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Abstract 

The growing commercial availability of carbon nanotube (CNT) macro-assemblies such as sheet and yarn is 

making their use in structural composite components increasingly feasible. However, the mechanical properties 

of these materials continue to trail those of state-of-the-art carbon fiber composites due to relatively weak inter-

tube load transfer. Forming covalent links between adjacent CNTs promises to mitigate this problem, but it has 

proven difficult in practice to introduce them chemically within densified and aligned CNT materials due to 

their low permeability. To avoid this limitation, this work explores the combination of pulsed electrical current, 

temperature, and pressure to introduce inter-CNT bonds. Reactive molecular dynamics simulations identify the 

most probable locations, configurations, and conditions for inter-nanotube bonds to form. This process is shown 

to introduce covalent linkages within the CNT material that manifest as improved macroscale mechanical 

properties. The magnitude of this effect increases with increasing levels of pre-alignment of the CNT material, 

promising a new synthesis pathway to ultralight structural materials with specific strengths and stiffnesses 

exceeding 1 and 100 GPa/(g/cm3), respectively. 
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Introduction 

Future space exploration missions require new generations of ultra-lightweight structural materials to reduce the 

energy requirements for payload delivery throughout the solar system. Systems-level analyses have shown that 

materials with higher ratios of strength to mass than are currently available are required to enable 

implementation of more ambitious concepts for future missions.1 The sp2 bonded form of carbon found in 

graphene and carbon nanotubes (CNTs) results in an in-plane Young’s modulus of 1,000 GPa and a tensile 

strength above 100 GPa for a defect free form.2,3 These extremely high nanoscale tensile properties have led to 

significant interest in their use for structural materials. While bulk CNTs in formats such as sheets and yarns are 

now commercially available in quantities sufficient to manufacture small flight articles,4 their mechanical 

properties are governed by load transfer between the tubes, and have orders of magnitude lower moduli and 

strengths.5 Current graphene and CNT materials do not have mechanical performance sufficient to displace 

existing materials in aerospace structures. 

Processing strategies to improve the mechanical properties of CNT sheet and yarn have generally involved 

some combination of alignment and densification6–10 followed by chemical modification, using, for example, 

polymers, crosslinking molecules, or irradiation.11–19 Alignment and densification have produced the largest 

mechanical property improvements. In densified and aligned materials, load transfer could be improved further 

by the addition of covalent links between adjacent CNTs.20–22 However, in this format, the material is 

essentially impermeable, and infiltration driven processes effectively yield only surface treatments. In order to 

achieve the load transfer that capitalizes on the nanoscale mechanical properties of CNTs, it is necessary to 

create linkages within densified and aligned CNT materials. 

In a departure from conventional infiltration dependent processing approaches, the work described here uses a 

combination of pulsed electric current, high temperature, and a low applied pressure to induce the formation of 

covalent links between CNTs within a partially aligned CNT sheet. Although a continuous process will 

eventually be needed for high-volume production, a (batch process) spark plasma sintering (SPS) method is 
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used to understand the role of these process parameters upon the covalent linking process and resulting 

mechanical properties. SPS has been used extensively to sinter powdered metals and ceramics,23 as well as 

CNTs in a loose-powder format.24–27 While previous reports demonstrated the formation of covalent links in 

loose-powder CNT sintered compacts,25–28 the starting materials had poor microstructure and the resulting 

mechanical properties were too low to be useful for aerospace structures.24,29–34 In contrast to CNT powder, 

which has essentially no strength before processing, the commercially available sheet material used in this work 

has a better microstructure resulting in a specific strength in the hundreds of MPa/(g/cm3) before processing.9,35 

Subjecting these materials to a range of combined stimuli possible with SPS resulted in physical behavior that 

suggested load transfer between CNTs was improved. Experimental confirmation of chemical changes was 

carried out using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy 

(HR-TEM). Reactive molecular dynamics (MD) simulations provided insight into the mechanisms, optimum 

processing conditions, and structures that promote inter-CNT bond formation. 

