Physcally-informed artificial neural networks for atomistic modeling of materials

J. Hickman¹, G. P. Purja Pun², V. I. Yamakov³ and Y. Mishin²

¹MML, National Institute of Standards and Technology, Gaithersburg, MD ²Department of Physics and Astronomy, George Mason University, Fairfax, VA ³National Institute of Aerospace, Hampton, VA

Sponsored by the Office of Naval Research

USACM Workshop: Recent Advances in the Modeling and Simulation of the Mechanics of Nanoscale Materials

Philadelphia, PA, August 21-23, 2019

CONTENT

- Atomistic simulations with classical interatomic potentials
 - Traditional potentials: strengths and shortcomings
- Machine-learning potentials
 - NN potentials: strengths and shortcomings
- Physically-informed neural network (PINN) potentials
 - General idea. Formalism
 - PINN AI and Si potentials
- Conclusions and future work

Atomistic simulations of materials

- Explicit treatment of atoms/molecules
 - Molecular dynamics
 - Monte Carlo

Atomistic (interatomic) potentials (a.k.a. classical force fields)

- Parameterize configuration space. Express energy and classical forces as functions of atomic coordinates
- Contain adjustable parameters that are optimized
- Energy and force calculation is very fast and scales as ~N.
 Access to large systems (~10⁶ atoms, ~10-10² ns)
- Can be complex: angular-dependent, environmentallydependent, with reactive functionals, etc.

Traditional interatomic potentials

- Specific to material: metals (EAM, MEAM, ADP), covalent (Tersoff, SW), molecular systems and reactions (ReaxFF).
- General-purpose usage:
 - Thermodynamic properties (phase diagrams, interface free energies)
 - Mechanical properties (plastic deformation, fracture)
 - Diffusion kinetics

Deformation of nanocrystalline Al

Traditional interatomic potentials

◆ Partition the total energy: E = ∑_i E_i
◆ Local mapping: (**r**₁,..., **r**_n)_i → E_i

Function:

$$E_i = E_i(\mathbf{r}_1, \ldots, \mathbf{r}_n, \mathbf{p})$$

with adjustable parameters $\mathbf{p} = (p_1, p_2, \dots, p_m)$ (usually, 10-20)

Fit parameters to a small database of experimental and DFT data

+ Direct fit to properties (not just energies): E_0 , a_0 , c_{ij} , E_v ,..., T_m

Important: the functional form is motivated by physical/chemical intuition

Traditional interatomic potentials: EAM

Embedded atom method (EAM)

+ Atomic energy
$$E_i = \frac{1}{2} \sum_j \phi(r_{ij}) + F(\bar{\rho}_i)$$

- $\phi(r)$ pair interaction function
- $F(\bar{\rho})$ embedding energy
- $\rho(r)$ electron density

• Host electron density:
$$\bar{\rho}_i = \sum_{k \neq i} \rho(r_{ik})$$

- Based on physical assumptions specific to metals (manybody central-force interactions, etc.).
- Derives from DFT or TB.
- The functions are parameterized by analytical expressions of cubic splines. Expected to have physical shapes.

Traditional interatomic potentials: Pros and cons

• Pros:

- Very fast. Afford simulations of ~10⁶ atoms for ~10² ns (or longer with accelerated MD)
- Based on physics \Rightarrow reasonable transferability
- Inaccurate but (usually) not crazy

• Cons:

- Few parameters, small training dataset \Rightarrow inaccurate
- Cannot be improved systematically
- Specific to given class of materials
- Development is painfully difficult and slow. Heavily relies on human experience. More art than science

Machine-learning interatomic potentials

First introduced by chemists in the 1990s

Mapping of structure on potential energy surface (PES):

 $(\mathbf{r}_1,\ldots,\mathbf{r}_n)_i\longmapsto (G_1,\ldots,G_m)_i\longmapsto E_i$

- "Fingerprints" $(G_1, \ldots, G_m)_i$ invariant under rotations and translations of coordinates
- Nonlinear regression with ~10³ parameters to fit
- Training on a large DFT database with 10³-10⁴ supercells
- High accuracy of fit: ~ 1-5 meV/atom (DFT level)
- Purely mathematical interpolation between the training points. No guidance from physics or chemistry

Mathematical NN potentials

- Example: Behler and Parrinello (PRL 2007): NN potential for Si
- More NN potentials in recent years (metals, semiconductor, ionics)

Machine-learning potentials: Pros and cons

Advantages

- Extremely accurate (~meV/atom DFT level)
- Much faster than DFT. "Accelerated DFT"?
- No physics ⇒ applicable to any type of bonding, including mixed metallic-covalent
- Can be improved systematically with more DFT data

Drawbacks

- Much slower than traditional IPs
- Require massive DFT calculations
- Can only *interpolate* between the DFT energies. Cannot extrapolate outside the training dataset. Transferability poor and unpredictable. Can be physically meaningless

Physically-informed NN (PINN) potentials Taking the best from both worlds

- Traditional potentials are locally very accurate. Each structure can be fit with different sets of parameters
- Idea: Make parameters functions of local environment

PINN potentials: Choice of potential

Requirements for the potential model:

- Reflect general properties of chemical bonding
- General enough to include different classes of materials

Analytical bond order potential (BOP)

Total energy:
$$E = \sum_{i} E_{i}$$

Atomic energy: $E_{i} = \frac{1}{2} \sum_{j \neq i} \left[e^{A_{i} - \alpha_{i}r_{ij}} - S_{ij}b_{ij}e^{B_{i} - \beta_{i}r_{ij}} \right] f_{c}(r_{ij}) + E_{i}^{(p)}$

Include 4-5 coordination shells!

