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The Hypersonic International Flight Research and Experimentation (HIFiRE) 5 flight experiment by the 
Air Force Research Laboratories and Australian Defense Science and Technology Organization yielded in-
flight, hypersonic transition data for a canonical, 3D configuration in the form of an elliptic cone at various 
combinations of angle-of-attack and yaw.  Previous analysis has shown that boundary-layer stability 
calculations for the as-flown, zero-yaw flight conditions are able to capture the second mode dominated 
transition along the attachment line as well as the crossflow induced transition in between the attachment line 
and the minor axis symmetry plane. However, there is still a need to understand the transition in the vicinity 
of the minor axis plane of symmetry, where the boundary layer thickness exhibits an azimuthally compact 
bulge due to the collision of the secondary flow approaching from the attachment lines on both sides. This 
paper reports a computational analysis of the stability of the boundary layer flow along the bulge regions on 
both the leeward and windward sides of the vehicle surface.  At a representative flight condition 
corresponding to a time instant of t = 514.813 seconds, computations are performed to identify several 
different unstable modes within the bulge regions, with the eventual goal of developing a linear stability 
correlation for the transition onset near the minor axis symmetry plane.  The most amplified flow instabilities 
in the pretransitional region correspond to a “stem” mode that is concentrated within a pair of nearly vertical 
shear layers below the cap of the mushroom shaped bulge in the mean velocity contours.  An excellent 
agreement is found between the predictions of instability amplification based on the plane marching 
parabolized stability equations (PSE) and the direct numerical solutions (DNS).  Given the large number of 
unstable modes within the bulge region, the observed agreement demonstrates, for first time, that the PSE 
can provide accurate predictions for the development of flow instabilities in streak-like flow features over 
three-dimensional bodies. The peak N-factor of approximately 15 at the transition location estimated from 
the thermocouple measurements along the leeward centerline is close to the transition N-factor for Mack 
mode transition during the HIFiRE-1 circular cone flight experiment with nearly zero degrees angle of 
attack. 

Nomenclature 
f  =    frequency of instability waves [kHz] 
M¥  =    freestream Mach number (nondimensional) 
Me  =    Mach number at the edge of the boundary layer (nondimensional) 
N  =    logarithmic amplification ratio of a fixed frequency secondary instability mode (nondimensional) 
p’  =  pressure fluctuation [Pa] 
P¥  =    freestream pressure [Pa] 
Re  =    freestream unit Reynolds number [m-1] 
t  =    time [sec] 
T0  =    stagnation temperature [K] 
Tad  =    adiabatic wall temperature [K] 
Tw  =    wall temperature [K] 
T¥  =    freestream temperature [K] 
u  =    streamwise velocity [m/s] 
u’  =  fluctuation in streamwise velocity [m/s] 
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U¥  =    freestream velocity [m/s] 
X  =    axial distance [m] 
Y  =    wall-normal distance [m] 
Z  =    azimuthal distance from symmetry plane [m] 
a  =    angle of attack [deg] 
b  =    yaw angle [deg] 
h  =  surface normal distance [m] 
r  =  fluid density [kg/m3]     
q  =    azimuthal coordinate with respect to windward meridian [rad] 
 

I. Introduction 
oundary layer transition from the laminar to a turbulent state is known to have a major impact on the design and 
performance of hypersonic flight vehicles.  When the vehicle surface is relatively smooth, the transition process 