Results 

Inter-CNT bond formation 

The CNT sheets were composed primarily of double-walled tubes with a typical diameter of 7 - 8 nm which are 

more stable in a collapsed configuration.36 The CNTs had agglomerated into bundles to form a fibrous network 

microstructure visible in Figure 1(a). In the pristine material, no bundle alignment was observed. Stretching the 

CNT sheet material results in alignment in the stretch direction, as shown in Figure 1(b). To investigate the 

mechanisms of molecular rearrangement, simplified experimental structures were modeled using reactive MD 

simulation with the reactive force field ReaxFF.37,38 These simulations were used to predict the covalent 

structural changes to collapsed CNTs in relation to pressure and temperature. The simulations do not address 

the possible independent role of electric current flow and simulation of all aspects of the experimental SPS 

process remained beyond the scope of current simulations. Isotherms were created at several temperatures by 
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gradually increasing the pressure in the simulation cells while holding the temperature constant. To assess their 

stability, newly-formed bonds were investigated after returning to ambient temperature and pressure. 

The progression of simulated structural changes for parallel CNT configurations [Figure S1(a)] is shown in 

Figure 1(d) and the corresponding simulated phase diagram is shown in Figure 1(c). The simulations reveal that 

the initial bond formation events, regardless of temperature or pressure, occur at the high curvature side-loops 

of the collapsed CNTs. Strain in the high-curvature regions of collapsed CNTs induces rehybridization of their 

sp2-hybridized orbitals to a configuration with greater sp3 character.39 As the pressure increases, the curvature of 

the side-loops increases further while also driving these more “reactive atoms” on adjacent CNTs closer 

together. Eventually, bond formation becomes an energetically favorable process. Once sparse covalent links 

are initiated, the high-curvature regions relax their strain energy by transforming into sp3-carbon rich structures 

(at lower temperature) or planar graphitic structures (at higher temperature) with further increases in either 

pressure or temperature. At the highest pressures, cubic diamond formation occurred in planar regions of the 

collapsed CNTs. 

Figure 2(a) shows a HR-TEM image of a CNT sheet that was processed using SPS. As previously observed in 

TEM imaging of pristine CNT sheets,8,40 the collapsed CNTs are packed into columnar stacks. The crystal 

packing of the collapsed CNTs is somewhat disrupted by the presence of a smaller-diameter round CNT. Figure 

2(b) shows a region of sp3-carbon rich simulation structure for comparison. An enlarged HR-TEM image from 

another location in the sample is shown in Figure 2(c). The arrows mark locations where the CNTs are 

separated by less than the typical van der Waals bond distance of 0.34 nm. While bonding cannot be 

unambiguously assigned on the basis of the HR-TEM image, it clearly bears a resemblance to the side-loop 

bonding found in the similarly scaled simulation image shown in Figure 2(d). 

Although there are unavoidable challenges in directly comparing the simulation and experimental conditions, 

there are instructive lessons that can be drawn from these results. The simulations show that the most probable 

location of covalent bond formation is at the curved side-loops of collapsed CNTs and that a processing 
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condition window for the formation of these bonds exists, and therefore covalent bond formation may be 

experimentally controllable. The simulations show that this window is upper-bounded by the formation of 

diamond and graphite if critical pressures or temperatures, respectively, are surpassed. Maximizing mechanical 

properties will require optimizing the extent of inter-CNT bond formation while minimizing material domains 

that cross over into the diamond or graphitic regions of the phase diagram. 

Influence of processing conditions  

The SPS process was controlled to produce systematic variations of a target temperature in graphite dies and 

target pressures applied to CNT sheet samples contained within them. While these macroscopic conditions will 

simply be referred to as SPS pressure and SPS temperature, it is important to note that localized pressure and 

temperature domains within the sample are expected to vary substantially both spatially within the sample and 

with processing time. Time dependent variation in temperature is due to the rapid pulsing of the electrical 

current. Spatial variations are expected to result from current percolation through the CNT array resulting in 

localized joule heating from variations in the CNT packing. These are also capable of inducing additional 

inhomogeneities in pressures from locally higher out-of-plane modulus and thermal expansion. These 

inhomogeneities complicate direct comparison between the simulation and experimental conditions. Even 

though they cannot be measured directly, local domains in the material may experience higher pressures and 

temperatures comparable to those in the MD simulations. Diamond crystals, which have been observed after 

SPS processing, can be as large as 10 µm,41 and are consistent with being markers of local domains where local 

conditions greatly exceeded the nominal applied SPS pressure and temperature. Some have speculated that 

nonthermal electrical effects may also contribute to the formation of higher energy structures like diamond,42 

although this is not considered in the simulations in this work.  

