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Atomistic simulations of materials
✦Explicit treatment of atoms/molecules 

๏ Molecular dynamics 

๏ Monte Carlo 

✦Atomistic (interatomic) potentials (a.k.a. classical force fields) 

๏ Parameterize configuration space. Express energy and 
classical forces as functions of atomic coordinates 

๏ Contain adjustable parameters that are optimized 

๏ Energy and force calculation is very fast and scales as ~N. 
Access to large systems (~106 atoms, ~10-102 ns)  

๏ Can be complex: angular-dependent, environmentally-
dependent, with reactive functionals, etc.
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Traditional interatomic potentials
✦ Specific to material: metals (EAM, MEAM, ADP), covalent (Tersoff, 

SW), molecular systems and reactions (ReaxFF). 

✦ General-purpose usage:  

๏ Thermodynamic properties (phase diagrams, interface free 
energies) 

๏ Mechanical properties (plastic deformation, fracture) 

๏ Diffusion kinetics
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Traditional interatomic potentials

p = (p1, p2, . . . , pm)

i

jrij
✦Partition the total energy: 

✦  Local mapping: 

✦Function: 

E = ∑
i

Ei

(r1, . . . , rn)i ⟼ Ei

Ei = Ei(r1, . . . , rn, p)

with adjustable parameters                               (usually, 10-20)

✦ Fit parameters to a small database of experimental and DFT data 

✦ Direct fit to properties (not just energies): E0, a0, cij, Ev,…, Tm 

✦ Important: the functional form is motivated by physical/chemical intuition

Ei
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Traditional interatomic potentials: EAM
Embedded atom method (EAM)

i

jrij

✦ Atomic energy  

๏         - pair interaction function 

๏          - embedding energy 

๏          - electron density 

๏ Host electron density:

Ei =
1
2 ∑

j

ϕ(rij) + F(ρ̄i)

ϕ(r)
F(ρ̄)

ρ̄i = ∑
k≠i

ρ(rik)
ρ(r)

✦ Based on physical assumptions specific to metals (many-
body central-force interactions, etc.).  

✦ Derives from DFT or TB. 

✦ The functions are parameterized by analytical expressions 
of cubic splines. Expected to have physical shapes.
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Traditional interatomic potentials:  Pros and cons

• Pros: 
๏ Very fast. Afford simulations of ~106 atoms for ~102 ns   

(or longer with accelerated MD) 
๏ Based on physics ⇒ reasonable transferability  

๏ Inaccurate but (usually) not crazy  

• Cons: 
๏ Few parameters, small training dataset ⇒ inaccurate 

๏ Cannot be improved systematically 
๏ Specific to given class of materials 
๏ Development is painfully difficult and slow. Heavily relies 

on human experience. More art than science 
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Machine-learning interatomic potentials
✦First introduced by chemists in the 1990s 

✦Mapping of structure on potential energy surface (PES):

(r1, . . . , rn)i ⟼ (G1, . . . , Gm)i ⟼ Ei

✦ “Fingerprints”                    invariant under 
rotations and translations of coordinates 

✦Nonlinear regression with ~103 parameters to fit 

✦Training on a large DFT database with 103-104 
supercells 

✦High accuracy of fit: ~ 1-5 meV/atom (DFT level)  

✦Purely mathematical interpolation between the 
training points. No guidance from physics or 
chemistry

(G1, . . . , Gm)i
i

jrij

Ei

(G1, . . . , Gm)i

Regression
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Mathematical NN potentials

• Example: Behler and Parrinello (PRL 2007): NN potential for Si  

• More NN potentials in recent years (metals, semiconductor, ionics)

Atom i Neural
network

Other
atoms

Ei Σ PES
Local structural 
parameters 

w1 w 2
b1

b2

Input
layer

Output
layer

Hidden
layer

p q
Fitting parameters: 

Weights wij 
biases bi
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Machine-learning potentials:  Pros and cons
✦Advantages 

๏ Extremely accurate (~meV/atom -  DFT level) 

๏ Much faster than DFT. “Accelerated DFT”? 

๏ No physics ⇒ applicable to any type of bonding, including 
mixed metallic-covalent 

๏ Can be improved systematically with more DFT data

✦Drawbacks 

๏ Much slower than traditional IPs 

๏ Require massive DFT calculations 

๏ Can only interpolate between the DFT energies. Cannot 
extrapolate outside the training dataset. Transferability 
poor and unpredictable. Can be physically meaningless
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Physically-informed NN (PINN) potentials
Taking the best from both worlds

• Traditional potentials are locally very accurate. Each 
structure can be fit with different sets of parameters  

• Idea: Make parameters functions of local environment 

Atom i Neural
network

Potential
parameters

Other
atoms

Interatomic
potential Ei

Σ PES

Neighboring
atoms 

Local structural 
parameters 

๏ Extrapolation uses physical insights 
๏ Transferability is improved

Potential parameters 
adjusted on the fly



�12

PINN potentials:  Choice of potential

Atom i Neural
network

Potential
parameters

Other
atoms

Interatomic
potential Ei

Σ PES

Neighboring
atoms 

Local structural 
parameters ?