is initiated by linear instabilities of the laminar boundary layer, including second (or Mack) mode instability, Görtler 
instabilities, stationary and traveling modes of crossflow instability, and the attachment-line instability. Regardless 
of the speed regime, linear stability correlations have been quite successful in predicting the onset of transition when 
a single instability mechanism dominates the transition process.  Mixed mode transition has been more challenging 
to predict because of the potentially stronger influence of nonlinear interactions between the relevant modes of 
instability.     
 The simplest canonical configurations that include the necessary elements for studying transition due to multiple 
instability mechanisms in a hypersonic boundary-layer flow correspond to a circular cone at small but nonzero angle 
of attack [1–8] and an elliptic cone [9–16].  As discussed in these references, much of the earlier data for the two 
canonical configurations was obtained in conventional (i.e., noisy) ground facilities, but quiet tunnel measurements 
have also become increasingly common over the past decade.  In-flight transition data for these two configurations 
has been obtained during the Hypersonic International Flight Research Experimentation (HIFiRE) program 
conducted jointly by the Air Force Research Laboratory (AFRL) and the Australian Defence Science and 
Technology Organization (DSTO) [17].  Two HIFiRE flights were devoted to boundary layer transition 
measurements.  The primary experiment on HIFiRE-1 was devoted to second-mode transition on a circular cone at 
zero degrees angle of attack [18–19], but the descent phase of the flight actually yielded transition measurements at 
significantly large angles of attack [20].  The HIFiRE-5b transition experiment extended the HIFiRE-1 data to 
include a fully three-dimensional, hypersonic configuration in the form of a nonablating, 2:1 elliptic cone [21–23].   
 As revealed in the preflight transition analysis of the HIFiRE-5 configuration [12, 16, 24], the elliptic cone 
model can support a variety of instabilities that dominate in different portions of the model surface, including  
attachment line instabilities, second mode waves, stationary and traveling crossflow instabilities, and more complex, 
localized instabilities in the bulge region associated with the collision of the secondary flow approaching from both 
attachment lines.  The various publications related to the HIFiRE-5 program [25–50] include both the flight 
experiments and various ground facility measurements of instability and/or transition over the elliptic cone under a 
variety of disturbance environments representing both conventional and quiet facilities.  Such multipronged 
investigations have provided valuable insights into the effects of the disturbance environment on the amplification of 
the various types of instability waves over the HIFiRE-5 configuration.  For example, quiet tunnel measurements of 
traveling crossflow instability on an elliptic cone [33] have yielded encouraging comparisons with the linear stability 
predictions [51].   
 Post flight transition analysis for selected trajectory locations during the HIFiRE-5b flight experiment has been 
reported by Tufts et al. [52] and Moyes et al. [53].  The work by Tufts et al. [52] has shown that linear stability 
calculations yield a satisfactory correlation with second mode dominated transition along the attachment line as well 
as crossflow induced transition in between the attachment lines and the narrow regions of boundary layer bulge 
associated with the collision of the secondary flow approaching from the attachment lines. However, the transition 
mechanisms within the bulge region have not been examined as yet.  Preflight analysis [12, 16, 24] had shown that 
the instabilities within the bulge region cannot be predicted via conventional stability analysis because of the 
strongly inhomogeneous nature of the boundary layer flow in that region.  Specifically, the azimuthal variations in 
the basic state can become comparable to the wall-normal gradients, requiring multidimensional, i.e., partial-
differential-equation (PDE) based instability analysis techniques to predict the amplification of the various unstable 
modes supported by the bulge region [12].  At the zero-yaw condition analyzed by Tufts et al. [52], the bulge region 
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is centered on the symmetry plane of the boundary layer flow.  The objective of this ongoing research is to examine 
the instability characteristics of the bulge region at the above condition and to assess the prospects for using N-facor 
methods to estimate the onset of transition.  A similar analysis for axisymmetric bodies at nonzero incidence in the 
supersonic Mach number regime was described in Refs. [54, 55].   
 The instability evolution over the bulge region bears considerable similarities with the previous work at the 
NASA Langley Research Center on the secondary instability of stationary crossflow vortices in the hypersonic 
boundary layer flow over a yawed circular cone [56–59] and of the Görtler vortices over a concave cone 
configuration [60, 61].  The secondary instability of azimuthally (locally) periodic crossflow vortices was 
investigated in Refs. [56, 57], whereas the instabilities of an azimuthally compact crossflow vortex pattern were 
examined in Refs. [58, 59]. These studies have shown that the instabilities of azimuthally modulated hypersonic 
boundary layers can be divided into two main classes.  The first class of disturbances involves azimuthally 
modulated counterparts of the Mack mode instability in boundary layer flows that are quasihomogeneous in the 
azimuthal direction, and therefore, these modes can extend beyond the region of the short-scale azimuthal variation 
in the underlying basic state.  The other class of instabilities is intrinsically linked with the azimuthal inhomogeneity 
of the basic state and these modes tend to concentrate inside one or more localized regions of high shear that 
characterize the crossplane variation in the basic state. Given the physical similarities between the bulge region over 
the HIFiRE-5b vehicle and the basic states examined in the aforementioned works, the present work follows a 
similar computational strategy as the earlier studies from Refs. [56–59, 62, 63], in that all of these studies include a 
synergistic application of multifidelity models ranging from a local, multidimensional instability analysis, the plane 
marching parabolized stability equations, and direct numerical simulations.  The local eigenvalue analysis provides 
the initial conditions for the PSE marching, which in turn can be validated against the DNS. In that regard, the 
present paper advances the previous computations from an underlying axisymmetric cone or flat plate geometry to 
the fully 3D shape of an elliptic cone. 
 The remaining sections of this paper are laid out as follows.  A brief summary of the flow configuration of 
interest is given in Section II, which also describes the basic state boundary layer flow over the HIFiRE-5b 
configuration at the selected instant during flight.  The analysis of linear instabilities sustained by the bulge region is 
described in Section III.  Conclusions are outlined in Section IV. 
 

II. Flow Configuration and the Basic State 

 The HIFiRE-5b test article consists of a blunt-nosed elliptic cone of 2:1 ellipticity, 0.86 meters in length.  
The minor axis of the cone is a seven-degree half-angle.  The nose tip cross-section in the minor axis describes a 2.5 
mm radius circular arc, tangent to the cone ray describing the minor axis, and retains a 2:1 elliptical cross-section to 
the tip.  Therefore, the model contour along any given meridian involves a curvature discontinuity at the juncture 
between the nose and the downstream cone portion.  The cone is 431.8 mm wide at its base and overhangs the 355.6 
mm diameter booster in the yaw plane.  An uninstrumented section blends the elliptical cone cross-section into the 
circular booster cross section.  The vehicle is spin-stabilized.  Cant-angle on the first and second-stage fins causes 
the vehicle to spin passively.  Because of this, the payload rolls at a very slow rate throughout the ascent and 
descent.   