The simulations predict that exceeding the upper temperature or pressure boundary for covalent bond formation 

results in the formation of graphitic or diamond structures, respectively. X-ray diffraction (XRD) spectroscopy 

was used to detect the presence of diamond and graphitic crystalline phases in pristine and SPS processed CNT 
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sheets [Figure 3(a)]. After SPS processing, peaks associated with n-diamond (2 = 51˚) and cubic diamond (2 

= 75˚ and 91˚) were observed. These observations agree well with previous studies of SPS processed CNT 

powders, where n-diamond and cubic diamond XRD peaks were observed in samples in which small diamond 

crystals were also identified with transmission electron microscopy, scanning electron microscopy, and Raman 

spectroscopy.41,43 In addition to the formation of diamond after SPS processing, the graphite peak (2 = 55˚) 

increased, indicating some graphitization also occurred during the SPS process. While graphitic and diamond 

phases are not the desired structures, it is encouraging that the SPS process appears to be more than capable of 

producing the conditions for covalent bond formation, despite the low SPS pressure. Comparing the samples 

processed at SPS pressures of 0 (the lowest marginal contact pressure) and 40 MPa at the same SPS temperature 

of 1,000 ˚C, small diamond peaks are observed in the 0 MPa sample and are similar or perhaps slightly smaller 

for the 40 MPa sample. The observation of diamond peaks in the uncompressed sample indicates that the 

globally applied SPS pressure is not the source of pressure driving diamond formation. The diamond peaks 

increase with the SPS temperature, which is interdependent with the electrical current pulses, indicating that this 

is likely the driving force for diamond formation. 

Since the creation of covalent links to the sidewall of a CNT disrupts the crystalline structure of the tube, it 

produces shifts in frequency and intensity of their characteristic vibrational modes.44 Raman spectroscopy is 

therefore an excellent means of tracking these changes, and provides a qualitative description of the disorder in 

the CNT structure. Specifically, an increasing intensity ratio of the D peak (1,299 cm-1) to the G peak (1,574 

cm-1) indicates increasing disruption of the CNT structure. As shown in Figure 3(b), the intensity ratio between 

the D and G peaks increases with increases in both the SPS temperature and SPS pressure. This indicates 

increasing disruption of the CNTs with increasingly aggressive SPS processing conditions, consistent with the 

formation of bonds between adjacent tubes. The G peak frequency is also up-shifted after SPS processing, 

which may indicate the formation of graphite during SPS processing, in agreement with the XRD spectra. 
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The tensile mechanical response of pristine and SPS processed samples is shown in Figure 3(c). The low 

Young’s modulus and very high nonlinear strain prior to failure observed in the pristine and low SPS 

temperature processed material is consistent with a tube sliding mechanism. If load transfer between CNTs 

relative to their length is insufficient for the transferred stress to reach the tensile fracture stress of the CNTs, 

they are able to slide against each other, resulting in a high nonlinear failure strain. Figure 3(c) clearly shows 

that SPS processing substantially reduces the failure strain, consistent with improved load transfer between 

CNTs. The sample processed with no compression had a much higher Young’s modulus and retained about a 

half of the plasticity of the pristine sample, but at a substantially higher flow stress. Stress-strain curves for 

samples processed at non-zero SPS pressures do not show this high failure strain, an indication that CNT sliding 

has been greatly reduced or eliminated. The highest SPS temperature of 1,500 ˚C resulted in an extremely brittle 

material that failed at the lowest strain. These results indicate that SPS processing can improve load transfer 

between CNTs and that SPS conditions can be adjusted to produce a tailored mechanical response. 

Figure 3(d) shows the specific stiffnesses and specific tensile strengths of the samples in Figure 3(c) plotted as a 

function of density. Interestingly, the specific strength and stiffness of the sample processed at a pressure of 0 

MPa increased despite a decrease in density. It is also notable that the two independent samples processed at 

1,000 ˚C and 40 MPa exhibited very similar specific strength and stiffness despite differing densities. These 

results indicate that densification is not the primary factor improving the mechanical performance and suggest 

the involvement of inter-tube bonding. While the specific stiffness continues to increase weakly with density, 

the specific strength initially increases but falls at higher densities which also correspond to more aggressive 

processing conditions. 

