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Abstract

The Digital Twin (DT) concept has the potential to revolutionize the
way systems and their components are designed, managed, maintained,
and operated across a vast number of fields from engineering to healthcare.
The focus of this work is the implementation of DT for the health man-
agement of fatigue critical structures. This paper is the second part of a
two-part series. The first of the series demonstrated the use of multi-scale,
initiation-to-failure crack growth modeling to form non-deterministic pre-
dictions of fatigue life. In this second part, a general method for reducing
uncertainty in fatigue life predictions is presented that couples in-situ
diagnostics and prognostics in a probabilistic framework. Monte Carlo
methods and high-fidelity finite element models are used to (i) gener-
ate probabilistic estimates of crack state throughout the life of the same
geometrically-complex test specimen and (ii) predict fatigue life with de-
creasing uncertainty as more of these diagnoses are obtained. The ability
to predict accurately and in the presence of uncertainty is demonstrated,
suggesting that the proposed DT method is feasible for fatigue life prog-
nosis and should be pursued further with a focus on increasing application
realism.

1 Introduction

Digital Twin (DT) is an emerging concept that has steadily gained popularity
among industry, academia, and government agencies since it was first introduced
in the early 2000s [1]. Borrowing from [2], the Defense Acquisition Glossary
defines Digital Twin as “an integrated multiphysics, multi-scale, probabilistic
simulation of an as-built system . . . that uses the best available models, sen-
sor information, and input data to mirror and predict activities/performance
over the life of its corresponding physical twin” [3]. By establishing an inherent
requirement to operate at the leading edge of engineering capabilities, DT is
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intended to be applicable to problems of arbitrary complexity. Research in the
field focuses first and foremost on this requirement and uses enabling technolo-
gies such as high-performance computing to achieve these goals. A common
question during implementation is thus not what model can be used, but how
can the best model be used.

The idealistic goal of DT is to provide an exact digital replica of a real-
world component, structure, or system – a digital twin. Through monitoring
of the real-world counterpart, or physical twin, the digital twin can simulate
both operational and environmental conditions that are identical to those that
have been or may be experienced by the physical twin. Changes to the state of
the physical twin (e.g. incurred damage) are detected, quantified, and added to
the digital twin model. Assuming a perfect match between physical and digital,
the digital twin can then simulate future missions, allowing for prediction of
performance, risk, and maintenance requirements. In this ideal case, the only
uncertainties are in the future state of the world in which the physical twin
will operate. In reality, uncertainties are rife in the digital twin itself, present
in both the models and the measurements as well as in the expected future
operating conditions. The model is an approximation of the physical twin,
and the loads applied to, environment around, and damage to the physical
twin cannot be precisely measured. This missing knowledge manifests itself
as uncertainty; uncertainty that in turn must be quantified and propagated
through all predictive simulations.

While DT has become a common term, particularly in the last five years,
its implementation for aerospace structures has proven difficult. In 2009, the
first of a series of papers was published by Emery et al. on their concept,
the multi-scale Damage and Durability Simulation strategy (DDSim) [4]. The
work was an early step toward the realization of DT and embraced high-fidelity,
physics-based modeling and the inherent probabilistic requirements of predict-
ing damage evolution. The approach addressed issues associated with multiple
length scales and computational expense through a variable-fidelity, hierarchical
approach. In 2011, the DT concept was applied to fighter aircraft health man-
agement by the Air Force [5] and, in 2012 and 2015, the concept was included
in NASA technology road maps [6, 7]. Work has also been published on DT
applied to fleet management [8]. More recently, industry interest in the concept
has grown, with GE being one of the most invested companies [9].

Building on preliminary NASA studies [10, 11, 12, 13, 14], the work presented
in this two-part series was started in 2016 and focused on DT as a prognostics
and health management approach for detecting, quantifying, and predicting
fatigue crack growth. New methods were developed for characterizing damage
and calibrating predictive models while quantifying uncertainty from a variety
of sources. Crack growth was modeled from initiation to failure using high-
fidelity finite element models. The multi-scale nature of fatigue crack growth
was addressed in two phases, defined and separated by the minimum detectable
flaw size in the component of interest. Prior to the regime of detectable damage,
information about crack growth rate and material response were derived from
empirical databases or microstructure characterization and simulation. This
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phase is discussed in detail in Part I of this series [15].
The work presented herein focuses on the second phase of the DT predictive

process developed under the project. In this context, fatigue cracks are now
considered detectable. Current detection capabilities link this regime with that
of microstructurally-large crack growth. The advantage of the second phase is
that material and crack growth rate parameters can be calibrated based on ob-
servations of actual crack growth, dramatically reducing the uncertainty in the
predictive model. One of the early and most complete outlines of this concept
in its contemporary form was provided in [16]. The approach is straightforward
and generally applicable. As temporal snapshots of crack state are gathered
from a diagnostic system, the data is fed through an uncertainty quantification
framework that calibrates the parameters of a high-fidelity fatigue crack growth
simulator. Once calibrated, the uncertainty in model parameters and measure-
ments is propagated forward through the model to a future time of interest (e.g.,
next maintenance appointment) or until the crack reaches a critical length (e.g.,
impending failure). The result is a probabilistic prognosis of the time to failure
or the remaining useful life.

Realization of this iterative diagnosis-to-prognosis process is the subject of
abundant foundational research in both the structural health monitoring and
prognostics and health management fields. Early works involved calibration of
analytical crack growth models using observations of damage evolution, either
in-situ or from tests conducted offline [17, 18, 19, 20]. Methods for quantifying
uncertainty varied in early contributions. Orchard et al. provided an accessi-
ble introduction to particle filters as a natural framework for state-space-based
fatigue crack growth prognostics [21]. A number of notable studies incorporat-
ing particle filters followed, including [22, 23, 24]. Difficulties estimating static
model parameters, such as those defining crack growth rate laws, motivated
the use of Markov chain Monte Carlo (MCMC) methods as an alternative to
particle filters [25, 26, 27, 28].