The flow condition of interest corresponds to that targeted in the analysis by Tufts et al. [52], which modeled the 
flight conditions at t = 514.83 seconds, namely, a freestream Mach number of M¥ = 7.8, freestream velocity, 
pressure, and temperature corresponding to U¥ = 2295.9 m/s, P¥ = 3435 Pa, and T¥ = 215.6 K, respectively, a unit 
Reynolds number equal to Re = 9.0´106/m, and an approximate surface temperature of Tw = 373.15 K (i.e., Tw/T0 = 
0.131). Whereas the computations reported by Tufts et al. were performed for a = –1.0 degrees, we use the best 
estimate for the angle of attack at t = 514.83 seconds, corresponding to a = –1.2 degrees.   

To provide a basic state for the prediction of the disturbance amplification characteristics, mean flow 
computations were carried out using the VULCAN (Viscous Upwind aLgorithm for Complex flow ANalysis) 
software [64]. The code solves the unsteady, conservation equations appropriate for laminar or turbulent flow of 
calorically or thermally perfect gases with a spatially second-order accurate cell-centered finite volume scheme. In 
the present computations, the inviscid fluxes were constructed using the MUSCL k = 0 scheme, the van Albada 
gradient limiter [65] and the Low Dissipation Flux Split Scheme (LDFSS) of Edwards [66-67]. The cell face 
gradients required to construct the viscous fluxes were obtained using an auxiliary control volume approach that 
results in a compact viscous stencil that produces a second-order accurate approximation of the full Navier-Stokes 
viscous fluxes. Throughout the computations, special care was exercised to ensure an appropriate resolution of the 
boundary layer flow while maintaining a close alignment of the outer grid with the 3D shock surface.  The computed 
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basic state was fully laminar with the assumption of ideal gas behavior; no turbulence model or real-gas 
approximations were included in these computations. 

In previous unpublished work, similar computations of the mean flow over a 0.381 scale wind tunnel 
configuration were cross-validated against the solutions obtained with the LAURA code [68] for various grid sizes. 
Additional grid convergence analysis for that same flow configuration was reported by Li et al. [51].  

For the baseline vehicle attitude corresponding to zero yaw angle, b = 0 degrees, the computational domain 
included just one half of the total body surface.  The grid topology was effectively equivalent to a structured grid 
consisting of two blocks, one near the nose and a second one that covered most of the body length downstream of 
the nose.  The downstream block was discretized using 1201 points in the axial (X) direction, 1441 points in the 
azimuthal (q) direction, and 513 points in the surface normal (h) direction.  The grid was nonsingular within the 
nose region and was suitably clustered in all three computational coordinates.  For grid convergence studies, 
additional computations were done by using smaller numbers of points along both surface coordinates as well as by 
varying the degree of grid clustering within the bulge region and the azimuthal region beyond the bulge.  The 
boundary conditions employed during the mean flow computations were typical of blunt body computations 
involving symmetry conditions along the azimuthal boundaries.  Mach number contours at selected stations along 
the cone length are shown in Fig. 1.  The Mach number contours clearly indicate the emergence of the bulge region 
near the symmetry planes on the leeward as well as the windward sides. A comparison of the axial velocity contours 
obtained with two different grids is shown in Fig. 2.  For the bulge region of interest, a satisfactory grid convergence 
is observed at all axial locations (see, for example, Figs. 2(a) and 2(b) for basic state contours across the length of 
the cone). The computed mode shapes of instability waves in Refs. [12, 16, 24] indicate that the peak fluctuations 
associated with those waves are often confined to the high shear regions within the bulge.  On the basis of the 
agreement between the solutions presented in Fig. 2, one may infer that the relevant high-shear regions are 
adequately captured within the present computation of the basic state.   

  

 
Fig. 1.  Mach number contours of the basic state at t = 514.83 seconds, indicating the bulge region 
along the minor axis plane of symmetry (Y = 0 m).  Crossplane contours are shown at axial 
locations of X » 0.05, 0.1, 0.2, 0.3, 0.4, and 0.7 meters, respectively. 
 

A comparison between the Mach number contours from Figs. 2(a) and 2(b) also indicates how the benign bulge 
in boundary layer thickness at X = 0.2 m develops a different structure downstream as a result of the continued 
evolution of the secondary flow.  The crossplane contours at X = 0.2 m reveal two pairs of regions indicating a roll-
up of the near wall fluid (see, for instance, the low-speed regions indicated in blue within Fig. 3(a)), caused by an 
upwelling of the secondary flow within the crossplane.  The crossplane distributions of streamwise vorticity (not 
shown here) indicate a strong pair of vortex structures on the side of the cap region of the mushroom shaped 
contours, along with additional pairs that are closer to the surface in the vicinity of the blue shaded structures.  At X 
> 0.2 m, the smaller structures near the outer pair of blue colored regions in Fig. 3(a) get pushed toward the 
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symmetry plane as a result of the velocity induced by the larger vortex structures within the sides of the mushroom 
cap.  Eventually, the two regions of low-speed flow merge with each other, yielding a single pair of shear layers 
comprising the stem of the mushroom shaped contours at X = 0.7 m (Fig. 2(b)).  For future reference, Table 1 
summarizes the bulge region characteristics at selected axial stations. 

