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To meet NASA’s challenge to return humans to the Moon in 2024 and establish a 
sustainable presence in 2028 requires advances in autonomous spacecraft navigation. The Safe 
and Precise Landing Integrated Capabilities Evolution (SPLICE) project, which leverages 
previous work at NASA to develop multi-mission precision landing and hazard avoidance 
technologies, is using a multi-faceted approach to achieve the advanced landing requirements. 
In addition to increasing the technology readiness level of key sensors and developing high 
performance space computing, SPLICE uses simulations to determine navigation 
requirements and evaluate sensor performance. The effort evaluates various precision landing 
concepts of operations, not only for the lunar human and robotic missions, but also for 
potential missions to other solar system destinations. This paper summarizes the six degree-
of-freedom high fidelity simulation framework, trajectory design methodology, and sensor 
models being considered for a variety of precision lander missions. Initial results of the 
navigation sensor performance for a human Mars mission are presented. Finally, trade and 
sensitivity studies are outlined for future work to fully characterize sensor performance 
assumptions and  modifications required to achieve precision landing and hazard avoidance.   

I. Introduction 
NASA’s challenge to return humans to the Moon in 2024 and establish a sustainable presence in 2028 requires 
advances in autonomous spacecraft navigation. The Safe and Precise Landing Integrated Capabilities Evolution 
(SPLICE) project, which leverages previous work at NASA to develop multi-mission precision landing and hazard 
avoidance (PL&HA) technologies, is using a multi-faceted approach to achieve the advanced landing requirements. 
In addition to increasing the technology readiness level of key sensors and developing high performance space 
computing, SPLICE uses various simulation capabilities to determine navigation requirements and evaluate potential 
navigation sensor performance. This effort evaluates various precision landing concepts of operations, not only for 
the lunar human and robotic missions to the equator and poles of the moon, but also for potential missions to other 
solar system destinations. Other precision lander missions include both large robotic and human class missions to 
Mars, as well as robotic missions to Europa [1]. Therefore, this paper summarizes the six degree-of-freedom high 
fidelity simulation framework developed over the past two years to support multiple mission concepts. Key aspects 
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of the framework are code modularity, model input standardization, and multiple parameter guidance optimization. 
These features allow for rapid model implementation and make the simulation flexible to accommodate various 
concepts of operations. Additionally, sensor models are also parameterized to enable sensor quality evaluation. For 
example, sensor quantities like noise, bias, internal and external alignment errors, and scale factors can all be modified 
to reflect increases in quality, complexity, and cost. Using a consistent trajectory design methodology, sensor models 
can be evaluated and compared across a variety of precision lander missions. The ultimate goal of the task it to identify 
sensor or sensor suite commonalities that exist for many different concepts of operations. Those sensor suites become 
technology investment recommendations for near-term and long-term missions.  

The concept of operations considered here is the Entry, Descent and Landing (EDL) of a low lift-to-drag vehicle 
delivering 20t payload to the surface of Mars and is described in Section II. Section III describes the high-fidelity 
simulation and models specifications assumed. Initial results of the navigation sensor performance are presented in 
Section IV. Finally, in Section V, trade and sensitivity studies are outlined for future work to characterize sensor 
performance assumptions and modifications required to achieve precision landing and hazard avoidance at Mars and 
other destinations. 

II. Mission Concept of Operations and Ground Rules 
The entry vehicle considered for this study includes a 16 m diameter inflatable deployable aeroshell, or heat shield, 

attached to a common lander system. The notional human Mars mission architecture assumes that three to four landers 
are delivered to the same landing zone. Cargo elements including power, rovers, ascent vehicle, and logistics are 
delivered prior to the crew. Finally, the crew arrives in the habitat. Each lander is delivered to a parking orbit either 
by aerocapture or an in-space transfer stage. This study considers a one-sol parking orbit (33,800 km x 250 km). The 
concept of operations initiates at the apoapsis of a parking orbit where the vehicle performs an instantaneous deorbit 
burn using the reaction control system (RCS). During deorbit, the vehicle again uses RCS to reorient prior to entry 
such that it enters the atmosphere with an angle of attack of -6 deg. The vehicle flies with a lift-to-drag ratio near 0.2 
and a ballistic coefficient of 140 kg/m2. At a sensed deceleration of 0.2 Earth G’s, the vehicle activates the numerical 
predictor corrector (NPC) guidance algorithm. The NPC uses DFC to influence the flight trajectory. Trajectory control 
during entry is achieved using four aerodynamic flaps, each one rate-limited to 18°/s. These flaps are used to 
implement a direct force control (DFC). The algorithm finds the optimal flap settings to control both angle of attack 
and slide slip to minimize state errors at engine initiation by modulate angle of attack to manage downrange errors 
and angle of sideslip to manage crossrange errors. Roll control is achieved using RCS with a minimum on/off time of 
0.01 s. The guidance algorithm determines when to start eight 100 kN engines based on both inertial and relative 
sensor information so that the vehicle lands at 0 km above the reference Mars Orbiter Laser Altimeter areoid near the 
equator.  For the powered descent phase, the NPC guidance commands the throttle setting of each of the eight lander 
engines to achieve an augmented gravity turn, which allows for small changes in angle of attack (<5deg) in order to 
reach the target. The nominal powered descent trajectory is designed with the eight engines throttled at 80% to leave 
margin for differential throttling for attitude control, trajectory dispersions, increases in vehicle design mass, etc. 
Further description of guidance is given in section III.A. An image of the reference vehicle and concept of operations 
including the surface operations to stow the inflatable structure are shown in Fig. 1 [2]. The figure includes quantities 
at critical events during the nominal trajectory. This human Mars concept is one of many being considered for the 
SPLICE sensor evaluation effort [1].  