DT is predicated on the use of high-fidelity models, which conflicts with the
use of quick-to-evaluate, analytical models in the aforementioned contributions.
Reduction of model fidelity alleviated the computational burden associated with
traditional uncertainty quantification methods. Frameworks like DDSim [4] and
DARWIN [29, 30, 31], the probabilistic reliability software developed by South-
west Research Institute, enable the use of high-fidelity damage models and are
more similar in scope to that of DT. Grell et al. demonstrated fatigue prognos-
tics centered around the Air Force damage tolerance framework AFGROW [32].
Bazilevs et al. demonstrated the use of the Dynamic Data-Driven Application
System (DDDAS) to predict fatigue crack growth in a wind turbine blade [33].
While these studies exhibited more DT-like fidelities, they were either determin-
istic or primarily propagated uncertainty (i.e., preclude parameter estimation),
falling short of a continuously updated digital replica of a physical system.

The aim of this paper was to demonstrate the feasibility of DT as a com-
plete health management philosophy, specifically in the regime of detectable
damage. Building upon the literature, a rigorous DT framework was developed
with a focus on non-deterministic calibration of high-fidelity models and uncer-
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tainty propagation for the purpose of forming a continuously-updated fatigue
life prognosis. While the scope of the work was limited to fatigue crack growth,
the means for quantifying and propagating both diagnostic and prognostic un-
certainties are intended to be generally applicable to damage in any structure.
The only requirements for the approach are observations of material response
that are sensitive to damage evolution and a reliable model that can predict
that response. The remainder of this paper is organized as follows. Section 2
introduces the methods used to diagnose and prognose fatigue crack growth,
including methods for uncertainty quantification. In Section 3, relevant infor-
mation about the DT study, namely the specimen and test used to demonstrate
feasibility, is provided. Details regarding the implementation of the methods
are presented in Section 4, followed by results and discussion in Section 5 and
concluding remarks.

2 Method

Fatigue crack growth prognostics were implemented in two phases as part of the
DT framework. The separation of the two phases is defined by the minimum
detectable flaw size (MDFS). Transition to the second phase commences once
the actual flaw can be diagnosed. The phases are referred to as the pre- and
post-diagnosis regimes herein. Due to the impracticality of micro-scale material
characterization at every point in the structural volume, the pre-diagnosis phase
generally yields predictions with higher uncertainty than its post-diagnosis coun-
terpart. The latter benefits from direct observations of damage growth. How-
ever, a significant portion of fatigue life is generally spent in the pre-diagnosis
regime, especially for high-cycle fatigue, necessitating a DT approach compris-
ing both phases.

The pre-diagnosis regime involves simulating crack growth from initiation to
failure with all uncertainty quantified empirically from microstructure statistics
and assumptions regarding loads and operational environment. The process,
outlined in [15], involves a two-scale model of microstructurally small crack
(MSC) and microstructurally large crack (MLC) growth. First, crack initiation
and microstructurally small, grain-by-grain crack growth are simulated until the
crack reaches a characteristic transition length. Referred to as the handshake
crack length in that paper, this transition defines the shift to the MLC model.
Linear elastic MLC growth is then simulated from the handshake crack length,
through a homogeneous material, and to satisfaction of a predefined failure
criteria. The final predicted number of cycles to failure is then computed as

Nf = NMSC +NMLC (1)

where NMSC and NMLC are random variables representing the number of cy-
cles required to initiate and grow a crack to the handshake crack length and the
number of cycles to grow from the handshake crack length to failure, respec-
tively.
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The post-diagnosis regime differs in two ways from its counterpart. First,
since actual observations of the crack (e.g., crack position, length, orientation)
are available by definition, a model calibration step can be added to the pre-
diction process. These observations inform and reduce uncertainty in the crack
state and crack growth rate model parameters. The reduced parameter uncer-
tainties and quantified measurement uncertainties are then propagated forward
through the simulation until the crack growth reaches the predefined stopping
condition. The model calibration step significantly reduces uncertainty in the
final quantity of interest, Nf , when compared to the pre-diagnosis regime pre-
diction.

The second difference between regimes is that the number of cycles required
to reach the first diagnosis is now known. The crack measurement at that cycle
count is a random variable, but the cycle count itself is deterministic. This
point is significant as it reframes how Nf is calculated. Now,

Nf = nD +NR
f (2)

where nD is the deterministic number of cycles sustained by the monitored
component until the first diagnosis of crack length is made. There is no need to
compute the number of cycles to initiate and grow to a handshake length any
more, as this is a fixed quantity and included in nD (plus the number of cycles
from handshake to the first diagnosis).

The role of prognostics in the post-diagnosis regime is thus the estimation of
the random variable NR

f , or the number of cycles between the first diagnosis and
failure. By definition, diagnoses are available with which to calibrate the large
crack model, leading to a reduction of uncertainty in NR

f over time. As part of
this prediction, the initial crack length for the MLC simulation is now a random
variable (in contrast to the deterministic handshake length in the pre-diagnosis
regime). This variable is unknown, but can be estimated as part of the model
calibration.

The remainder of this section is divided into three parts, all pertaining to
the topic of this paper – the post-diagnosis regime of the DT approach. In
the first subsection, a general overview of uncertainty quantification methods
are discussed. The same general methods were used by the diagnostic and
prognostic algorithms, which are discussed in further detail in the remaining
two subsections, respectively.

2.1 Uncertainty quantification

Both the diagnostic and prognostic approaches used herein involve calibration
of a model, M, with random parameters, X, given observations of the physical
response being modeled. Mathematically,

Yi =Mi(X) + εi for k = 1, . . . ,K (3)

where Yi and εi are both random variables and represent the observations of the
system and the measurement noise, respectively. K denotes the total number
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of observations available.
The calibration is the solution to the inverse problem posed by Equation 3.