 
(a) X = 0.2 m. 

 
(b) X = 0.7 m. 

 
Fig. 2.  Mach number contours of the basic state near the bulge region centered on Y = 0 
(corresponding to vertical plane of symmetry) on the leeward side.  Contour values range from 0 to 
7.5, in increments of 0.5.  Results are shown for the baseline grid (blue lines) and a coarser grid 
with half the number of points in each surface direction (orange lines). 

 
Figure 3(b) depicts the crossplane contours of r|ÑYZ(u)| where ÑYZ denotes the crossplane gradient within the Y-Z 

plane.  The regions of high shear correspond to the near wall flow, including two pairs of lift up from the wall as 
seen in Fig. 3(a) and a nearly horizontal shear layer that is associated with the cap of the mushroom structure. 

 

  
(a) Axial velocity (u) contours  (b) Contours of r|ÑYZ(u)|, i.e., the magnitude of 

density weighted crossplane gradient of u  
Fig. 3.  Axial velocity contours of the basic state near the bulge region on the leeward side (X = 0.2 m).   

Table 1  Boundary layer characteristics along the leeward and windward planes of symmetry 
X (m) Me (leeward) Tw/Tad (leeward) Me (windward) Tw/Tad (windward) 
0.1 3.70 0.15 3.59 0.15 
0.2 5.59 0.15 5.38 0.15 
0.3 6.57 0.15 6.21 0.15 
0.4 6.72 0.15 6.34 0.15 
0.5 6.75 0.15 6.37 0.15 
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As previously discussed in the context of the basic state computations for a 0.381:1 scale wind tunnel 
configuration [51], the flowfield in the vicinity of the symmetry plane is sensitive to the details of the computational 
process and a rigorous demonstration of the insensitivity of the computed basic state to those details can be a 
challenging goal in practice.  To build further confidence into the numerical results, basic state computations were 
also carried out with a higher-order flow solver and a computational mesh that was obtained by keeping every other 
wall-normal point from the finer mesh in Fig. (2) and approximately every third grid point in the axial direction.  A 
detailed description of the governing equations and their numerical discretization used in this solver is given by Wu 
et al. [69]. The inviscid fluxes from the governing equations are computed by using a seventh-order weighted 
essentially nonoscillatory (WENO) finite-difference scheme introduced by Jiang and Shu [70]; but the solver also 
allows the use of limiters [69, 71] that have been optimized to reduce the numerical dissipation.  Both an absolute 
limiter on the WENO smoothness measurement and a relative limiter on the total variation are employed 
simultaneously during the simulation. The viscous fluxes are discretized using a fourth-order central difference 
scheme and time integration is performed using a third-order low-storage Runge-Kutta scheme [72].  In previous 
studies, this numerical code has been applied to the simulation of hypersonic turbulent boundary layers [73] as well 
as the laminar-turbulent transition due to crossflow instability in swept wing boundary layers [74, 75].  The lessons 
learned from these simulations were applied to develop the computational grids for the DNS computations described 
in the present paper. The higher-order solution was limited to the region downstream of the nose.  The comparison 
of Mach number contours based on the VULCAN solution and the DNS-WENO solution shows that the basic state 
contours based on the 6th-order accurate solution are nearly identical to those obtained from the 2nd-order solutions 
obtained with the VULCAN solver.  

 

 
Fig. 4.  Comparison of VULCAN (orange lines) and DNS-WENO (blue lines) solutions for the 
Mach number contours of the basic state near the bulge region (X = 0.5 m). 

 

III. Linear Stability of the Flow within the Bulge Region  
Analysis of the flight data at t = 514.83 seconds indicates that the onset of transition in the vicinity of the vehicle 

centerline was approximately midway along the length of the cone [48].  Therefore, the instability characteristics 
over the front portion of the cone are of greater interest for understanding the transition behavior at this particular 
time.  As mentioned in the Introduction, the analysis of instability modes within the bulge region must account for 
the enhanced azimuthal gradients associated with the bulge.  Because of the azimuthal symmetry of the basic state 
for the zero yaw condition of interest, the disturbances within the bulge region can be divided into symmetric (even) 
and antisymmetric (odd) modes on the basis of the azimuthal distribution of the axial velocity perturbation u’.  Thus, 
the antisymmetric modes are associated with zero u’ fluctuations (as well as zero fluctuations in the surface normal 
velocity and in all thermodynamic variables) at the symmetry plane (Y = 0), whereas the symmetric modes have zero 
azimuthal gradient in those quantities along Y = 0. To gain a basic understanding of these unstable modes, we first 
consider the instability characteristics based on local eigenvalue solutions at selected axial stations. Analogous to the 
secondary instability analysis of crossflow vortex modes on a yawed cone [56–59], the local instability analysis is 
performed in two different ways, namely, by invoking the quasiparallel approximation for the basic state and by 
retaining the axial gradients of the basic state.  The latter option is denoted herein as a partially nonparallel (PNP) 
eigenvalue analysis.  