Bond order: $b_{ij} = (1 + z_{ij})^{-1/2}$

Coordination number:

$$z_{ij} = a_i \sum_{k \neq i,j} S_{ik} (\cos \theta_{ijk} + h_i)^2 f_c(r_{ik})$$

Promotion energy: $E_i^{(p)} = -\sigma_i \left(\sum_{j \neq i} S_{ij} b_{ij} f_c(r_{ij})\right)^{1/2}$

In metals
$$F(\bar{\rho}_i) = -\sigma_i \left(\bar{\rho}_i\right)^{1/2}$$
 $\bar{\rho}_i = \sum_{j \neq i} S_{ij} b_{ij} f_c(r_{ij})$

Bond screening:

$$S_{ij} = \prod_{k \neq i,j} S_{ijk}$$

$$S_{ijk} = 1 - f_c(r_{ik} + r_{jk} - r_{ij})e^{-\lambda_i(r_{ik} + r_{jk} - r_{ij})}$$

Analytical bond order potential (BOP)

Physical effects

- Short-range repulsion
- Bond order (more neighbors weaker bond)
- Bond-angle dependence
- Bond screening by neighbors

- + 8 parameters $A_i, B_i, \alpha_i, \beta_i, a_i, h_i, \sigma_i, \lambda_i$
- Applicable to covalent and metallic materials

Comparison of potentials

• Training • Validation

- Inaccurate
- Physically meaningful
- Accurately trained
- Unpredictable extrapolation

- Accurately trained
- Physically meaningful extrapolation
- Interpolation can be also improved

PINN and NN potentials for Al

DFT database: 3649 supercells (127592 atoms)

- EOS for 7 crystal structures under tension/compression
- Surfaces (100), (110), (111), (311)
- Vacancies, interstitials
- Grain boundary, intrinsic stacking fault
- Clusters with different sizes and shapes
- AIMD at several pressures and temperatures

Network architectures

- PINN: 60 x 15 x 15 x 8 (1283 parameters)
- NN: 60 x 16 x 16 x 1 (1265 parameters)

RMSE of training and validation: ~3.4 meV/atom

PINN errors of training and testing

Al properties: PINN/NN versus DFT

Property	DFT	NN	PINN
$E_0 \ (eV/atom)$	-3.7480^{a}	-3.3606	-3.3609
a_0 (Å)	$4.039^{a,d}; 3.9725-4.0676$	6^{c} 4.0409	4.0396
B (GPa)	$83^a; 81^f$	80	79
c_{11} (GPa)	$104^a; 103 – 106^d$	108	117
c_{12} (GPa)	$73^a; 57–66^d$	66	60
c_{44} (GPa)	$32^a; 28 – 33^d$	25	32
$\gamma_s(100) \ ({\rm Jm}^{-2})$	0.92^{b}	0.897	0.899
$\gamma_s(110) \ ({\rm Jm}^{-2})$	0.98^{b}	0.986	0.952
$\gamma_s(111) \ ({\rm Jm}^{-2})$	0.80^{b}	0.837	0.819
E_v^f (eV)	$0.665 – 1.346^c; \ 0.7^e$	0.640	0.678
E_v^f (eV) unrelaxed	0.78^{e}	0.71	0.77
E_v^m (eV)	$0.304 - 0.621^c$	0.627	0.495
$E_I^f (T_d) (eV)$	$2.200 – 3.294^c$	2.683	2.840
$E_I^f (O_h)$ (eV)	$2.531 – 2.948^c$	1.600	2.367
$E_I^f \langle 100 \rangle ~(\mathrm{eV})$	$2.295 – 2.607^c$	1.529	2.246
$E_I^f \langle 110 \rangle \ (\mathrm{eV})$	$2.543 – 2.981^c$	1.529^{*}	2.713
$E_I^f \langle 111 \rangle \ (\text{eV})$	$2.679 – 3.182^c$	2.631	2.815
$\gamma_{ m SF}~({ m mJ/m^2})$	134^i ; 146^g ; 158^h	128	121
$\gamma_{ m us}~({ m mJ/m^2})$	162^j ; 169^i ; 175^h	143	132

- The properties were not fitted to (only the PES was)
- Agreement with DFT
- PINN performs better than NN

EOS of alternate crystal structures

EOS of alternate crystal structures

- NN and PINN are accurately trained to DFT energies
- PINN remains accurate in the extrapolation domain
- NN extrapolation is unphysical
- EAM is less accurate but physically meaningful

Tests of transferability

... and many similar tests

Tests of transferability of forces

Computational performance of PINN

- ~*N* scaling
- x100 slower than traditional potentials. Much faster than DFT
- Scalable software: ParaGrandMC (V. Yamakov, NASA)

https://software.nasa.gov/software/LAR-18773-1

- MD and Monte Carlo
- Parallelized with MPI, OpenMP and GPUs

Computational performance of PINN

- Calculation of the descriptors in the bottleneck
- Relatively small overhead of PINN versus NN (~25%)

Example: large scale MD with Al PINN potential Crack nucleation on a (557) symmetric tilt grain boundary

NVT MD at 400 K

Crystalline phase ... Twin boundaries ... Amorphous phase

- MD run on 4 MPI nodes (10 Skylake 6148 CPUs + V100 GPU)/node
- MD time 24 ps (12,000,000 MD steps)
- CPU time 14 hours

Conclusions

- ML potentials emerge as next-generation models
- Main limitation transferability. No physics no transferability
- To be more transferable, new potential models must incorporate guidance from physics/chemistry
- Future direction of the field: ML + physics
- PINN is one example of physics-guided ML models. Shows much promise
- Existing PINN potentials: AI (done), Si (almost done), Cu, Pt and Ta (in progress)
- Multicomponent PINN in progress