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Show 4 Properties of Our High Order Methods:

Objectives

• Improvement in Nonlinear Stability
> Methods cater to long time integration of compressible turbulence

• Improvement in Accuracy (for a wide spectrum of flow speeds)
> Efficient Nonlinear Filter methods with adaptive local flow sensors designed to 

minimize the use of numerical dissipation

• Prevention of Incorrect Shock Speeds – Stiff Source Terms
> Conservative high order subcell resolution method designed to obtain CORECT

shock speed using coarse grids

• Prevention of Unphysical Solutions in Turbulence Simulations
Quantify numerical uncertainty via dynamical numerical analysis (Nonlinear Approach)

>  Solutions of the discretized counterparts but NOT solutions of the governing equation
>  Numerical chaos/”turbulence” leading to FALSE prediction of transition to turbulence 
> Some claims of computed turbulence are NOT turbulence of the governing equation

(e.g., applying time series analysis or shadowing lemma techniques to the computed data) 

Important Distinction & Key Points:
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Challenges in Numerical Method Development 
(Long Time Integration of Multiscale Compressible Turbulence)

Nonlinear Instability:  
>  Existing accurate schemes developed for rapidly developing flows usually SUFFER from 

nonlinear instability for long time integration

Numerical Stability & Accuracy:  Conflicting Requirements for DNS & LES
>  Stable schemes usually contain more numerical dissipation than their higher accuracy 

counterparts
>  Numerical dissipation usually smears turbulent fluctuations
>  Proper amount of numerical dissipation is required for stability in the vicinity of discontinuities

Difficult to Resolve All Scales:  Need efficient methods with extremely fine grids & CPU intensive

Source Terms:
>  Well-balanced schemes are needed to preserve physical steady states exactly
>  Numerical dissipation & under-resolved grids lead to incorrect shock speeds if source term is stiff             

Problems Containing a Wide Spectrum of Flow Speeds & Flow Types:
> Forced compressible turbulence can initially start with shock-free turbulence but might develop  

moderate to strong shock waves at a later time (Kotov et al. JCP, 2016)
>  Cannot be solved accurately with standard numerical methods

Our New Development to address these challenges:
(Yee et al., Yee & Sjogreen, Sjogreen & Yee, Wang et al., Kotov et al., 2009-2018)
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Accurate schemes developed for short time integration (or 

rapidly developing flows) usually SUFFER from nonlinear 

instability for long time integration

Numerical Example
Long Time Integration of Smooth Flows



6

TACP - Transformational Tools & Technologies Project

2D Isentropic Vortex Convection

C08

Norm of Error vs. Time

Improve Stability:
Long time integrations by
4 skew-symmetric splittings
of the inviscid flux derivative
before the application of 
non-dissipative C08
Different Accuracy

Comparison of High Order Methods
8th order central (C08) vs. 4 different 8th-order skew-symmetric splittings

Highly accurate method

Exact Solution is Simple Translation
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Spurious Numerics Due to Source Terms

Source Terms: Hyperbolic
conservation laws with source terms 

>  Most high order shock-capturing schemes are NOT well-balanced & produce huge error 
>  High order WENO/Roe & their nonlinear filter counterparts are well-balanced for

certain reacting flows  Our Work: Wang et al. JCP papers 2010, 2011

Stiff Source Terms:
>  Numerical dissipation can result in wrong propagation speed of discontinuities

for under-resolved grids if the source term is stiff   LeVeque & Yee, 1990
>  This numerical issue has attracted much attention in the literature – last 27 years

(Improvement can easily be obtained for a single reacting flow case)
>  A New Sub-Cell Resolution Method has been developed for stiff systems on coarse mesh

Our Work:  Wang et al., JCP, 2012 ; CiCP 2016

Nonlinear Source Terms:
>  Occurrence of spurious steady-state & discrete standing-wave solutions – by the use of 

fixed grid spacings & time steps or grid adaptation Yee & Sweby, Yee et al., Griffiths et al., Lafon & Yee, 1990-2002

Stiff Nonlinear Source Terms with Discontinuities: 
> More complex spurious behavior
> Forced Turbulence, numerical combustion, certain terms in turbulence modeling & reacting flows

Yee et al., Yee & Sweby, Griffiths et al., Lafon & Yee, Kotov et al. 1990 – 2017

Phenomena occur in simple scalar case – 3D complex systems 

By Typical Conservative Schemes
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Stiff Source Terms:  Wrong Discontinuity Locations 