Similar to the multidimensional stability analysis at the preflight conditions [12, 16, 24], a number of unstable 
modes are found at the flight condition of interest.  The growth rate spectra for selected unstable modes obtained via 
the PNP eigenvalue analysis at X = 0.1 m are shown in Fig. 5(a), whereas Fig. 5(b) outlines the frequency 
dependence of the corresponding phase speeds.  Analogous results for X = 0.2 m are shown in Fig. 6.  
Representative mode shapes for the selected mode types are included in Figs. 5(a) and 6(a), respectively.  These 
results are obtained by using a crossplane of 201 points in the wall-normal direction and 151 points in the azimuthal 
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direction, along with sixth-order finite differences in the azimuthal and wall-normal directions, respectively.  Sponge 
zones are used in both wall-normal and spanwise directions in order to enable sufficient decay of the disturbance 
amplitudes ahead of the outer boundaries. Additional computations were performed to ensure that the computed 
eigenvalues are insensitive to the computational grid and the sponge zones employed during these calculations.  As 
discussed in Ref. [76] in the context of wake instabilities behind an isolated roughness element, a planar eigenvalue 
analysis in azimuthally inhomogeneous hypersonic boundary layers can reveal two types of unstable modes based 
on the azimuthal distribution of their fluctuations, namely, modes that are concentrated within the localized 
azimuthal inhomogeneity of the basic state (such as the bulge region) and modes that extend beyond the azimuthal 
inhomogeneity, well into the surrounding region of weaker azimuthal gradients and that may or may not have a 
noticeable signature within the region of the localized inhomogeneity.  For the computations reported herein, the 
azimuthal domain is truncated within a finite distance from the bulge region, to help capture only those instability 
modes that are localized within the bulge region.  Even when a subset of unstable modes associated with the Mack 
mode and crossflow instabilities within the surrounding region are captured within the eigenvalue computation, 
those modes are excluded from the results shown in this paper.   

As discussed in the introduction (as well as in Refs. [56-59]), the instability modes within the bulge region can 
be further divided into two different subtypes on the basis of their wall-normal distribution. Both of these modal 
subtypes are observed collectively between the results shown in Figs. 5(a) and 6(a). The benign structure of the 
basic state at X = 0.1 m is characterized by a thickening of the boundary layer near the minor-axis plane of 
symmetry.  This bulge region exhibits an internal shear layer near the top of the velocity contours (similar to that at 
X = 0.2 m in Fig. 3(b)) that is dominated by the azimuthal vorticity component.  In comparison, the azimuthal 
variation of the basic state, or equivalently, its wall-normal vorticity is rather weak at this station.  Thus, one expects 
that the Mack mode instability (suitably modulated by the moderate azimuthal variations in the boundary layer 
thickness) would play a significant role among the unstable modes at this station.  Indeed, the group of three high-
frequency modes in Fig. 5(a) denote the counterparts of the conventional second mode (i.e., Mack mode) waves and 
they have dual peaks in velocity fluctuations along the wall-normal direction. The symmetric mode IV(S) 
corresponds to the analog of an axisymmetric Mack mode whereas the mode V(A) corresponds to an oblique Mack 
mode with an azimuthal scale (or “wavelength”) that is comparable to the spanwise extent of the shear layer.  The 
mode VI(S) is a symmetric mode with an azimuthal scale that is approximately one half of the width of the shear 
layer.  The phase speeds of all three mode families fall within a similar range is indicated in Fig. 5(b).  Because the 
amplification rates of the Mack mode disturbances decrease quickly with a decreasing azimuthal wavelength (i.e., an 
increasing wave angle), the nearly planar mode IV(S) has the highest peak amplification rate among these three 
modes (and, in fact, among all unstable modes at this location).  The peak amplification rate of mode V(A) is less 
than one half of the peak corresponding to the planar mode and the amplification rates of modes from the VI(S) 
family are uniformly small.  All modes with azimuthal length scales that are shorter in comparison with that of the 
mode VI(S) are associated with decaying disturbances at this location.  Finally, we note that the range of frequencies 
associated with the above group of modes increases slightly as the modes become increasingly oblique. 

The mode shapes associated with the low frequency modes (i.e., modes I(S), II(A), and III(S)) indicate a 
somewhat (but not precisely) analogous progression in the azimuthal variation as the Mack mode group discussed 
above.  However, the growth rates associated with all low-frequency modes are rather small, i.e., even smaller than 
the peak growth rate of the oblique Mack modes corresponding to the mode family VI(S), and furthermore, the 
variation of the peak amplification rate with the associated frequency is not monotonic in this case.  Indeed, it is the 
mode III(s) that has the higher peak amplication rate within the group of low frequency modes.  The most important 
distinction between the groups of low-frequency and high-frequency disturbances, respectively, corresponds to the 
wall-normal distribution of the respective fluctuations.  Whereas all Mack modes induce significant fluctuations in 
the near wall region, the fluctuations associated with the lower frequency modes are always localized within the 
shear layer region that is located higher up within the bulge region. It is also noteworthy that the phase speeds of 
these shear-layer modes are actually confined to a significantly narrower range than that of the Mack modes.     