Given realizations yi of Yi for k = 1, . . . ,K, determine X. To accomplish this,
the solution to the inverse problem can be formulated using Bayes’ Theorem as

π(x|y) =
π(y|x)π(x)∫

Rq π(y|x)π(x)dx
(4)

with π(x|y) referred to as the parameter posterior probability density function
(PDF). The numerator is the multiplication of two densities, the likelihood func-
tion, π(y|x), and the prior distribution, π(x). The denominator is a normalizing
constant ensuring that the integral of the posterior PDF over Rq equals unity.
For most engineering applications, the evaluation of this normalizing constant
is intractable. Instead, the posterior is typically approximated using sampling
methods such as Markov chain Monte Carlo (MCMC), which was the approach
used in this work.

Detailing the inner-workings of MCMC is beyond the scope of this article. In
summary, MCMC involves the construction of a Markov chain through the pa-
rameter space that has a stationary distribution equal to the targeted posterior
distribution [34]. Drawing a finite set of samples {x(λ)}Λλ=1 from the chain in
this stationary condition is thus equivalent to drawing samples from the poste-
rior. These samples can be used to estimate statistics or approximate the PDF
of the posterior. As with other Monte Carlo methods, these approximations
converge asymptotically as Λ→∞.

The formation of the Markov chain takes advantage of the invariance of the
normalizing constant with respect to x. By assuming that the measurement
errors are independent and identically distributed (iid) and εi ∼ N(0, σ2), the
likelihood becomes,

π(y|x) =
1

(2πσ2)K/2
exp

(
− 1

2σ2

K∑

k=1

[
yi −Mk(x)

]2
)
, (5)

a function of the sum of squared errors between the model response and the
corresponding observations. The only other dependence of Equation 5 is the
variance term, σ2. If this value is unknown, it can be added to the random
parameter vector, X, and estimated along with the model parameters. The prior
distribution is assumed to be known, derived from expert knowledge, empirical
data, or previous calibrations. Therefore, the posterior can be evaluated up to
some proportionality for any x ∈ Rq.

The Markov chain is constructed sample-by-sample. A new sample, x(∗), is
proposed from a proposal distribution, J , that is dependent only on the previous
sample; i.e., x(∗) ∼ J(x(∗)|x(λ−1)). While a variety of algorithms exist, accep-
tance or rejection of the proposed sample generally depend on the acceptance
ratio, defined as

R =
π(x(∗)|y)

π(x(λ−1)|y)
=

π(y|x(∗))π(x(∗))

π(y|x(λ−1))π(x(λ−1))
. (6)

6



Samples which have a higher posterior probability than the previous sample
(R ≥ 1) are accepted into the chain while samples with lower posterior probabil-
ity (R < 1) are accepted with probability R and rejected with probability 1−R.
If the proposed sample is accepted, x(λ) = x(∗) and if rejected, x(λ) = x(λ−1).
The process of proposing and accepting or rejecting new samples is iterated
until the number of samples in the chain is equal to Λ.

A few challenges remain, such as how to initialize the Markov chain. Ran-
domly sampling x(1) ∼ π(x), for example, means that the chain initially is
non-stationary as it searches for the region of high posterior probability. Ad-
ditionally, the proposal distribution, J , is typically tuned throughout sampling
to encourage chain mixing. Both of these details result in a period of non-
stationarity at the beginning of the sampling process. To remove this effect
when generating the sample-based estimate of the posterior, an initial portion
of the chain is typically discarded. This is referred to as chain burn-in. In this
work, deterministic optimization was performed prior to sampling such that the
chain was always initialized at the optimal parameter vector in a least squares
sense. For single-mode posterior densities, this step largely removes the need for
a global search and reduces the number of samples required for burn-in. Finally,
convergence of the Markov chain to its stationary condition must be achieved
in order to generate samples from the target posterior. Ensuring chain conver-
gence is important and methods for monitoring chain convergence have been
researched for over two decades [35, 36]. Readers are referred to [37, 34, 38] for
more information regarding MCMC sampling.

2.2 Diagnostics

The role of diagnostics in the DT framework is to periodically assess the state
of damage (e.g., a fatigue crack in this work) after it has exceeded the MDFS
using in-situ material response measurements. The crack state estimates over
time then represent observation data that facilitate prognostics. By continually
generating new diagnoses and re-calibrating the prognostics model based on
these observations, the DT framework can significantly reduce the uncertainty
in predictions of the final number of cycles (Equation 2).

Diagnostic methods operate under the assumption that the physical response
of a structural component is altered in the presence of damage. To this end,
the goal of diagnostics here is to use a set of measured responses at time t,
{êt,q}Qq=1, to estimate parameters that characterize the crack (location, size,

etc.) at that time, Ct. A computational model, MD, capable of predicting the
material response for an arbitrary crack configuration is also needed.

The observed response data and predicted responses using the model are
then related by

Et,q =MDq (Ct) + εDq for q = 1, . . . , Q (7)

where εDq is a random variable representing the measurement noise associated
with the sensors used. Note that it is assumed that any additional free parame-
ters ofMD (material properties, boundary conditions, etc.) have been properly
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calibrated beforehand and that necessary post-processing is performed within
the model to return the material response at the Q sensor locations.

Equation 7 forms the basis of the diagnostics inverse problem that can be
solved by leveraging the approach described in Section 2.1. The result is a
sample-based estimate of π(ct|et), the posterior PDF of the crack parameters
given a set of material response observations at a particular time. For the
purposes of DT, π(ct|et) is used to produce a scalar estimate of the crack state
that can serve as a single observation for prognostics. In this work, the mean
value of ct is used

ĉt = E[Ct|et] =

∫
π(ct|et)ctdct. (8)

Diagnostics is performed at T instances throughout time to obtain the set of
crack state observations, {ĉt}Tt=1, needed to perform calibration and prediction
with prognostics. For more details on the diagnostic algorithm, see [13] for an
in depth formulation.

2.3 Prognostics

The goal of the DT implementation herein is the formation of a prognosis of
fatigue cycles to failure, Nf . This article focuses on the post-diagnosis phase
in which the crack size has exceeded the MDFS. From Equation 2, the primary
task is the estimation of NR

f given nD and an accumulating series of diagnoses
of crack state.