Flows without stiff source term: Computed locations of discontinuities are independent of 
the grid size or high-resolution shock-capturing methods 

Implication: The danger in trusting numerical simulation for problems with stiff source terms 
Non-standard behavior of numerics observed in non-reacting flows 
(Yee et al., Griffith et al., Wang et al., Kotov et al., 1990 - 2016)

(Grid & method dependence of shock/shear locations)
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Our Approach

• Mimic & preserve properties of the chosen governing equations
(e.g., Discrete momentum conservation, discrete kinetic energy preservation,     
positivity preserving of computed pressure & density, etc.)

• Are high order, low dissipative & low dispersive and suitable for a 
wide range of flow speeds
(e.g., develop local flow sensors to adaptively minimize numerical dissipation &  
dispersion errors)

• Are nonlinear stable, efficient & highly parallelizable 
• Possess high order stable numerical boundary operators  -- SBP 

Boundary operators

• Are applicable for 3D spatial & time varying deforming grids with 
geometric conservation law property (GCL)

• Quantify numerical uncertainty via dynamical numerical analysis – A 
nonlinear approach

Yee et al., Yee & Sjogreen, Sjogreen & Yee, Wang et al. and Kotov et al. (1999-2018)

Schemes that

(To Address the Various Numerical Method Challenges)
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• Skew-Symmetric Splitting of the inviscid flux derivative (before the application of non-
dissipative centered schemes for nonlinear stability) Yee & Sjogreen, Sjogreen & Yee, 2016-2018

• DRP (Dispersion Preservation-Relation) schemes as alternatives to split version of 
classical high order central schemes Yee & Sjogreen, 2017

• High-Order Entropy Conservative Numerical Fluxes with entropy satisfying 
properties - Numerical solution satisfies an additional discretized conservation law Sjogreen & Yee, 2016-2018

• Standard high order Linear Filters are to be replaced by high order Nonlinear Filters 
Yee et al., Yee & Sjogreen, Sjogreen & Yee, Kotov et al. (1999-2017)

• Smart Flow Sensors to provide locations & appropriate amount of numerical 
dissipation needed Yee & Sjogreen, Kotov et al. (2009-2016)

• Nonlinear Dynamics is utilized to complement the traditional linearized stability 
theory (Yee & Sweby, Yee et al., Griffiths et al., Lafon & Yee, Wang et al., Kotov et al. 1990- 2015)

- Minimize numerically induced false transition to turbulence 
- Minimize numerical instability due to long time integration of turbulent flows
- Minimize numerically induced standing wave solutions
- Minimize wrong shock speeds

(Long Time Wave Propagation & Long Time Integration of Compressible Turbulence)
Methods to Improve Nonlinear Stability & Accuracy

Yee et al. high-order nonlinear filter schemes with smart local flow sensors
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Preprocessing Step:  Improve stability of classical central scheme

Skew-Symmetric Splitting of Inviscid Flux Derivatives 
(Improve nonlinear stability for high order central schemes)

Olsson & Oliger 1994, Yee et al. 1999, Ducros et al. 2000, Pirozzoli 2009, Sjogreen et al. 2017

• Entropy splitting: Semi-conservative splitting for shock-free turbulence 
(Olsson & Oliger 1994, Yee et al. 1999-2007, Sandham et al. 2002-present)

• Natural Splitting:   Linearized Euler & Non-conservative Systems
• Splitting to Preserve Discrete Momentum and/or Energy:

(Arakawa 1966, Blaisdell et al. 1996, Mansour 1980, etc.)

• Ducros et al. Type Conservative Splitting:  Euler & MHD (Sjogreen et al. 2017)

• Generalized Skew-Symmetric Splitting:   3-parameter family (Pirozzoli 2009,
Kennedy & Gruber 2008

Replacing high order classical central approximation of the inviscid flux derivative
è High order approximation of their split form counterpart
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Ducros et al. Splitting 
(Improve nonlinear stability for high order central schemes)

Split the derivative of a product into conservative & non-conservative parts:

D0:  2
nd-order central, D+uj = (uj+1 – uj)/   x 

The above can be generalized to 2pth-order accurate:  Ducros et al. 2000

Approximation of the split form can be written in conservative form:  e.g., 

General splitting: Pirozzoli 2009, Kennedy & Gruber 2008
==============================
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Ducros et al. Splitting (Cont.) 
(Improve nonlinear stability for high order central schemes)