Influence of CNT alignment 

If inter-tube bonds preferentially form at the curved side-loops of collapsed CNTs, as indicated by the simulations 

and HR-TEM observations, alignment of the CNT sheet samples prior to SPS processing should lead to improved 

mechanical properties of the resulting material. Stretching the as-received CNT sheet material rotates and aligns 
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the CNTs in the direction of the applied stretch. Because the results in the previous section showed that SPS 

processing conditions of 1,000 ˚C and 40 MPa were sufficient to induce inter-tube bonding without over-

producing diamond or graphite, these parameters were used for all aligned samples.  

Representative stress-strain responses for a series of increasingly stretched (pre-strained) samples are compared 

in Figure 4(a) and specific strengths and moduli are shown in Figure 4(b). Increasing CNT alignment in the 

material decreases the failure strain while increasing the strength and modulus, as has been reported elsewhere.9 

Application of SPS processing to the aligned samples further increases specific strengths and stiffnesses and 

decreases the failure strain for all levels of pre-strain. In contrast to the aligned but unprocessed samples, the 

failure strain of the SPS processed samples increased with increasing alignment. This indicates that toughness is 

improved by combining alignment with SPS processing, relative to SPS processing alone. 

Increasing alignment and densification reduces the effectiveness of infiltration-based processing strategies. For 

the SPS processing reported here, however, Figure 4(b) illustrates that this behavior is reversed. Both the specific 

stiffnesses and strengths increase more rapidly with alignment in the SPS processed samples than in the 

unprocessed samples. The highest specific strength and stiffness observed in this work resulted from SPS 

treatment of the 43% pre-strained sample, resulting in a specific strength of 973.8 ± 104.6 MPa/(g/cm3) and 

specific stiffness of 100.4 ± 17.6 GPa/(g/cm3). Relative to the pristine unprocessed material, these results 

represent a 205 % increase in specific strength and 1661 % increase in specific stiffness. As no plateau in specific 

stiffness or strength is apparent in Figure 4(b), it is possible that higher levels of pre-strain may lead to further 

improvements in mechanical properties. 

To gain further insight into the relationship between CNT alignment and inter-tube bond formation, CNTs in a 

stacked, [0/90] perpendicular arrangement [Figure S1(b)] were simulated. CNTs in parallel alignment with each 

other, represented by the simulations discussed earlier, are prevalent within bundles, while CNTs misaligned 

with each other are expected between adjacent bundles. The experimental materials are understood to have an 

abundance of both parallel and misaligned CNTs within and between bundles, respectively. In the pristine 
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unstretched material the bundles are randomly oriented resulting in more misaligned CNTs, while stretching the 

material orients the bundles into closer alignment in the direction the stretch was applied. Comparing the 

parallel and perpendicular simulation geometries can help determine if misaligned CNTs impede the formation 

of covalent links. 

The progression of structural changes is shown in Figure 4(c), and the corresponding phase diagram is reported 

in Figure 4(d). The formation of bonds at the side-loops, observed in the parallel CNT system, did not occur for 

the perpendicular CNTs. This was because the perpendicular CNTs cannot pack as tightly as the parallel tubes 

resulting in a small void located adjacent to the side-loops (Figure 4e), where the most reactive atoms are 

located. This may explain, in part, why the SPS process is more effective for increasingly aligned CNT 

material. 

In Figure 5, the stretched and processed material in this work is compared to a few other representative CNT 

sheet processing methods from the literature. The specific strengths of the pristine and processed material from 

this work greatly exceed the fracture strength of loose-powder CNT compacts that have been SPS 

processed29,31–34. The improvements in properties reported in this work exceed what was reported for 

functionalized and irradiated CNT sheets18 and stretched and hot-pressed CNT sheets,45 and are similar to what 

was achieved by infusing with BMI resin and stretching up to 80%8,9, despite only stretching up to 40% in this 

work. While no existing mature material formats are exactly comparable to the processed CNT sheets in this 

work, carbon fiber tows and aerospace IM7/8552 carbon fiber reinforced polymer composites are shown in 

Figure 5 for reference. The stretched and processed CNT sheet format is most similar to unidirectional 

IM7/8552, since both are aligned, while the unstretched sheets are more comparable to quasi-isotropic 

IM7/8552 since both are relatively isotropic in the in-plane directions. It is apparent that the quality of the 

pristine CNT sheet material influences the processed material properties. An important next step is improved 

control of the CNT manufacturing process to produce nanotube material with characteristics that the modeling 

and experiments in this work suggest are favorable for optimal covalent bond formation. 