Formation of this prognosis requires a predictive model,MP , capable of sim-
ulating the observed crack growth and dependent on a set of random parameters,
Θ. Uncertain model parameters can be calibrated given a set of observations
of the crack state, {ci}Tt=1 using the approaches discussed in Section 2.1. The
relationship between the predictive model and observations is given by

Ct =MPt (Θ) + εPt for t = 1, . . . , T (9)

where εPt is a random variable representing the measurement noise.
The output of the calibration process process is a sample-based estimate of

the parameter posterior PDF, πt(θ|ct), that represents the uncertainty in the
model. The uncertainty in the measurements is defined by σ2, which can be
fixed if known or included in θ and estimated as discussed in Section 2.1. With
uncertainties quantified, the next step is to propagate them through the model
to estimate the quantity of interest, NR

f .
Monte Carlo simulation (MCS) was used to propagate the quantified un-

certainties back through the model and arrive at a probabilistic prediction of
the final quantity of interest. In the context of the proposed approach, MCS
involves drawing Γ ≤ Λ samples from the Markov chain constructed as part of
the model calibration step. Each sample is used to simulate crack growth to a
failure criterion. The number of fatigue cycles to reach failure is stored for each
simulation. The resulting set, {[nRf ]

γ
}Γγ=1, is a sample-based approximation of

the random quantity of interest, NR
f , conditioned on all available data at time

8



t. It can be shown that this approximation converges asymptotically as Γ→∞.
Substituting this result into Equation 2 yields the prognosis of interest.

3 Test Setup

The objective of the feasibility study was to develop a DT approach that could
increase reliability in novel designs and accelerate their certification. A motivat-
ing example was the Boeing truss-braced wing concept [39, 40]. The high-aspect
ratio, truss-supported wing is considered an N+3 design, or one that is three
generations ahead of current state-of-the-art. Stringent certification require-
ments resulted in over-design of fatigue-critical components and degradation of
aircraft performance. By implementing a DT-based health management system,
a reduction in uncertainty in remaining fatigue life could be leveraged to relax
these requirements and realize the full potential of the design. The use case was
ideal as it would require state-of-the-art modeling and uncertainty quantification
techniques, staying true to the DT concept.

Working directly with the truss was impractical, and so a custom specimen
was designed and fabricated that maintained the primary features of the more
complex part (e.g., thickness changes, counter sunk bolt holes, and a variety of
other crack initiators). The primary advantage of this representative specimen
was the ease with which it could be tested in a standard uniaxial servo-hydraulic
test machine. A photograph of the specimen, which was machined from alu-
minum alloy (AA) 7075-T651 plate, is shown in Figure 1(a), with dimensions
displayed on the diagram in Figure 1(b). As shown, there were six evenly-spaced,
counter sunk holes running down a raised rib-like feature that was slightly offset
from center. The regions on either side of the rib were of equal thickness. A
large notch was machined on the right side of the specimen to add additional
stress concentrators. These features culminated in a complex, asymmetric ge-
ometry that had fourteen stress concentrations – two at each hole and one at
each fillet of the notch. The complexity of this structure ensured that crack
growth would be non-planar with non-constant crack front dimensions.

To initiate a fatigue crack, the test specimen was subjected to constant-
amplitude fatigue loading with a maximum applied force of F = 53.38 kN and
a minimum to maximum load ratio, R = 0.1. Load cycles were applied at a
frequency of 10 Hz. The choice of loading was based on previous tests that
had resulted in reasonable crack initiation times for prototype specimens. The
final geometry was chosen based on finite element analysis of the specimen.
The location and size of the six holes, horizontal rib location and width, and
dimensions of the notch were varied until the strains at each concentrator were
equal and near yield.

Crack growth was measured with an optical microscope on a traveling stage
from the rear face, or flat side, of the specimen. A pattern was applied to
the front face of the specimen for digital image correlation (DIC), as shown
inFigure 1(a). DIC is a method for three-dimensional, optical tracking of point-
wise motion of a random pattern. When that random pattern is applied to the
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Figure 1: (a) Photograph and (b) diagram of the six-hole, DT specimen. The
dimensions shown are measurements of the as-built specimen.
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surface of a test specimen, DIC is capable of measuring quantities such as full-
field deformation, vibration, and strain [41, 42, 43]. In this work, an optimized
pattern was applied to the specimen surface for improved accuracy [44], and
DIC was used to measure full-field strain on the front surface of the specimen
during the test.

Under fatigue loading, a crack initiated at the bottom bolt hole as shown in
Figure 1(b). Once the crack initiated, the load was decreased to a maximum
force of F = 44.48 kN with R = 0.1. Measurements of crack length and full-field
strain were captured every 1000 cycles. At each measurement, the strain was
used to form a diagnosis of crack length while the visual measurements were
used for validation. Additionally, at each measurement, a prognosis of future
life was generated. The cyclic process of diagnosis and prognosis was carried out
postmortem; that is, the DT was not demonstrated in real-time. Instead, the
experiment was replayed using the saved data, which aided in the development
and validation of the proposed method without having to conduct new tests.

4 Implementation

By design, the complexity of the test specimen geometry demanded a high-
fidelity model capable of simulating the displacement response under applied
loads. The same finite element model was used for both the diagnosis of fatigue
cracks and the prognosis of fatigue crack growth, although the implementation
of the model was slightly different for each. The purpose of the diagnostic model
was to return strains at designated locations for an arbitrary crack configuration.
To enable this capability, the model was coupled with gmsh [45], a publicly
available software for generating three-dimensional meshes, for rapid insertion
of cracks at prescribed locations and lengths. The prognostic model was coupled
with an additional fracture mechanics software, FRANC3D [46], which was used
to simulate fatigue crack growth. Due to computational expense, surrogate
models1 were used when performing MCMC sampling in both the diagnostic
and prognostic steps.

The remainder of this section details the finite element model, the crack in-
sertion approach used for diagnostics, and the crack growth simulation approach
used for prognostics. The surrogate models for diagnostics and prognostics are
discussed in the respective subsections.

4.1 Finite Element Model

A finite element model was developed based on the as-built dimensions of the
specimen shown in Figure 1. Material properties were considered determinis-
tic and were fixed at literature reported values for aluminum alloy 7075-T651.