Approximation of the 2pth-order split form in conservation form:
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2pth-order Central Ducros et al. Splitting
Numerical Flux for 3D Gas Dynamics 

3D Inviscid Flux Derivative in x-Direction:

2pth-order Numerical Flux in x-Direction              :
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High Order Entropy Conservative Methods

• Numerical solutions satisfy additional discretized conservation law
• Low order entropy conservative methods with linear numerical dissipation 

for shock-capturing require further accuracy improvement
(Tadmor 1984 – gas dynamics, Janhunen 2000 – MHD, Winters & Gassner 2016 – MHD)

• High order entropy conservative methods for central schemes
(Fjordholm et al. 2012 – ENO, Carpenter et al. 2013-2016, 
Sjogreen & Yee 2016, 2017– central + nonlinear filter, gas dynamics & MHD)

(One way to improve nonlinear stability & minimize added numerical dissipation)

Plasma (Hypersonic Flows):
Four forms of the MHD equations to be considered

>  Conservative form 
>  Godunov/Powell symmetrizable form (non-conservative)
>  Janhunen form: (Div B) terms not included in the gas dynamics part of the equations
>  Brackbill & Barnes form

Three forms of the entropy fluxes to be considered
(Winter & Gassner 2016, Chandrasheka & Klingenbery 2016, Sjogreen & Yee 2016-2017) 



Well-Balanced High Order Nonliner Filter Schemes 
Non-Reacting & Reacting Flows 

Yee et al., 1999-2017, Sjogreen &Yee, 2004-2017, Wang et al., 2009-2010. Kotov et al., 2012-2016

Preprocessing step
Condition (equivalent form) the governing equations by, e.g., Yee et al. Entropy

Splitting & Ducros et al. Splitting to improve numerical stability

High order low dissipative base scheme step (Full time step)
High order Central, DRP, or Entropy Conser. Num. Flux scheme  
SBP numerical boundary closure, matching spatial & temporal order 
conservative metric evaluation Vinokur & Yee, Sjögreen & Yee, Yee & Vinokur 
(2000-2014)

Nonlinear filter step
Filter the base scheme step solution by a dissipative portion of any
positive high-order shock capturing scheme, e.g., 7th-order positive
WENO
Use local flow sensor to control the amount & location of the nonlinear
numerical dissipation to be employed

Well-balanced scheme: preserve certain non-trivial physical steady state solutions of reactive eqns exactly 
Note: “Nonlinear Filter Schemes" not to be confused with “LES filter operation"



Nonlinear Filter Step
Denote the solution by the base scheme (e.g. 6th order central, 4th
order RK)

U∗ = L∗(Un)

Solution by a nonlinear filter step

Un+1
j = U∗j − ∆t

∆x

[
Hj+1/2−Hj−1/2

]
Hj+1/2 = Rj+1/2Hj+1/2

Hj+1/2 - numerical flux, Rj+1/2 - right eigenvector, evaluated at the
Roe-type averaged state of U∗j
Elements of Hj+1/2:

hj+1/2 =
κm

j+1/2
2

(
sm

j+1/2

)(
φ m

j+1/2

)
φ m

j+1/2 - Dissipative portion of a shock-capturing scheme
sm

j+1/2 - Local flow sensor (indicates location where dissipation needed)
κm

j+1/2 - Controls the amount of φ m
j+1/2

(Ut +Fx(U) = 0)



Improved High Order Filter Method
Form of nonlinear filter

hj+1/2 =
κm

j+1/2
2

(
sm

j+1/2

)(
gm

j+1/2−bm
j+1/2

)
��
��
��
��1

�
��� 6

@
@@I

Control amount of
dissipation based on
local flow condition

Local flow sensor
(Shock Sensor, ACM
(Harten), Ducros et al,
Multiresolution
wavelet, etc.)