 10 

Summary  

Introducing covalent links within densified and aligned CNT materials is an important step in improving the 

mechanical properties of commercially available CNT materials. In this work, combined pulsed electrical 

current, temperature, and pressure were applied to CNT sheets to introduce covalent linkages between the CNTs 

that affected their macroscale mechanical properties. In contrast to typical infiltration methods, these results 

show continued improvements in mechanical performance with increasing alignment and density in the starting 

material; the greatest improvements observed in this work were found in the most highly aligned sample. 

These results demonstrate the capability of applying combined stimuli compatible with CNTs to improve 

mechanical performance. While large-scale production using this approach remains to be developed, this 

chemistry warrants further investigation, since this is a high-energy process which makes it difficult to closely 

control and optimize. While the results are challenging to interpret because the pulsed electrical current, 

temperature, and pressure are not independent quantities, the role of the pulsed current flow appears to be 

significant. With it, the applied pressures needed to form sp3 hybridized structures between CNTs are lowered. 

However, the mechanisms responsible for this remain unresolved. 
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Figure 1. SEM micrographs of (a) pristine and (b) pre-strained CNT sheets. (c) Simulated phase diagram for 

parallel CNTs. The gradient in the 27 ˚C isotherm indicates a gradual increase in covalent bonding without a clear 

distinction between sparse covalent bonding and sp3-carbon rich structures. Arrows indicate the highest simulated 

conditions. (d) Simulated structural outcomes after returning to ambient pressure and temperature for parallel 

CNTs. 
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Figure 2. (a) HR-TEM image of CNT structure after SPS processing at 1,000 ˚C and 20 MPa. (b) Example of an 

sp3-carbon rich structure from the simulations (quenched structure after 2,000 ˚C, 40 GPa). (c) Zoomed HR-TEM 

of image at another location showing CNT spacing less than the van der Waals distance (arrows) at higher 

curvature locations and (d) a simulation image for comparison, having sparse covalent linking reducing the CNT-

CNT distance (quenched structure after 2,000 ̊ C, 25 GPa). The simulation has been scaled to match the HR-TEM 

scale-bar. 
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Figure 3. (a) XRD diffraction spectra of 0 % pre-strained samples processed at various SPS processing 

temperatures and pressures. (b) Raman spectra of 0 % pre-strained CNT sheets processed under various SPS 

pressures and temperatures. (c) Representative stress-strain responses of 0 % pre-strained CNT sheets processed 

under various SPS pressures and temperatures. (d) Specific stiffness and strength of 0 % pre-strained CNT sheets 

plotted against density after SPS processing. Error bars indicate the standard deviation over five samples. For 

some samples, error bars are smaller than the symbol size. 
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Figure 4. (a) Representative stress-strain responses of pre-strained CNT sheets with and without SPS 

processing. SPS samples were processed at 40 MPa and 1,000 ˚C. (b) Specific stiffness and strength as a 

function of pre-strain. Error bars indicate the standard deviation over five samples. For some samples, error bars 

are smaller than the symbol size. (c) Simulated structural outcomes for low-packed perpendicular systems. (d) 

Simulated phase diagram for perpendicular systems. Arrows indicate the highest simulated conditions. (e) Void 

space adjacent to the side-loop of simulated perpendicularly misaligned CNTs while compressed at ~56 GPa 

and 2,000 ˚C. 
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Figure 5. Ashby plot comparing stretched and processed CNT sheet from this work to CNT sheet processes in 

the literature, SPS processed CNT powders, and carbon fiber constituents and composites. All specific strengths 

are tensile, except SPS processed CNT powders, which were from 3-point bending tests. 

 

SUPPLEMENTAL INFORMATION: 

Materials and methods 

Simulation methods 

Molecular dynamics simulations were performed using the open-source Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) software.46,47 The reactive force field ReaxFF with the ReaxFFC-2013 

parameters was used.37,38 Simulation structures were rendered using the Ovito software.48 The coordination of 

the atoms was determined by counting the number of atoms within a cutoff distance of 0.18 nm, which 

corresponds to the zero density point in the radial distribution function separating first and second neighbors. 