1It should be noted that advancements in future computing capability could obviate the
need for surrogate modeling. In general, using full-order models is preferred. However, it
should also be noted that researchers tend to maximize the capabilities available to them,
and surrogate models may still be needed in the future as a means for extending beyond the
state-of-the-art in computing.
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(A) Top Grip (B) Bottom Grip
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Figure 2: Diagram of the faces to which boundary conditions were applied on
the (a) top grip and (b) bottom grip.

Geometry Set
x-displ.
(mm)

y-displ.
(mm)

z-displ.
(mm)

z-traction
(MPa)

T2 - 0.6350 - -

T3 - 0.4064 - -

{Ti}5i=1 0.1905 - 0.0 -

B1 - - - 78.05

B2 - 0.0 - -

B3 - 0.4064 - -

{Bi}5i=1 -0.4445 - - -

Table 1: Calibrated boundary conditions applied to the modeled grips.

Specifically, Young’s modulus and Poisson’s ratio were set to 10,400 ksi and
0.33, respectively [47]. The model consisted of 138,729 ten-node tetrahedral
elements.

Displacement boundary conditions were defined on the surface nodes of the
grip regions; i.e., the highlighted fixed and displaced regions in the schematic of
Figure 1. Ten node sets were defined on the grips as illustrated in Figure 2. Due
to stand misalignment, the boundary conditions on each set were unknown. To
remedy this, DIC was used to capture full-field displacements on the surface of
the component at multiple loads during the first fatigue cycle. This data was
used to calibrate the node set displacement boundary conditions such that the
sum of squared errors between modeled displacements and observed displace-
ments was minimized. The resulting boundary conditions are shown in Table
1.
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4.2 Strain Prediction for Diagnosis

In order to implement the approach outlined in Section 2.2, the diagnostic
model,MD, needed to be capable of predicting strains at prescribed locations in
the domain for a given crack state. The calibrated finite element model described
above was augmented with a gmsh pre-processor that allowed for insertion of
arbitrary crack configurations, c, into the mesh for this purpose. The crack was
assumed to be a flat through-crack oriented such that the its surfaces were in
the x-y plane. The crack front was straight, aligned parallel with the y-axis.
Cracks could be inserted at any of the 14 crack initiation sites, and changes in
thickness of the modeled specimen were automatically compensated for by the
gmsh script. With these assumptions, the crack state for the diagnostic model
could be characterized with just two parameters

c = [l, a], (10)

where l ∈ [1, 14] is an index parameter specifying the crack location and a is the
crack length.

After crack insertion and meshing with gmsh, the finite element model could
be executed under the calibrated boundary conditions to yield the strain field
throughout the test specimen geometry in Figure 1. A post-processing script
was then written in Python to extract strain values at discrete points in the
domain to accommodate an arbitrary set of sensor locations for diagnosis. The
calibrated finite element model along with these pre- and post-processing rou-
tines represent the complete implementation of the diagnostic model, MD, for
strain prediction as required in Equation 7.

In general, a diagnostic framework should provide results quickly enough to
enable an actionable prognosis. The execution time for a single evaluation of
the diagnostic model in this study was approximately one minute using a single
core of a 2.8GHz Intel Core i7 processor. Since ∼ O(104) samples (and model
evaluations) are typically required with MCMC for the approach described in
Section 2.2, the resulting time to complete a diagnostic analysis was deemed
impractical. To reduce the computation times for DT, a surrogate model, M̃D,
was introduced to approximate the strain predictions using the finite element
model in a computationally efficient manner.

More specifically, an individual surrogate model was generated for each crack
initiation site that could return the estimated strain at each sensor location for
a given crack size. That way, the surrogate modeling approach was reduced to
a simple interpolation problem in one dimension given a particular site l∗

M̃Dq ([l∗, a]) = I∗q (a) (11)

where I∗q is a linear interpolant for the strain at sensor q for a crack at that site.
Data used to construct each interpolant was obtained by executing the finite
element model for a set of crack lengths, {āp}Pp=1, and storing the resulting
strains at each sensor location
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MDq ([l∗, āp], for p = 1, ..., P. (12)

For this work, P = 56 and the crack lengths varied in even increments from 1.27
mm to 16.256 mm, the latter of which was approximately 50% greater than the
failure crack length.

The surrogate models were generated in this manner and stored so that
they could be leveraged to accelerate subsequent diagnostic analyses. Here, the
speedup for a strain prediction using the linear interpolation approach rather
than an FEA solve was approximately 300, 000×. Furthermore, the strain values
calculated with the finite element model and surrogate models were found to
match within 1% on average.

4.3 Fatigue Crack Growth Simulation for Prognosis

For prognostics, the base finite element model was wrapped in a fatigue crack
growth simulation framework. The linear elastic fracture mechanics code FRANC3D
(FRacture ANalysis Code, 3D) [46] was used for this purpose. FRANC3D en-
ables the simulation of arbitrary, non-planar, three-dimensional crack growth.
It interfaces with multiple commercial codes as well as ScIFEN (Scalable Imple-
mentation of Finite Elements by NASA) [48], NASA’s in-house, parallel finite
element code. FRANC3D also has a Python Application Programming Interface
(API), making it easy to incorporate into the overall prognostic workflow.

4.3.1 Deterministic Fatigue Crack Growth Simulation

Using FRANC3D and the finite element model described in Section 4.1, the
deterministic simulation of growth for a single crack was carried out as follows.
An initial crack of a given shape and size was explicitly inserted into the mesh
topology at a specified location. The continuous, three-dimensional crack front
was discretized, comprising a subset of J nodes in the finite element mesh. The
shape used in this work was a circular sector of the form shown in Figure 3. This
initial crack was planar with crack surfaces parallel to the x-y plane. The radius
of the initial crack for a given simulation is denoted by the crack length a(0),
where the superscript indicates the index of the crack step in the simulation.
In general, the central angle φ of the sector was defined such that the crack
always extended to free surfaces, regardless of whether it was a corner crack
or surface crack. For the DT demonstration described in this work, the crack
initiation site was assumed known and fixed at a corner. The initial crack plane
was vertically aligned with the midpoint of the bottom countersunk hole with
center of the the sector at the countersink elbow, as shown in Figure 4.