Multiple landers delivered to a single landing zone and the desire to minimize the distance to previously landed 
assets drive the precision landing requirements. Analysis has shown that the size of engine thrust, engine cant angle 
and throttle down profile being assumed for the human scale vehicle may distribute regolith up to 700 m on the surface 
Mars [3]. Therefore, a keep out zone is established that prevents any lander from landing closer than one km from a 
previously landed asset. To minimize the distance between assets then, a second requirement for human missions at 
the Moon or Mars is to land within 50 m (±3 standard deviations or 3s of a Gaussian distribution) of the landing target 
for the vehicle. These two requirements establish the precision landing criteria. Additional requirements exist to ensure 
vehicle safety, which is also referred to as hazard avoidance. The precision landing and hazard avoidance criteria 
assumptions used in this study are provided in Table 1 and include limitations on vehicle velocity and attitude and 
landing slope limitations. Actual landing criteria will be mission dependent.  

Landing criteria are not the only considerations. During entry and descent there are several other constraints on 
the trajectory for crewed or autonomous systems and sensors to operate properly. The constraints include viewing 
angles needed for sensor data acquisition, time to process data or images, as well as time to make and execute a divert 
maneuver. The constraints throughout the trajectory form an acceptable precision landing flight corridor. While 
waypoints along that corridor have been identified for lunar and Mars missions, the specific waypoint and dispersions 
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along the corridor are mission and vehicle dependent.  Sample trajectory corridor targets and elements are provided 
in Table 2.   

 

 
Fig. 1 Low L/D vehicle EDL concept of operations [2]. 

 
Table 1. Precision landing and hazard avoidance criteria. 

Parameter Value 
Position Error from target 50 m 
Horizontal Velocity < 1.0 m/s 
Vertical Velocities < 2.0 m/s 
Attitude  +/- 6 deg 
Attitude rates 2 deg/s (all axes) 

 
Table 2. Sample trajectory corridor targets, elements and considerations.  

Trajectory Target Elements Consideration 
Pre-Deorbit insertion 
burn 

Position, Velocity Number of orbits needed to obtain sufficient 
state knowledge 

Post-Deorbit insertion 
burn 

Position, velocity, attitude, attitude 
rate 

Error propagation during the coast phase can 
be minutes to hours 

Atmosphere Interface 
(Mars) 

Velocity, attitude, attitude rate, 
range to target 

Atmosphere dispersions and aerodynamic 
effects 

Powered descent 
initiation 

Altitude, velocity, attitude, attitude 
rate, range to target   

Time dependent vehicle attitude change 
before and after engine initiation 

Approach Phase Altitude, velocity, attitude, attitude 
rate, range to target, range rate 

Sensor operational constraints 

Vertical Descent Phase Altitude, velocity, attitude, attitude 
rate, range to target, range rate 

Surface plume interaction effects 

III. High Fidelity Simulation 
To date, most human Mars EDL concept studies were performed using only three degree-of-freedom (DOF) 

simulations that assumed perfect navigation [2,4]. However, characterizing sensor performance for precision landing 
requires a higher fidelity six DOF simulation capability. The requirement to evaluate many concepts of operations 
necessitated a flexible simulation framework.  The SPLICE high-fidelity simulation framework uses at its core the 
Program to Simulate Optimized Trajectories II (POST2) [5]. POST2 is an event-driven, point-mass trajectory 
simulation software with discrete parameter targeting and optimization capability. It provides multiple degrees-of-
freedom simulation and assessment of endo-and exo-atmospheric trajectories about a planetary body. POST2 has 
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served as the primary EDL simulation for several recent Mars robotic missions including Mars Science Laboratory 
and InSight and is the prime simulation for the Mars 2020 EDL mission. Therefore, the SPLICE team leverages many 
of the relative and inertial navigation sensor implementation lessons learned from robotic missions for this effort.    