Any High Order 
Shock capturing 
numerical flux 
(e.g. WENO7)

High order central
numerical flux
(e.g. 8th order
central)

2007 – κ = global constant
2009 – κj+1/2 = local, evaluated at each grid point
Simple modification of κ (Yee & Sjögreen, 2009)

κ = f (M) ·κ0

f (M) = min

(
M2

2

√
4+(1−M2)2

1+M2 ,1

)
For other forms of κj+1/2,sj+1/2, see (Yee & Sjögreen, 2009)
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Examples of Improved Nonlinear Stability & Accuracy

3D DNS Taylor & Green and Isotropic Turbulence 

More Complicated Flows, Supersonic DNS & LES:  
See Yee et al., Yee & Sjogreen, Sjogreen & Yee, Wang et al. and Kotov et al. (1999-2017)

Selected Illustrations: 



18

TACP - Transformational Tools & Technologies Project

3D Taylor-Green Vortex (Compressible & Inviscid)

C08Dsplit+WENO7fi:  8th-order central + Ducros et al. split +WENO7fi
C08Econs+WENO7fi:  8th-order central entropy conservative flux + WENO7fi

C08Dsplit:   8th-order central + Ducros et al. split 
C08Econs:   8th-order central + Entropy conservative flux
C08Esplit:   8th-order central + Entropy split

WENO7:   Standard WENO7

EnstrophyKinetic Energy

(Skew-Symmetric Splitting vs. Entropy Conservative Methods, 643 grids)

Our method
Our method

Standard method

Standard method



19

TACP - Transformational Tools & Technologies Project

3D Isotropic Turbulence with Shocklets

Temperature Variance Dilatation

Kinetic Energy Enstrophy

(Skew-Symmetric Splitting vs. Entropy Conservative Methods, 643 grids)

Standard method

Our method

DNS 2563

643

643
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3D Taylor-Green Vortex (Shock-Free Turbulence)

Kinetic Energy Enstrophy

C08-DS+WENO7fi:  8th-order central + Ducros et al. split +WENO7fi
DRP4S7-DS+WENO5fi:  Tam & Webb 4th-order DRP, 7pt grid stencil + Ducros et al. split + WENO5fi

ST09-DS+WENO7fi:  Bogey & Bailly 4th-order DRP, 9pt grid stencil + Ducros et al. split + WENO7fi
DRP4S9-DS+WENO7fi:  Tam & Webb 4th-order DRP, 9pt grid stencil + Ducros et al. split + WENO7fi

Standard method

Our method
Our method

Standard method

(Comparison of 6 Methods, 643 grids)
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3D Isotropic Turbulence with Shocklets
(Comparison of 6 Methods, 643 grids) 

Kinetic Energy Enstrophy

Temperature Variance Dilatation

643

Our method

DNS 2563

643

Standard method
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3D Isotropic Turbulence with Shocklets

Comparison of 6 Methods, 643 grids
Energy Spectra

(Compressible & Inviscid)



3D Shock-Turbulence Interaction Test Case
(Amplification of Turbulence Across a Supersonic Shock Wave:

Supersonic flow over wings, fins, control surfaces & inlets)

What is needed:
• Inflow BC:
DNS of isotropic
turbulence
(from Larsson & Lele,
Phys. Fluid, 2009)
• Sponge layer
reduce domain size

• Compute
back pressure
to obtain mean
stationary
shock

Periodic BC

Turbulent
Inflow

Sponge Layer

Shock Surface

Post-shock Zone

−2             0                                                        3π−2        4π−2
2π

2π

Periodic BC

x
y

z

Outflow BC

Homogeneous
in Y & Z

Sponge source term: W =−k0u0

2π

(
x− xsp

xmax− xsp

)
(f−< f >yz)

(Gently drive the flow towards a laminar state)



CDNS: Scheme Comparison, 389×642, M = 1.5
Streamwise Reynolds Stress
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— Filtered DNS

— WENO7fi+split

— WENO7

— WENO5

All: No LES Model

WENO7fi+splt:
> 8th-order

central &
Ducros split

> 7th-order
WENO filter,
diss. in 3D

> Ducros et al.
sensor,
D = 0.01
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New Approach: Subcell Resolution Method for Stiff Source 

Yee et al., Wang et al. and Kotov et al. (2002-2016)

Selected Illustration: Detonation 

(Obtaining Correct Shock/Contact/Shear Locations)

More Complicated Examples & Minimizing Spurious Numerics: 



Subcell Resolution (SR) Method
Wang, Shu, Yee, & Sjögreen, 2012, JCP

Basic Approach
Any high resolution shock capturing operator can be used in the
convection step
Test case: WENO5, WENO7, Roe flux, RK4
Any standard shock-capturing scheme produces a few transition points in
the shock
⇒ Solutions from the convection operator step, if applied directly to
the reaction operator step, result in wrong shock speed

New Approach
Apply Subcell Resolution (Harten 1989; Shu & Osher 1989) to the solution
from the convection operator step before the reaction operator step

Note: Subcell resolution methods can be used for LES 
using dynamic SGS model with shocks by locating the 
shock location & solve left & right problems 



High Order Methods with Subcell Resolution
Strang Splitting + Subcell Resolution (SR)

Ut +F(U)x +G(U)y = S(U)

?
?