Once initialized, Abaqus [49] was used to solve the finite element equations
derived from the cracked mesh and specified boundary conditions. Nodal dis-
placements were used to compute all three stress-intensity factor modes along
the discretized crack front using the M-integral [50]. Growth of the arbitrary
crack front was then simulated by first estimating the crack growth rate at each
node along the crack front,
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Figure 3: Arbitrary initial crack used for crack growth simulations.
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Figure 4: Top view of the crack path simulated by FRANC3D.
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da

dn j
= F (Kj , . . .), (13)

where the function F defines the pseudo-instantaneous relationship between
crack growth rate and crack driving forces (e.g., the stress-intensity factors,
K = [KI ,KII ,KIII ]). In this work, the crack growth rate behavior was expected
to be log-linear, so Paris’ Law was adopted such that

F = β(∆K)m, (14)

where β and m are material constants and invariant over the crack front and
∆K = (1−R)×KI,max for a single fatigue cycle.

Crack extension was approximated using a quasi-static median extension
approach. Point-wise extension was defined as

∆aj = ∆amedian

[
KI,j

KI,median

]2

, (15)

where the user-defined median extension ∆amedian = 0.1016 mm and KI,median

was the median stress-intensity factor in the set {KI,j}Jj=1. The crack is ad-
vanced by applying the extension ∆aj in the crack propagation direction, which
is the direction of the crack front normal unit vector at each point, n̂j , rotated
about the tangent, t̂j , by a computed kink angle computed using Maximum
Tangential Stress Theory [51].

The number of cycles consumed by the growth between steps s and s + 1
were calculated through integration of Equation 13,

∆n
(s)
j =

∫ a
(s+1)
j

a
(s)
j

[F−1(aj)]da =
1

β

∫ a
(s+1)
j

a
(s)
j

[∆Kj(aj)]
−mda. (16)

Evaluating the integral over crack extensions requires F to be defined as a func-
tion of aj over the crack length extension. In this work, ∆K(aj) was assumed

to be a monotonic, linear function passing through ∆K(a
(s)
j ) and ∆K(a

(s+1)
j ).

While the true relationship is known to be nonlinear, this approach improves ac-
curacy over an assumption that stress-intensity factors remain constant for each
step. It should also be noted that the result of Equation 16 over the crack front

is a set {∆n(s)
j }Jj=1. The elements of this set are not guaranteed to be equal,

although they are expected to be similar if an appropriate value of ∆amedian

was chosen. The final number of cycles consumed by a given step should be a
scalar. To enforce this constraint, the mean value was used,

∆n(s) =

∑J
j=1 ∆n

(s)
j

J
. (17)

Following crack extension from step s to s+1, the new geometry was meshed.
For efficiency, a local/global remeshing scheme was adopted where only a pre-
defined subset of the model geometry was re-meshed at each step, as shown in
Figure 4.
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The step-by-step growth process was iterated until the crack reached the
length ĉt=8, or the expected value of the last crack length diagnosis generated
over the course of the experiment. This was chosen as the failure criterion to
avoid violation of linear elastic assumptions as the crack approached the edge
of the specimen. It was also beneficial as the cycle at which the last diagnosis
occurred was known, making this a useful point for validation. Note that ĉt=8

was left out of the calibration data set for this reason.
Upon completion of the crack growth simulation, the relative prediction of

cycles from the point at which the first diagnosis was made to failure was

nRf =

S∑

s=1

∆n(s), (18)

where S is the total number of crack growth steps required to reach the fail-
ure condition. The quantity of interest for the DT feasibility study was the
total number of fatigue cycles until this failure condition, or end of life (EOL).
Substituting Equation 18 into a deterministic version of Equation 2 yields the
deterministic EOL,

nf =

S∑

s=1

∆n(s) + nD, (19)

where nD is the number of cycles consumed at the time of the first diagnosis.

4.3.2 Incorporating Uncertainty Into the Predictive Model

A single evaluation of the crack growth model,MP , comprising a crack insertion
step followed by coupled iterations of finite element analysis and crack growth,
resulted in a single, deterministic prediction of nRf . To provide a probabilis-
tic prediction, uncertainty had to be quantified via calibration as described in
Section 2 and given a set of observations, {ct}Tt=1, where T is the current time
index. The objective of the calibration was to estimate the posterior probability
density function πt(θ|ct) with each new diagnosis. However, in the case where
the crack location, l, was fixed, this set of observations was simply a set of
mean estimates of crack length {ât}Tt=1. In that case, the model response,MPt ,
consisted of T estimates of crack length at time indices t = 1, . . . T .

The number of cycles consumed prior to the zeroth step of the simulation,
nD, was fixed, but the starting crack length shown in Figure 3 was an unknown
random variable, A(0), and had to be estimated along with the other model
parameters. The parameter vector was thus θ = [β,m, a(0)]. The prior distri-
butions for the crack growth rate model parameters β and m were assumed to
be noninformative uniform distributions as shown in Table 2. The prior distri-
bution for the initial crack length was set equal to the first diagnosis obtained at
t = 0, where A(0) ≈ π(c0|e0). Note that â0 was omitted from the observations
for this reason. This coupling was not required but did serve to regularize the in-
verse problem, aiding in calibration when the number of available observations,
T , was small relative to the dimension of Θ.
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Parameter Prior Distribution

a0 A(0)

β U(0, 1)

m U(0, 50)

Table 2: Predictive model parameter prior distributions

Following calibration via MCMC, as described in Section 2, the quantified
uncertainties were propagated using MCS to form a probabilistic prediction of
NR
f . Each sample in both MCMC and MC required a single deterministic sim-

ulation, leading to significant computational expense. Timing statistics were
gathered for over 130 steps of the deterministic simulation. The mean time
required to complete each step on a single core of a 2.4GHz Quad-Core AMD
Opteron R© processor was approximately 16.75 minutes. The median time was
15.5 minutes, and the minimum time required was 7.5 minutes. With the num-
ber of total steps for a typical simulation, S, on the order of 100, a conservative
estimate of the time to complete a single simulation was 12.5 hours. Thousands
to millions of samples were required for parameter estimation via MCMC and
propagation via MCS, rendering the full-order analysis intractable. To combat
this, a reduced-order model, or surrogate model, was developed that reduced
mean simulation times by 6 orders of magnitude. The surrogate modeling ap-
proach for prognosis is briefly outlined in the next subsection.