As the azimuthal variations across the bulge region become stronger from  X = 0.1 m to X = 0.2 m, the topology 
of the unstable modes changes significantly as seen in Fig. 6(a).  First, and most important, the frequency bandwidth 
of most of the unstable modes at X = 0.2 m is significantly higher and there is also a significant overlap in frequency 
range across a majority of the unstable modes, with the exception of the modes V(S) and V(A) that are unstable 
within a rather narrow range of frequencies and correspond to supersonic phase speeds with respect to the local 
freestream as inferred from Fig. 6(b) and Table 1.  Note that the two pairs of modes designated as V and VI are 
concentrated sufficiently farther from the symmetry plane so that the symmetry condition imposed on the eigenvalue 
problem has little influence on the amplification rates or the mode shapes of |u’|.  Thus, the mode pairs 
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corresponding to symmetric and antisymmetric disturbances, respectively, within each mode number are essentially 
the same, with the exception of the relative phase angles between the u’ fluctuations on either side of the plane of 
symmetry. It may also be noted that, unlike in Fig. 5(a), the peak growth rates of all six mode families plotted in Fig. 
6(a) are comparable to each other.  Finally, none of the modes at X = 0.2 m display the dual peak structure seen in 
Fig. 5(a), and with the exception of modes V(S) and V(A), the peak velocity fluctuations associated with the 
unstable modes at X = 0.2 m occur within the shear layers that are located away from the surface.  Whereas modes I 
through IV reside in the primary shear layer within the cap region of the flattened mushroom structure, modes V and 
VI are concentrated within the region of secondary rollup that was discussed earlier with Figs. 2 and 3. The lower 
phase velocity of modes V (i.e., supersonic with respect to the local inviscid flow above the bulge region) is 
associated with the near-wall peak, where the base flow velocities are relatively lower.  Although not shown in this 
paper, at X ³ 0.3 m, the number of unstable modes becomes even larger and the local amplification rates of some of 
those modes is higher than those in Figs. 5(a) and 6(a).   

 
 

(a) Growth rate spectra  (b) Phase speed spectra 
Fig. 5.  Growth rate and phase speed as functions of frequency for the relevant instability modes at X = 
0.10 m.  In general, the modes are numbered in the order of increasing frequency at the peak 
amplification rate and the label inside the parentheses next to the mode number indicates whether the 
mode corresponds to a symmetric or an antisymmetric mode.  The representative mode shapes for each 
family (corresponding to the disturbance frequency indicated by the arrow) correspond to |u’|. 
 

    

  
(a) Growth rate spectra  (b) Phase speed spectra  

Fig. 6.  Growth rate and phase speed spectra for the relevant instability modes at X = 0.20 m. 
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To characterize the axial evolution of the unstable disturbances along the length of the cone, and thereby, 
establish a topological connection between the mode shapes at different axial stations, plane marching PSE [77]  
computations were performed across a range of disturbance frequencies and mode types, starting with the mode 
shapes at X locations that correspond to nearly neutral conditions.  Unlike the PNP eigenvalue analysis, the PSE 
computations incorporate all of the important nonparallel effects on the disturbance evolution within the bulge.  
However, it is important to recall that the PSE ansatz constrains those computations to tracking a single disturbance 
with a unique local wavenumber in the marching direction.  Because of the complex multimode topology of the 
unstable disturbances within the bulge region and the close proximity (and occasional crossings) of phase speeds 
between the different modes (see, for example, Fig. 6(b)), the accuracy of the PSE toward the prediction of the 
modal evolution becomes somewhat questionable.  To help reduce that uncertainty, DNS computations were 
performed for a smaller group of frequencies and mode types that were selected on the basis of the amplification 
factors predicted by the PSE computations.   

The disturbances in the DNS computations are introduced at the inflow boundary by using the mode shapes 
derived from the PSE computations for the appropriate modes.  Similar to the PSE, the computational domain for 
DNS has a limited azimuthal extent; however, the DNS domain extends on both sides of the symmetry plane so that 
the symmetry characteristics of the disturbance field are determined by the inflow mode shape alone.  The wall-
normal extent of the computational domain extends well beyond the boundary-layer region.  A typical DNS grid 
included 600 points across the streamwise domain and 301 points spanning the azimuthal extent of the computation.  
The wall-normal domain was resolved with 200 points, with clustering within the bulge region that is consistent 
with the expected mode shapes of the disturbance field.  Additional simulations were performed in one case with 
finer grids in the streamwise and azimuthal directions.  Given the focus of the DNS on validating the complex 
evolution of the disturbance field, the streamwise domain of the DNS extended from approximately X » 0.20 m, i.e., 
a short distance downstream of the range of neutral locations, up to nearly X = 0.60 m, i.e., well past the transition 
onset location measured in the experiment.     
 The PSE computations had shown that the most amplified disturbances in the bulge region have frequencies of 
around f = 150 kHz to f = 200 kHz.  Therefore, separate DNS computations focused on the linear growth of 
symmetric and antisymmetric modes, respectively, across a frequency range of f = 50 kHz to f = 300 kHz.  As 
discussed later in this section, the highest overall amplification within the bulge regions on both leeward and 
windward sides corresponds to an antisymmetric mode of instability.  An illustrative comparison of the mode shape 
evolution for the dominant antisymmetric mode at f = 200 kHz is shown in Fig. 7, wherein the PSE predictions for 
the |u’| mode shapes at selected streamwise locations are shown on the left in Fig. 7(a), whereas the results of DNS 
over a subset of the PSE domain are shown on the right in Fig. 7(b).   
   