✦Requirements for the potential model: 

๏ Reflect general properties of chemical bonding 

๏ General enough to include different classes of materials

?
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Analytical bond order potential (BOP)
Total energy: E = ∑

i

Ei

Atomic energy: Ei =
1
2 ∑

j≠i
[eAi−αirij − SijbijeBi−βirij] fc(rij) + E(p)

i

Include 4-5 coordination shells!

Bond order:

Coordination number:

bij = (1 + zij)−1/2

zij = ai ∑
k≠i, j

Sik(cos θijk + hi)2 fc(rik)

i

k

jrij

Bond screening:
Sij = ∏

k≠i, j

Sijk

Sijk = 1 − fc(rik + rjk − rij)e−λi(rik+rjk−rij)

Promotion energy: E(p)
i = − σi ∑

j≠i

Sijbij fc(rij)

1/2

In metals F(ρ̄i) = − σi (ρ̄i)1/2 ρ̄i = ∑
j≠i

Sijbij fc(rij)
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Analytical bond order potential (BOP)

✦Physical effects 
๏ Short-range repulsion 
๏ Bond order (more neighbors - weaker bond) 
๏ Bond-angle dependence 
๏ Bond screening by neighbors

✦  8 parameters 

✦  Applicable to covalent and metallic materials

Ai, Bi, αi, βi, ai, hi, σi, λi
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Comparison of potentials

• Inaccurate 
• Physically meaningful

• Accurately trained 
• Unpredictable 

extrapolation

• Accurately trained 
• Physically meaningful 

extrapolation 
• Interpolation can be 

also improved

E

V
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NN PINN

Validation
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PINN and NN potentials for Al
✦DFT database: 3649 supercells (127592 atoms) 

๏ EOS for 7 crystal structures under tension/compression 
๏ Surfaces (100), (110), (111), (311) 
๏ Vacancies, interstitials 
๏ Grain boundary, intrinsic stacking fault  
๏ Clusters with different sizes and shapes 
๏ AIMD at several pressures and temperatures 

✦Network architectures 
๏ PINN: 60 x 15 x 15 x 8 (1283 parameters) 
๏ NN: 60 x 16 x 16 x 1 (1265 parameters)

✦RMSE of training and validation: ~3.4 meV/atom
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PINN errors of training and testing
Training

10-fold cross-validation
Validation

PINN vs  DFT

PINN vs  DFT
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Al properties:  PINN/NN versus DFT

๏ The properties were not fitted to (only the PES was) 
๏ Agreement with DFT 
๏ PINN performs better than NN
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EOS of alternate crystal structures
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EOS of alternate crystal structures
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• NN and PINN are accurately trained to DFT energies 
• PINN remains accurate in the extrapolation domain 
• NN extrapolation is unphysical 
• EAM is less accurate but physically meaningful
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Tests of transferability
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Tests of transferability of forces

Al dislocation 
700 K

HCP Al 
1000-4000 K
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PINN
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Computational performance of PINN
๏ ~N scaling 

๏ x100 slower than traditional potentials. Much faster than DFT 

๏ Scalable software: ParaGrandMC (V. Yamakov, NASA)

https://software.nasa.gov/software/LAR-18773-1

๏ MD and Monte Carlo 

๏ Parallelized with MPI, OpenMP and GPUs
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Computational performance of PINN

๏ Calculation of the descriptors in the bottleneck 

๏ Relatively small overhead of PINN versus NN (~25%)

cpu + GPU
Multicore cpu

t (s)

Hardware System

K40
1 cpu

GTX1080
1 cpu

V100
1 cpu

V100
16 cpu

i7-8700: 
12 cpu

K3: 
16 cpu

K4: 
40 cpu

K40
16 cpu

GTX1080
12 cpu
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Example: large scale MD with Al PINN potential

Crystalline	phase	visualiza<on Stress	field	visualiza<on

Crack nucleation on a (557) symmetric tilt grain boundary

Crystalline phase Twin boundaries Amorphous phase

!""

8
(GPa)

-2

4
6

0
2

NVT MD at 400 K

• MD run on 4 MPI nodes (10 Skylake 6148 CPUs + V100 GPU)/node 
• MD time 24 ps (12,000,000 MD steps) 
• CPU time 14 hours

433,000 atoms!
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Conclusions
๏ ML potentials emerge as next-generation models 

๏ Main limitation – transferability. No physics – no 
transferability  

๏ To be more transferable, new potential models must 
incorporate guidance from physics/chemistry 

๏ Future direction of the field: ML + physics 

๏ PINN is one example of physics-guided ML models. 
Shows much promise 

๏ Existing PINN potentials: Al (done), Si (almost done), 
Cu, Pt and Ta (in progress) 

๏ Multicomponent PINN in progress