4.3.3 Prognostic Surrogate Model

Like the full-order model, the surrogate model, M̃P , had input parameters
θ = [β,m, a(0)] and the response was a set of predicted crack lengths corre-
sponding to t = 1, . . . , T . To accomplish this, a reduced-order relationship
between stress-intensity factor and a characteristic crack length, ∆K̃(a∗), was
approximated by running a single deterministic crack growth simulation. A
third-order polynomial was fit to the median crack front points of each step,
resulting in the curve shown in Figure 4. A KI,max was extracted at each point
along the fitted path, resulting in the relationship of interest shown in Figure
5. Once obtained, ∆K̃(a∗) replaced ∆K(aj) in Equation 16, yielding

∆ñ(s) =
1

β

∫ a∗,(s+1)

a∗,(s)
[∆K̃(a∗)]−mda∗. (20)

Given a realization of input parameters, θ, the surrogate model performed
a step-by-step integration over the reduced-order path according to Equation
20. In this way, the parameters could be varied freely by the MCMC and MCS
sampling algorithms without needing to run a new, full-order simulation. The
use of surrogate modeling yielded a conservative speedup of 937, 500×. While
the surrogate model resulted in a loss of generality, it maintained accuracy for
the specific application of interest. Extending the surrogate to a random starting
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Figure 5: Relationship between mode I stress-intensity factor and the charac-
teristic crack length along the reduced-order crack path.

location (e.g., one of the other geometric features likely to initiate fatigue cracks)
would involve 13 additional full-order simulations and estimation of the discrete
random variable L with realization l ∈ [1, 14].

5 Results & Discussion

The pre-diagnosis regime, discussed in [15], involved the propagation of uncer-
tainties from the microscale to the macroscale to form a probabilistic prediction
of fatigue life. The uncertainty in the estimate was undesirably high, as no
observations were available to inform the modeling of the primary crack growth
drivers. In contrast, the post-diagnosis regime discussed herein involved system-
atic reduction of uncertainty in the pre-diagnosis prediction through information
gained from in-situ diagnostics. Bayesian inference was used to convert strain
measured on the surface of the test specimen into a stochastic estimate of crack
length at seven time steps; i.e., t = 1, . . . , 7. The diagnoses were used to quan-
tify uncertainty in the fatigue crack growth model through a calibration step.
Each time the set of diagnoses was updated, the model was re-calibrated and
used to generate a non-deterministic prediction of the number of fatigue cycles
to failure. The remainder of this section presents results and discussion for (i)
the crack length diagnoses, and (ii) the resulting prognosis of total fatigue life
generated after each diagnosis.
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7.62 mm

Figure 6: Diagram of the effective sensor arrays used to estimate crack length us-
ing the probabilistic damage diagnosis framework. The markers indicate where
strain data was sampled from the DIC data. Sensor arrays 1, 2, 3, and 4 are 7.62
mm, 12.7 mm, 17.78 mm, and 22.86 mm away from the bottom bolt hole, re-
spectively. The sensors are evenly distributed in the horizontal direction, spaced
0.254 mm apart.

5.1 Crack Length Diagnosis

Diagnoses of crack length were obtained using the probabilistic crack charac-
terization framework described in Section 2.2 and the strain prediction model
described in Section 4.2. The goal of this analysis was twofold: (i) to provide
crack length estimates as inputs to the damage prognosis method described in
Section 2.3, and (ii) to study the effectiveness of the diagnostic framework as
the distance between the damage and measurements was increased. Access to
full field strain data from DIC meant that the latter was performed with ease by
selectively sampling strain values at discrete locations throughout the specimen.
Figure 6 shows the four effective strain sensor arrays that were sampled from
DIC and used to estimate crack length.

The diagnostic algorithm was executed at seven different stages of the exper-
iment for each of the four sensor arrays. For each analysis, 10,000 samples were
drawn using MCMC after an initial burn-in period of 1,000 samples to estimate
the posterior PDF of the crack length π(at|et). A uniform prior distribution
was used for the crack length and the noise level (variance, σ2) was treated as
unknown during the sampling. The surrogate modeling approach described in
Section 4.2 was used to accelerate the analyses.

The resulting crack length estimates are displayed in Figure 7. Here, the
predicted probability distributions of crack length using strain data from each
of the four sensor arrays is compared to a reference value from visual inspection

20



0 2 4 6 8 10 12 14 16
a (mm)

0.0

0.2

0.4

0.6

0.8

1.0

p(
a)

(a)

0 2 4 6 8 10 12 14 16
a (mm)

0.0

0.2

0.4

0.6

0.8

1.0

p(
a)

(b)

0 2 4 6 8 10 12 14 16
a (mm)

0.0

0.2

0.4

0.6

0.8

1.0

p(
a)

(c)

0 2 4 6 8 10 12 14 16
a (mm)

0.0

0.2

0.4

0.6

0.8

1.0

p(
a)

(d)

Figure 7: Diagnosis results estimating the crack length probability distributions
at a) t = 1 (234,000 cycles), b) t = 3 (237,000 cycles), c) t = 5 (239,000 cycles),
and d) t = 7 (241,000 cycles) with each of the sensor arrays from Figure 6.

at different stages of the experiment (a) 234,000 cycles, b) 237,000 cycles, c)
239,000 cycles, and d) 241,000 cycles, or t = 1, 3, 5, and 7, respectively. As
expected, strain data from Sensor Array 1 provides the most precise (i.e., the
PDF is most concentrated) estimate of crack length and the uncertainty grows
in the predictions as the measurements are taken farther away from the crack.
Despite the impact of sensor proximity on the results, it can be seen that the
diagnostics generated for all cases provide useful information about the actual
crack size. The crack length observations, {ât}Tt=1, used for the prognostics
results to follow were generated using strain data from Sensor Array 2.