 

  
(a) Antisymmetric mode (PSE)  (b) Antisymmetric mode (DNS) 

Fig. 7.  Mode shape evolution of the dominant antisymmetric instability mode at f = 200 kHz (leeward 
side).     
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Fig. 7(a) shows that the antisymmetric mode of interest has a single pair of peaks in the initial region of 
amplification (X = 0.1235 m) as against the dual peak structure of the most amplified Mack modes in Fig. 5(a).  The 
single near wall peak is still suggestive of an oblique Mack mode disturbance. At X = 0.15 m, the shear layer 
bounding the mushroom shaped structure has already modified the original Mack mode structure to generate an 
additional pair of peaks near the spanwise ends of the shear layer along the cap of the bulge region.  After that, the 
peak velocity fluctuations remain confined to that shear layer until X = 0.25 m.  Between X = 0.30 m and X = 0.35 
m, however, the peak shifts to a pair of vertical shear layers inside the stem region of the mushroom.  Note that there 
is an additional pair of shear layers that bounds the stem region; however, those shear layers do not exhibit the 
dominant fluctuations.  Across the entire downstream region until X = 0.6 m, the peak velocity fluctuations are 
located within the inner pair of shear layers within the stem region, with the peak location lifting up toward the 
corners between the stem region and the bottom of the mushroom cap.  The mode shape evolution within the DNS 
solution in Fig. 7(b) indicates an identical trend to that in the PSE solution.   

The axial evolution of the N-factor values (i.e., the logarithmic amplification ratios relative to the neutral station) 
for the antisymmetric modes at selected frequencies is plotted in Fig. 8, wherein the results based on both PSE and 
the DNS have been shown.  The N-factor values are based on the peak |u’| fluctuation across the cross section of the 
bulge region and the locations of rapid changes in the slopes of the N-factor curves correspond to the changes in the 
locations of peak velocity fluctuations as discussed in the preceding paragraph.  Despite the fact that the N-factor 
curves based on the infinity norm of the |u’| fluctuations present a stringent measure of comparison between the PSE 
predictions and the DNS, one observes an excellent agreement between the two sets of results, indicating the 
accuracy of the PSE to track the amplification of the bulge region instabilities over a 3D body surface.  

Although not shown, additional DNS for the dominant symmetric modes across a range of disturbance 
frequencies from f = 50 kHz up to  f = 300 kHz had indicated similarly excellent agreement with the N-factor 
predictions based on the PSE, confirming the accuracy of using the latter toward transition correlations in the 
present context.  Finally, as discussed in regard to Fig. 6(b), the bulge region instabilities may propagate at 
supersonic phase speeds with respect to the local inviscid flow and that was also found to be true in the context of 
the spatial evolution of fixed frequency disturbances.  The prevalence of supersonic speeds has not been emphasized 
in previous investigations of streak instabilities and this interesting feature should be investigated in greater detail 
during future work on the transition along the bulge region. 

 

 
Fig. 8.  Comparison of N-factor evolution for selected antisymmetric instability modes at different 
frequencies (leeward side). Lines correspond to the PSE predictions, whereas the DNS results are 

indicated via symbols of the same color.    
 

Given the relatively modest angle of incidence, the mode shape evolution along the windward side of the model 
is qualitatively analogous to that over the leeward region, with the major difference between the leeward and 
windward sides being related to the azimuthal distance between the pair of streamwise vortices that comprise the 
bulge region.  As a result, the basic state contours on the windward side indicate a highly distinct pair of bulges, one 
on each side of the plane of symmetry.  Thus, the shear layer regions at the larger values of X appear as an 
approximately t-shaped structure on the right half, combined with its mirror image in the left half of the cross 
section.  As a result of these differences in the basic state structure, the stability analysis on the winward side also 
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uncovered certain new features of the instability modes that are discussed in the more comprehensive report based 
on the current investigation.   

