respiration, EPL, FP2 f1l 0.44 0.40 0.50 0.47 0.45 0.49
ROC 0.36 043 0.44 043 0.40 0.43
ROC*f1 0.34 037 0.34 037 0.37 0.35
Full 0.37 0.45 0.46 0.44 0.43 0.42
<G Engage Index | 0.37 0.40 0.46 0.43 0.41 0.44
ECG, Respiration, FPL f1l 0.44 0.38 0.47 0.43 0.40 0.44
ROC 0.43 0.50 0.46 0.40 0.35 0.42
ROC*1 0.34 0.37 0.36 0.33 0.34 0.38
Full 0.40 0.37 043 041 0.36 0.40
- Engage Index | 0.44 0.45 0.49 0.49 0.44 0.46
ECG, Respiration, FP2 fl 0.44 0.40 0.50 047 0.45 0.48
ROC 0.42 0.39 0.49 0.44 0.46 0.50
ROC*1 0.33 0.39 0.41 0.40 0.35 0.41
5G4: ECG and Respiration 0.40 0.41 0.50 0.44 0.38 0.40

Fig. 4 Mean Classification Accuracy for Evaluation Experiments.

C. RQ3: Temporal Complexity of a Underlying Psychophysiological Sequence
The permutation entropy that was applied to the hidden layer of the HMM'’s sequence demonstrates a clear and
distinct pattern within and across the EEG and Heart Dynamics modalities.A non-parametric one-way ANOVA, the



Predicted Class Predicted Class Predicted Class
LW HW CA LW HW CA LW HW CA
v @ LW 10 2 12 v o9 9 1 14 v o9 LW 12 1 11
2 @ HwW 4 1 5 2w 2 1 7 2 @ HW 2 1 7
= O = O = O
CA 6 2 21 7 2 20 CA 8 2 19

(a) Confusion matrix for SG1.

(b) Confusion matrix for SG3.

(c) Confusion matrix for SG4.

Fig. 5 Confusion matrices for different sensor groups.

HMM Decoded Sequence (EEG Lead FP1), m=4

(a) EEG Lead FP1

HMM Decoded Sequence (Heart Dynamics), m=4

Fig. 6 This depicts the '"Temporal Finger Print'' distribution of the proposed cognitive states across various
psycho-physiological features. The distribution was formed using a kernel density estimate from the permutation
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entropy analysis to evaluate the complexity of the decoded hidden layer of the HMM Model.

Kruskal-Wallis test by ranks was applied for the statistical analysis. This statistical significance was consistent for
both template lengths of m = 3 and m = 4, and the template lengths did not alter results of the post-hoc analysis.
Thus, the results (e.g., p-values, means, standard deviations) provided are for the higher template length case, m=4.
With respect to the underlying psychophysiological dynamics of the HMM statistically differing between the proposed
cognitive state, 3 of 4 modalities examined EEG Lead FP1, EEG Lead FP2, and respiration demonstrated statistical
significance, where Heart Complexity was not significant but the trends aligned with the EEG modalities. These trends
across these modalities demonstrated CA having higher complexity within the hidden layers of the HMM’s. More
specifically, EEG Lead FP1’s CA (u = 0.913, o = 0.035) is significantly higher (p = 8.53x107'!), than both LW
(u =0.612, 0 = 0.115) and HW (u = 0.654, o = 0.196) cognitive states, but HW is not significantly higher than
LW. EEG Lead FP2’s CA (u = 0.674, o = 0.125) is significantly higher (p = 1.72x1072) than both LW (u = 0.571,
o =0.120) and HW (u = 0.614, o = 0.219) cognitive states, and HW is not significantly higher than LW. On the other
hand, respiration complexity, demonstrates a high entropy values relative to the other modalities. Furthermore, within
respiration complexity, CA (u = 0.917, o = 0.024) has a significantly lower complexity (p = 6.93x107*) than LW

(u=0.901, o =0.031) and HW (u = 0.905, o = 0.029).




Across modalities and cognitive states these distributions of the underlying complexity of psychophysiological
sequence have multiple modes or are skewed. We may be able to interpret these single mode distributions as an indication
that the individual is psychophysiologically locked into the task designed to induce channelize attention. Likewise,
non-normal changes within the distribution may provide an indication that the individual is psychophysiologically not
engaged into the task designed to induce a cognitive state. Thus, these underlying psychophysiological sequences
of discriminating features transitions become less complex for specific individuals on baseline runs. This raises
fundamental cognitive questions, if the bi-modal or skewed distribution is related to the subject’s complexity dropping
because they "gave-up" on the task or became distracted for the high workload and low workload tasks, respectively.

Decision Analysis Point of View: Another approach to evaluate the entropy distributions of the states, beyond
visual inspections and ANOVA to verify their statistical differences, is to employ stochastic dominance. Consider that
CA, HW, and LW entropy measures have the cumulative distribution functions Fe 4(x), Fgw(x), and F LW(x), where it
is desirable to maximize (or easily changed to minimization) the value of entropy “x” (Figure [7|below, for EEG Lead FP1
and with a template length of m = 4). It is clear, as was by visual inspection, that the CA entropy has the highest mean
and the ANOVA analysis verified that the CA entropy is statistically significantly higher than HW and LW. If, however:

Faw(x) € Fca(x) and Frw(x) < Fca(x) forall x 4

then CA stochastically (first order) dominates options HW and LW when considering entropy. This amounts to saying
that the CDF of option CA is to the right of that of option HW and LW in the CDF plots in Figure[7}

Cumulative Distribution Function (EEG FP 1)
—

Estimated cdf
5
o

0 02 04 06 08 1 12
Entropy of the HMM Decoded Sequence

Fig.7 CDF demonstrating first order stochastic dominates for EEG Lead FP1.

This means that, for the feature FP1 the CA entropy is superior to HW and LW since for any cumulative probability
value, it gives a higher entropy (i.e., not just the mean is higher, but the first quartile and the third quartile are also higher).
First order stochastic dominance is reasonably intuitive and makes virtually no assumptions about the decision-makers
utility function for entropy, only that it is continuous and monotonically increasing with increasing entropy. Such
an approach could be considered for all features and metrics. Results such as the figure above, for example, would
inform the decision maker that regardless of the utility function we place on the metric entropy, the CA state has highest
expected utility.

IV. Conclusion and Future Work

This study has uncovered a deeper understanding of the underlying physiological dynamics that occur over time
for specific cognitive states, which we refer to as "physiological temporal fingerprints". We demonstrate that these
fingerprints were unique for specific cognitive states through examining the entropy or complexity of how a human’s
psychophysiological features dynamically change over time. This particular work can potentially advance how we
examine cognitive state transitions, the level of cognitive induction from the task, and how we predict cognitive states
within the areas of human-machine interaction and human-autonomy teaming.

Future work will seek to incorporate an enhanced interpretation of the cognitive meaning of qualifying this entropy
dynamics that related to psychophysiological features (e.g., Degree of "Locked" in to a channelized attention task).
Moreover, the predictive accuracy of these work doesn’t out preform our past methods [[14]. However, the results in this
study was evaluated on a limited feature sets when compared to the previous study and improved multi-modal HMM
need to continue to be evaluated.
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