5.2 Fatigue Life Prognosis

To calibrate the crack growth surrogate model, 20,000 samples were drawn
using MCMC with a burn-in period of 10,000 samples. The Delayed Rejection
Metropolis (DRAM) algorithm was used with an adaptation interval of 1,000
samples [52]. The noise variance, σ2, was estimated along with the other model
parameters. After each calibration, the uncertainty was propagated via MCS
using all 10,000 samples remaining after burn-in. The model evaluation times for
the MCMC-driven surrogate model and the MCS-driven surrogate model varied
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slightly. The former only had to generate estimates up to the crack length aT
while the latter had to simulate crack growth up to failure. In general, this can
yield additional speedup for an MCMC-driven model if the number of simulation
steps required to reach failure from the most recent diagnosis is large.

The diagnoses obtained over time are shown in the left column of Figure 8,
while the corresponding predictions are shown on the right. The first diagnosis
was used to form the prior distribution A(0), and the first prediction was made
at T = 3, meaning the first set of available diagnoses was {ât}3t=1. Overall, in-
situ diagnostics led to a dramatic decrease in variance when compared with the
pre-diagnosis regime prediction of [15]. The precision generally improved with
additional diagnoses, as expected. The percent error of the mean predictions
at times t = 4, t = 5, t = 6, and t = 7 compared to the true cycles to failure
observed during the test were 0.08%, 0.11%, 0.01%, 0.02%, respectively.

While MCS led to a probabilistic prediction of the absolute fatigue life, Nf , a
more useful measure of time to failure might be the remaining useful life (RUL).
RUL is a linear function of time,

RUL = Nf − nT , (21)

where nT is the cycle count at the time the prognosis was made. In a real-
world scenario, RUL provides a measure of the time remaining for maintainers,
operators, or mission planners to take action prior to failure. A plot of RUL
vs. cycles is shown in Figure 9. This plot shows true RUL, based on the actual
fatigue life observed at the conclusion of the test, nf,true, plotted as a straight
black line. RUL predictions and error bounds can be drawn about this true
value for qualitative assessment of the prognostic algorithm’s performance as
t→ tfailure.

The sequential RUL predictions are represented by box and whisker plots.
Here, the predicted mean and median are denoted by a small square symbol and
a line dividing the box, respectively. The upper and lower quartiles of the data
are represented by the extent of the box, and the whiskers, or the capped dotted
lines, denote the range of the data. A single set of error bounds based on the
prognostic metrics proposed by [53] are plotted for reference. These bounds are
a percent error metric referred to as the α-bounds, where α+ and α− represent
the upper and lower error bounds, respectively, and α ∈ [0, 1]. The α-bounded
region for the time-varying RUL decreases as t→ tfailure and is defined as

α± = RUL× (1± α). (22)

These bounds allow for easy visualization of prognostics performance and are
drawn in Figure 9 as a grey, triangular region.

The percent error in the mean predictions of RUL at times t = 4, t = 5,
t = 6, and t = 7 were 5.19%, 8.51%, 0.85%, and 5.93%, respectively. The
accuracy of the predicted mean fluctuated but remained within the 10% bounds.
While the first prediction in Figure 9 was fairly accurate, the lack of precision
in the prediction indicates a possibility of immediate failure. It was not until
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Figure 8: Available diagnoses and the corresponding prognosis over time. The
left column displays the diagnoses up to times t = 4, t = 5, t = 6, and t = 7,
respectively, while the right column shows the corresponding prediction made
with available diagnoses at those times.
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Figure 9: Remaining useful life (RUL) prognoses. True RUL is represented by
the solid black line. The grey cone is the 10% α-bounded region. The red box
represents the mean prediction made at the number of elapsed cycles, and the
blue box represents the upper and lower quartiles of the RUL samples, and the
dotted lines represent the range of the samples.

the fourth diagnosis that a prognostic horizon2 was established, approximately
equal to 3,000 fatigue cycles.

In practice, a lower limit will exist for the prognostic horizon below which
there is not enough time left to take corrective or preventative action. In this
study, the fatigue crack growth was being driven by relatively high loads causing
the crack to grow fast enough that only seven measurements were taken. This
experiment was just for demonstration but serves as a good example of the
need to define monitoring intervals according to the lower limit of detection
capabilities and the expected rate of damage progression once that limit has
been surpassed.

6 Conclusion

A general method for coupling in-situ diagnostics and prognostics in a non-
deterministic, Digital Twin (DT) framework was presented. The framework was

2The prognostic horizon is defined mathematically in [53]. In short, it defines the number
of cycles prior to failure at which a pre-defined percentage of prediction probability lies within
the true RUL α-bounds. Note that this metric can only be used postmortem to evaluate
performance.
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demonstrated using a geometrically complex, metallic test specimen exhibiting
life-limiting fatigue crack growth. The complexity of the test specimen studied
was geometrically-complex, necessitating the use of high-fidelity, finite element
analysis to model material response due to the presence of a fatigue crack and
to simulate fatigue crack growth. Using Markov chain Monte Carlo sampling,
a limited number of measurements of strain on the surface of the specimen
were used to generate a temporal series of probabilistic crack state estimates.
These observations were used to calibrate the prognostic model with quantified
uncertainty. These uncertainties were propagated via Monte Carlo simulation
to failure, yielding probabilistic predictions of fatigue life.

The results of this study demonstrate (i) that the coupling of the proposed
diagnostic and prognostic methods enabled successful realization of DT for pre-
dicting fatigue life in a laboratory environment and (ii) that the use of damage
diagnostics can systematically reduce uncertainty in fatigue life predictions over
time. Continuation of the work should focus on increasing application realism,
which will serve to test the generality of the DT approach and guide its develop-
ment. Along with the first part of this two-part paper series, the DT feasibility
study laid the foundation for an initiation-to-failure, microscale-to-macroscale,
non-deterministic DT methodology for life prediction of fatigue critical struc-
tures.
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