As described in Ref. [78], both the symmetric and the antisymmetric instability modes considered in the present 
study are able to achieve rather high values of logarithmic amplification ratio, i.e., the N-factor.  However, the 
antisymmetric modes reach somewhat larger N-factor values near X = 0.5 m (corresponding to the approximate 
transition location inferred from inflight measurements along the leeward ray, as shown in Fig. 15 from Tufts et al. 
[52]), suggesting that the antisymmetric modes are more likely to induce transition at the selected time (barring, of 
course, any major differences in the receptivity and nonlinear stages associated with these modes). Figures 9(a) and 
9(b) display the axial evolution of the N-factor associated with fixed-frequency disturbances of the antisymmetric 
disturbances on the windward and leeward sides, respectively.  In general, the instability amplification begins near X 
= 0.2 m, and N-factors values of significantly greater than 10 are reached near X = 0.5 m. In agreement with the 
flight measurements, the results indicate a comparable but somewhat delayed disturbance amplification on the 
windward side.  Although not shown herein, we note that the highest amplification ratio generally occurs not at the 
symmetry plane itself but at a pair of azimuthal locations on either side of the symmetry plane.  This finding is 
qualitatively consistent with the surface flow visualizations from ground facility experiments see, for instance, Ref. 
[41]).   
 

  
(b) Leeward side. The vertical arrow near X = 0.55 
m denotes the location corresponding to the N-
factor value based on part (b), as indicated by the 
horizontal arrow near N » 15. 

(b) Leeward side. The vertical arrow at X = 0.5 m 
denotes the transition location inferred from the 
flight data [52], whereas the horizontal arrow 
adjacent to the NE axis denotes the peak N-factor at 
that location. 

Fig. 9.  Amplification characteristics of antisymmetric modes of instabilities within the bulge region.  
Each curve in these figures denotes the N-factor evolution of a fixed frequency disturbance from a 
given family of modes.  . 

 
Figure 9(b) indicates a peak N-factor value of approximately 15 at the estimated transition location along the 

leeward ray of the HIFiRE-5b test article [52].  However, the significant uncertainty in the transition location 
derived from the sparse array of instrumentation on the flight article may be expected to be accompanied by a 
comparable uncertainty in the N-factor correlation.  In that regard, additional computations over a broader range of 
flight conditions should help provide a more robust value for the correlating N-factor.  The rapid rise in the N-factor 
envelope as a function of X implies that the sensitivity of predicted transition location to the chosen value of the 
correlating N-factor would be relatively modest, with D(X/L)/DN » 2% in Fig. 9(b).  Because of the similarity 
between the bulge region instabilities at upstream stations and the frequently encountered class of Mack mode 
instabilities, it is worthwhile to see how the above N-factor compares with the N-factor correlation for Mack mode 
transition during the HIFiRE-1 flight experiment.  For the HIFiRE-1 experiment with a circular cone at nearly zero 
degrees angle of attack, Li et al. [20] quote an N-factor correlation of 13.4 for Mack mode transition, on the basis of 
averaging the N-factor values at five separate trajectory points from the (Table 3 from Ref. [20]).  However, if one 
ignores the earliest data point (t = 19 s) from their results as an outlier by virtue of its proximity in time to the bypass 
transition at earlier times, then the correlated N-factor averaged between the time instances of t = 20, 21, and 22 s 
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becomes equal to 13.9, which is close to the abovementioned N-factor for bulge region instabilities in the present 
case. Thus, it appears that, regardless of which of the two N-factor correlations based on the HIFiRE-1 flight data is 
used, applying the HIFiRE-1criterion to the present case would have resulted in reasonable estimates of transition 
along the centerline.  On the other hand, it should also be noted that the analysis by Tufts et al. [52] for the HIFiRE-
5b flight configuration had indicated a preliminary N-Factor threshold of N = 18 for second mode transition along 
the attachment line of the HIFiRE-5b test article and N = 10 for the transition due to stationary crossflow 
instabilities over much of the acreage.   

IV. Conclusions 
This paper has extended the previous analyses of the HIFiRE-5b flight experiment by addressing the linear 

stability characteristics of the boundary layer flow within the bulge region near the planes of symmetry along the 
minor axes of the elliptic cone.  At the trajectory point corresponding to t = 514.83 seconds, the frequencies of the 
amplified disturbances are in the range of hundreds of kHz, with the most amplified instability modes near X = 0.5 
m being in the range of approximately 150-225 kHz.  An excellent agreement is found between the predictions of 
the plane marching PSE and the DNS results, demonstrating that the PSE can provide an efficient and accurate 
technique to predict the disturbance growth in hypersonic boundary layers with streak-like flow features that support 
multiple locally unstable modes. The present results also serve as an extension of similar comparisons from the 
earlier work on the amplification of secondary instabilities of stationary crossflow vortex patterns over a yawed 
circular cone to the fully 3D geometry of an elliptic cone.  An additional noteworthy finding pertains to the locally 
supersonic phase speeds of the bulge region instabilities over significant distances preceding the onset of transition.  
Furthermore, the linear stability analysis yields a peak N-factor of approximately 15 at the transition location 
estimated from the flight data along the leeward ray, which happens to be close to the N-factor value that correlates 
with Mack mode transition during the HIFiRE-1 circular cone experiment at zero degrees angle of attack. 

The analysis described in the present paper thus provides the foundation for a more comprehensive analysis 
toward the development of a N-factor correlation for the bulge region transition via similar analysis for a broader set 
of trajectory locations from the HIFiRE-5b flight experient. The results of such analysis will be reported in a future 
paper. 
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