Convective step
Ut +F(U)x +G(U)y = 0

A→ U∗
Convective difference operator

(Full time step of WENO5 or WENO7, RK4)

SR step

SR→ U∗∗
SR operator

(No time involved)

Reactive step
dU
dt

= S(U)

R→ Un+1

Reaction difference operator
(RK1, RK2, RK3, RK4)

Numerical solution: Un+1 = A∗
(

∆t
2

)
R(∆t)A∗

(
∆t
2

)
Un

OR: Un+1 = A∗
(

∆t
2

)
R
(

∆t
Nr

)
· · ·R

(
∆t
Nr

)
A∗
(

∆t
2

)
Un

A∗ operator includes SR step correction at shocks
Nr – number of subiterations

(At the next time level)



1D C-J Detonation Wave
(Helzel et al. 1999; Tosatto & Vigevano 2008)

Right state
(totally unburned gas)

uuupu =101 

Left state
(totally burned gas)

bubpb = u [ pb 1− pu]
 pb

SCJ− pb/b
1/2

−bb2−c1/2


SCJ=[uuu pbb
1/2]/u

b=−pu−u q0 −1 c= pu
22−1 puu q0/1

Ignition temperature 
Heat release
Rate parameter

T ign=25
q0=25

K 0=16 418

K T =K 0exp −T ignT 



Wrong Propagation Speed of Discontinuities
(Standard Method: WENO5, Two Stiff Coefficients, 50 pts)

4 K0K 0=16 418

Reference, 10,000 pts
50 pts



1D C-J Detonation (K0 = 16418, 50 pts)
Temperature Mass Fraction

WENO5:            Standard 5th order WENO (WENO7, TVD)
WENO5/SR:      WENO5 + subcell resolution
WENO5fi:          filter version of WENO5
WENO5fi+split: WENO5fi + preprocessing (Ducros splitting)
Reference:         WENO5, 10,000 points

Standard Meth. –

         Our Meth. – 

tend = 1.7



Behavior of the schemes below CFL limit

Density by different CFL
 WENO5

 Incorrect or diverged solution may occur for ∆t below CFL limit. 
 CFL limit based on the convection part of PDEs
 Confirms the study by Lafon & Yee and Yee et al. (1990 - 2000)

Strang Splitting & Safeguard, 50 pts, 100 K0

(Allowable ∆t below CFL limit, consists of disjoint segments)

9
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Summary

GAS dynamics: Classical central & DRP central

• Both Split central schemes can improve nonlinear stability for smooth flows in general 

• Both nonlinear filter version of split schemes can improve stability & accuracy for DNS & LES

• Both split schemes provide similar stability & accuracy improvement

Plasma: Classical central 

• Split centered schemes can improve nonlinear stability in general for smooth flows
but MHD equations dependent

• Nonlinear filter version of split schemes can improve stability & accuracy for flows with 
discontinuities but MHD equations dependent

• High order entropy conserving methods (centered or nonlinear filter version) can
provide different stability & accuracy improvement, depending on the forms of the 
MHD equations & the choice of entropy fluxes  

(Split Classical Central  vs.  Split DRP Central)

DRP schemes for plasma study - in progress
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Summary

GAS dynamics: 
• Split centered schemes can improve nonlinear stability for smooth flows in general 

• Nonlinear filter version of split schemes can improve stability & accuracy for DNS & LES

• High order entropy conserving methods (centered or nonlinear filter version)
provide similar stability & accuracy improvement as split schemes

Plasma:
• Split centered schemes can improve nonlinear stability in general for smooth flows

but MHD equations dependent

• Nonlinear filter version of split schemes can improve stability & accuracy for flows with 
discontinuities but MHD equations dependent