Cubic diamond structures were identified based on the location of an atoms neighbor relative to the cubic 

diamond lattice points, as implemented in the Ovito software.49 All systems used periodic boundary conditions 

in all three directions. All CNTs had an inner diameter of ~8 nm before they were collapsed. All parallel 

SPS processed CNT 

powders [26,27,29–31,35]

Functionalized and electron 

irradiated CNT sheets [14]

Pristine

Stretched and hot-pressed 

CNT sheets [36]

Pristine

BMI infiltrated and 

stretched CNT sheets [5,6]

Unstretched with BMI

Pristine (this work)

PAN carbon fiber tow

Pitch carbon fiber tow

Quasi-isotropic IM7/8552

Unidirectional 

IM7/8552
Stretched and 

processed CNT sheets 

(this work)
Unstretched and processed CNT sheets 

(this work)



 21 

systems contained four CNTs, and perpendicular systems had two CNTs. The chirality of the parallel CNT 

system was mixed with alternating columns of armchair and zigzag. The chirality of the CNTs in the 

perpendicular systems were one armchair and one zigzag. Because the CNTs are arranged in a perpendicular 

configuration, the crystal lattice is oriented in the same direction at the junction. All systems contain ~120,000 

atoms. 

Pressures were increased along isotherms at 27 (room temperature), 1,000, 2,000, and 3,000 ˚C. A Langevin 

thermostat and Nose-Hoover barostat were used in all simulations for temperature and pressure control. 

Pressure was controlled independently along the two transverse directions while the pressure was maintained at 

zero along the axial direction for the parallel CNTs. For the perpendicular CNT setups, both axial directions 

were maintained at zero pressure while the pressure was controlled in the direction normal to the junction. 

Because the overlapped junction area of the perpendicular CNTs compromised 17 % of the cross section of the 

total box, barostat target pressures were set to 17 % of the desired junction pressure, which resulted in the 

appropriate junction pressures. A time step of 0.2 fs was used in most cases. A few of the high temperature 

isotherms were repeated with a time step of 0.1 fs to ensure the time step was sufficiently small. For the 

perpendicular CNT setup, the system was divided into ~2,550 subvolumes within which the pressure was 

computed using the subdomain virial stress and volume. The junction pressure was computed from the average 

pressure in the subdomains comprising the junction. Pressures were increased at a rate of 50 GPa/ns for most 

simulations. In the 27 ˚C simulations and the 1,000 ˚C perpendicular simulations, a portion of the simulation 

was performed at a rate of 500 GPa/ns to improve computational efficiency over a large pressure range. In a few 

cases, a ramp rate of 500 GPa/ns was also used between pressures where no changes to the material were 

expected or observed. Snapshots at 5 GPa intervals were saved and quenched to room temperature and pressure 

in 10 ps, and then held for 10 ps. This was done so structures could be compared to experimental samples 

characterized at room temperature and pressure after the SPS process. At high temperatures a variety of 

transient covalent bonds were observed and the quenching process was used to identify the stability of these 

bonds, most of which did not persist after the quenching process. 
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The pressures and temperatures of these nano-scale simulations were intended to represent local domains within 

the experimental material that experience pressures and temperatures much higher than those nominally applied 

during the SPS process. These simulations operated under the assumption that the experimentally observed 

diamond particles form in these high-pressure and high-temperature regions, consistent with the phase diagram 

for carbon, and not through other specialized conditions such as those required for atmospheric pressure CVD 

diamond growth. The simulations considered direct conversion of CNTs to other solid forms, and not to other 

intermediary phases such as liquid carbon, gaseous carbon, or highly-strained many-layered nano-onions, 

although some have speculated in the literature that this may occur in the SPS process.41,50,51 The energy of 

compressed graphite and diamond were explicitly included in the training set of the ReaxFFC-2013 parameters. 

However, the phase-change energy barriers were not explicitly included in the ReaxFF training set. Some 

preliminary tests indicated that ReaxFFC-2013 parameters predict a higher graphite to diamond energy barrier 

(11.5 kcal/mol) than DFT (7.6 kcal/mol).52 Finally, it is important to note that the pressures and temperatures in 

the simulations occur over nano-scale domains. Therefore, relating the local simulation pressures and 

temperatures to globally reported values such as those from high-pressure, high-temperatures diamond anvil cell 

experiments will require consideration of the effects of the material microstructure. 

Experimental methods 

As-received acetone densified CNT sheet (Nanocomp Technologies, Inc., Lot#: 151-92, areal density of 14.67 

g/m2) was used to fabricate SPS processed samples. The CNT sheet contained mostly double-walled CNTs with 

average diameters of 7 ~ 8 nm. The CNT sheets contain ~10 wt.% residual iron catalyst particles from the 

floating catalyst manufacturing process. A large fraction of the tubes was observed to be collapsed in the CNT 

sheets using HR-TEM. For the pre-strained samples, the sheet (76  178 cm) was clamped on a custom-built 

stretcher between two metal bars and then mechanically stretched to the desired level of stretching (from 0 to 43 

%) driven by a stepper motor. Acetone solvent (Sigma-Aldrich) was applied during the stretching step for the 

22 and 43 % strain samples. The level of pre-strain was calculated using length differences of marked lines 

(7.62 cm gap) at the center of the sheet before and after stretching. After stretching, the sample was cut from the 
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center of the sheet (within the marked lines) and then stored under ambient conditions. Circular samples of 1 cm 

diameter were used for Raman and HR-TEM characterization, while larger 5.08  5.08 cm square samples were 

used for mechanical and XRD characterization. The cut and pre-stained CNT sheet samples were sandwiched 

between graphite dies in the SPS chamber of a GT SPS system (SPS25-10). SPS temperatures ranged from 

1,000 to 1,500 ˚C and applied pressures ranged from 0 to 60 MPa, under an argon environment. The 

temperature of the graphite dies was monitored with an imbedded thermocouple and with an optical pyrometer 

through a window in the graphite die. The processing time for all samples was 5 min. During the process, the 

current and voltage was maintained at ~ 900 A and less than 5 V, respectively, with a 5 ms duration off period 

between each pulse. The heating rate was set to 100 ˚C/min. 

Room temperature tensile properties of the pristine and pre-strained CNT sheets, with and without SPS 

processing, were determined using a Gatan Microtester 200 stage and Deben controller equipped with a 200 N 

load cell. The tensile testing method was based on ASTM standard D1708. The gauge length and cross head 

speed were 10 mm and 0.5 mm/min, respectively. The tensile specimens were rectangular strips with a width of 

5 mm and length of 20 mm. Five specimens were tested to determine tensile strength and modulus for each SPS 

condition. Specific tensile stress was calculated by dividing the measured force (N) by the linear density (g/km) 

of each specimen, to eliminate measurement errors associated with sample thickness and specimen dimensions. 

The specific modulus was obtained from linear regression of the slope between 100 and 200 MPa/(g/cm3) of the 

stress-strain curve for SPS processed samples. The specific modulus of pristine samples was calculated from the 

slope between 10 and 30 % of the ultimate tensile stress to eliminate the initial lag in stress-strain behavior. The 

sample thickness was determined using a digital thickness gauge (Mitutoyo Corp., Model ID-S112PE). The 

nominal density was determined by measuring the length, width, thickness, and weight of the specimen.  

High resolution transmission electron microscopy (HR-TEM) was conducted using a Joel JEM-ARM200cF 

system (a sub-Angstrom Cs corrected transmission/scanning transmission microscope) at an acceleration 

voltage of 80 keV to minimize beam damage of the CNTs. Cross-sectional HR-TEM samples were prepared 

using a focused ion beam (FIB, FEI Helios 600) system equipped with a precise positioning stage 
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(OmniProbeTM). The sample thickness was generally less than 30 nm and CNTs were aligned at nearly 90 

degrees to the manufacturing direction of CNT sheet. Note that the CNTs in the as-received sheet were mostly 

randomly oriented before stretching, however, there was a small degree of pre-existing directionality present as 

a result of the manufacturing process. All mechanical tests and stretching were conducted along this 

manufacturing alignment direction. X-ray diffraction analyses were conducted on a Rigaku SmartLab x-ray 

diffractometer with a Cu K radiation source. Raman spectra were acquired with an excitation wavelength of 

785 nm on a Thermo-Nicolet-Almega Dispersive Raman Spectrometer through a 100 m pinhole. The 

acquisition of each spectrum consisted of 5 scans.  

  

Figure S1. Starting simulation structures for (a) parallel and (b) perpendicularly aligned double-wall CNTs. 
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