• High order entropy conserving methods (centered or nonlinear filter version) can
provide different stability & accuracy improvement, depending on the forms of the 
MHD equations & the choice of entropy fluxes

(Split Centered Schemes & Entropy Conservative Centered (EC) Methods)
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Performance of High Order Nonlinear Filter Scheme 
(Skew-Symmetric Splitting of Inviscid Flux Derivative)

Rapidly Developing Flows:  (subsonic, transonic, supersonic & hypersonic) 
>  Smooth flows Yee et al., 1999
>  Flows with discontinuities Yee et al., Sjogreen & Yee, Sandham et al.,  2000-2004
>  Supersonic Mixing & Richtmyer-Meshkov Instability Yee & Sjogreen,  2004, 2012

>  Extreme Flows - positivity-preserving nonlinear filter scheme Kotov et al.,  2014

>  Flows with stiff source terms – Wrong shock speed
High order well-balanced subcell resolution schemes Wang et al., Yee et al., Kotov et al.,  2009-2015

Long Time Integrations, DNS & LES:
>  Shock Free Compressible Turbulence (Kotov et al.,  2016)
>  Low Speed Turbulence with Shocklets (Kotov et al.,  2016)
>  LES of Temporally Evolving Mixing Layers (Yee et al.,  2012)
>  DNS & LES of Turbulence Interacting with a Stationary Supersonic Shock --

One-sided SGS model & subcell resolution to locate the shock within one grid cell (Kotov et al.,  2016)
>  3D Forced Turbulence (Time Varying Forcing) (Sjogreen et al.,  2016)

>  Dual & Direct Cascade Study of 2D Turbulence with Random Forcing
(Astrophysical Applications, Kritsuk et al.,  2016)



Astrophysical Applications: 2D Turbulence
(Joint work with Alexei G. Kritsuk, U.C. San Diego)

Application:  Energetics of the ISM in Galactic Disks 


     >  Dual energy cascade study
     >  Does the inverse energy cascade work in the compressible case?
     >  What are the corresponding scaling relations? 

Grid size: 
     >  Physics Study:  512 

2, 2,048 
2, 8,192 

2, 16,384 
2 

     >  Computation Grid Resolutions:   2,048 
2, 8,192 

2, 16,384 
2 
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Scheme Comparison:  PPM vs WENO7fi+split
2D Compressible Turbulence: Isothermal γ=1.001, periodic BCs

Flow determined by grid N, energy injection rate & energy injection scale 

Spectral Bandwidth:  WENO7fi+split 2.2 X > PPM; ~4 times less CPU in 2D for same resolution (assume 25%) 
Note:  If P(k) is a spectrum and P(k)~kn, then the compensated spectrum is k-nP(k)



PPM

PPM WENO7fi+split

Instantaneous Density Comparison

Instantaneous Vorticity Comparison

WENO7fi+split
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Scheme Comparison:  PPM, WENO7, WENO7fi+split
2D Compressible Turbulence: Isothermal γ=1.001, periodic BCs

Flow determined by grid N, energy injection rate & energy injection scale 
Direct Cascade study:   Coarse vs. fine grids

•  Vorticity bandwidth:    WENO7/PPM=1.2;  WENO7fi/WENO7=1.8;  WENO7fi/PPM=2.2
•  Dilatation bandwidth:  WENO7/PPM=1.5;  WENO7fi/WENO7=1.5;  WENO7fi/PPM=2.2
•  Absolute WENO7fi bandwidth:  for vorticity 68%; for dilatation 66%

Conclusion:
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WENO7fi+split correctly captures theoretically predicted spectra for both incompressible & 
compressible diagnostics in the limit of vanishing controlled numerical dissipation

Euler vs. NS Comparison:  WENO7Fi+split
2D Compressible Turbulence: Isothermal γ=1.001, periodic BCs

Flow determined by grid N, energy injection rate & energy injection scale 
Isothermal Fluids:  T=T0 Constant Dynamic Viscosity, 
                                Re=106, 107, 108, 109

Compensated Vorticity Power Spectra Dilatation Power Spectra

Summary:





High Order Numerical Method Development in MHD"
(Added Issues Beyond Compressible Gas Dynamics Developments) 
 MHD Equations:
            > Conservative Form - non-strictly hyperbolic system w/ degenerate identical eigenvalues
            > Godunov/Powell Form (1972, 1994) - symmetrizable hyperbolic non-conservative system
            > Janhunen Form (2000)
            > Brackbill & Barnes (1980)
 Skew-symmetric Splitting of Inviscid Flux Derivatives:  Improve Stability &        
      Minimize Num. Dissipation
            >  Yee et al. Entropy Splitting (2000) – Only for the gas dynamics portion 
            >  Ducros et al. Splitting (2000) & Pirozzoli Generalization (2010) – Not unique 
            >  High Order Extension of Tadmor Entropy Conservative Numerical Fluxes
                   (Sjogreen & Yee, 2009) – can be viewed as a splitting 

 Discrete Conservation Methods:  FV vs. FD & DG, etc; Low Order vs. High Order 
             >  Entropy stable conservative numerical fluxes
                 – Low Order:   Janhunen (2000), Winters & Gassner (2016), Chandrasekar-Klingenberg (2015) 
                  – High Order:  Sjogreen & Yee (2009) - Central, Fjordholm, Mishra & Tadmor (2012) - ENO, etc.
            >  Momentum conservation, Kinetic energy preservation, etc. 

 Approximate Riemann Solver:  Extension of Roe’s Average States
            >  Gallice average states (1997)
            >  Ismail & Roe (2009) – Logarithmic mean for entropy (not square root mean)
                …
 Eigenvector Scaling: (Roe & Balsara, 1996)



Non-uniqueness of Ducros et al. Splitting for MHD"
(Minimize the use of numerical dissipation for high order central schemes) 

• MHD inviscid (ideal) flux derivatives consist of triple products of
conservative variables & their derivatives

• No unique guidelines in splitting triple products of derivatives (more 
choices than their gas dynamics counterparts)

         (See Sjogreen & Yee, ICOSAHOM-2016 & Journal version for the chosen forms) 

• 3-Forms:  Split all 8 flux derivatives, partial or just the gas dynamic
portion (all recover to split form of gas dynamics when MHD not present)

 (Results compare with no splitting) 

• Four forms of the MHD Equations to be solved:
          >  Conservative form
          >  Godunov/Powell symmetrizable form (non-conservative)
          >  Janhunen form: (Div B) terms not included in the gas dynamics part of the equations)

  >  Brackbill & Barnes form

The above consists of 16 combinations for the current study





Ducros et al. Splitting - Orszag-Tang Vortex Test case"
    (Only on the Gas Dynamic Variables)

WENO5fi (no split) + Dissp WENO5fi+split

Density

divB History
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• Standard shock-capturing methods are too diffusive for long 
time integration

• Careful design of appropriate nonlinear numerical dissipations 
with flow sensors can improve accuracy

Numerical Examples
3D DNS Computations of Shock-Free Turbulence & Turbulence with Shocklets



3D Taylor-Green vortex
(Inviscid & Viscous Shock-Free Turbulence)

Computational Domain: 2π square cube, 643 grid.
(Reference solution on 2563 grid)

Initial condition
ρ = 1,
p = 100+([cos(2z)+2][cos(2x)+ cos(2y)]−2)/16,
ux = sinxcosycosz
uy =−cosxsinycosz
uz = 0.
Initial turbulent Mach number: Mt,0 = 0.042
Final time: t = 10

Viscous case
µ/µref = (T/Tref )

3/4

µref = 0.005,Tref = 1,Re0 = 2040



Compressible Isotropic Turbulence
(Low Speed Turbulence with Shocklets)

Computational Domain: 2π square cube, 643 grid.
(Reference solution on 2563 grid)

Problem Parameters

Root-mean-square velocity: urms =
√
〈uiui〉

3

Turbulent Mach number: Mt =

√
〈uiui〉
〈c〉

Taylor-microscale: λ =
√

〈u2
x〉

〈(∂xux)2〉

Taylor-microscale Reynolds number: Reλ = 〈ρ〉urmsλ

〈µ〉
Eddy turnover time: τ = λ0/urms,0

Initial Condition: Random solenoidal velocity field with the given spectra

E(k)∼ k4 exp(−2(k/k0)
2)

3
2 u2

rms,0 =
〈ui,0ui,0〉

2 =
∫

∞

0 E(k)dk
urms,0 = 1, k0 = 4, τ = 0.5, Mt,0 = 0.6, Reλ ,0 = 100
Final time: t = 2 or t/τ = 4