Additionally, the POST2 code is modular, allowing for straight forward implementation of various vehicle 
parameters and models. The input format allows for standard vehicle parameters and trajectory way points to 
accommodate many types of concepts of operations. These features create a framework that allow for rapid model 
implementation and make the simulation flexible to accommodate various vehicles and concepts of operations. This 
section will summarize the guidance methodology for developing trajectories and will provide a detailed description 
of the navigation filter and sensor models incorporated in the simulation.  

A. Guidance Methodology 
Mars entry, descent, and landing (EDL) guidance strategies utilizing bank reversals and mass jettisons were 

successfully demonstrated during the Mars Science Laboratory mission in 2012 [6,7]. To achieve required 
performance and precision landing capabilities, future crewed Mars entry vehicles will require EDL guidance 
strategies that go beyond extensions of heritage approaches. Recent work has shown that significant improvement to 
landing performance for missions of this scale are achieved using an advanced numerical predictor-corrector guidance 
and direct force control (DFC) methods, which permit uncoupled management of parameters such as crossrange and 
downrange errors [8,9]. Therefore, the study considers an entry guidance approach for the low lift-to-drag (L/D) 
vehicle that achieves direct control of angle of attack (to control downrange) and side slip (to control crossrange). The 
method by which the vehicle achieves the control authority (e.g., using movable mass, articulating aerodynamic 
surfaces or changing the shape during flight) is not relevant to character navigation performance, but is discussed in 
detail in Ref [8]. 

B. Sensor Model Descriptions 
The sensor models incorporated in the POST2 simulations include Terrain Relative Navigation (TRN), Hazard 

Detection (HD), an Inertial Measurement Unit (IMU), star tracker, altimeter velocimeter models, Navigation Doppler 
Light Detection and Ranging (LIDAR) and a flush air data system (FADS). At this point in the simulation development 
only behavioral sensor models are included. Behavioral models capture the sensor performance and timing by adding 
random noise and bias applied to truth data. Therefore, the behavior, or sensor performance, can be modeled without 
simulating full-fidelity physics that will be performed by the sensor hardware. These models will be upgraded as 
specific hardware and instruments mature. Alternative methods to implement and use the TRN model to autonomously 
track surface features are discussed elsewhere [10]. Finally, the navigation filter that processes and manages sensor 
data and mounting alignment errors are described.  
 
The Navigation Filter: With the exception of the HD sensor, all models send data to the navigation filter. The HD 
model output is a set of safe landing sites, which are used by the guidance to target the final landing site. For sensors 
other than HD, the navigation filter blends the data from several sources to estimate the trajectory state of the 
spacecraft. A perfect navigation filter would output trajectory states equivalent to the truth states from the simulation. 
This perfect navigation filter assumption has been used in the analysis to date to gauge the performance of the 
guidance, controller, and actuators [2,4]; however, the perfect navigation assumption was initially replaced with an 
IMU-based propagation that leads to state estimates. The IMU propagated or dead-reckoned states are passed to the 
guidance, controller, and actuators. Now the navigation filter for the simulation is matured by modeling an Extended 
Kalman Filter (EKF) that blends output from various sensor types to generate the best estimate of the vehicle state 
and the state covariance matrix [11].  

 
Inertial Measurement Unit: The IMU model was developed for Autonomous Landing Hazard Avoidance Technology 
(ALHAT) project. The IMU model was implemented in the POST2 end-to-end descent and landing simulation for the 
ALHAT Project [12] and used in several other POST2 mission simulations, including the Commercial Crew Program, 
Low-Density Supersonic Decelerator (LDSD)[13], Advanced Supersonic Parachute Inflation Research Experiments 
(ASPIRE) [14] and Adaptable Deployable Entry and Placement Technology (ADEPT) [15] flight test simulations. 
The IMU sensor is modeled as a strapdown or rigidly attached IMU located at a fixed point on the spacecraft. The 
IMU is assumed, but not required, to be at the vehicle’s center of gravity.  The sensor inputs are true sensed 
accelerations and attitude rates. The sensor outputs are acceleration and body rates with errors. This sensor is 
operational through the entire flight from deorbit to touchdown and the outputs are considered valid throughout the 
flight. Sensor errors include bias, noise, scale factor, misalignment, mounting errors and quantization errors. The errors 
are parameterized to model an IMU with many types of typical errors observed in IMU hardware; these parameters 
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are listed in Table 3. A complete description of the IMU error model is provided in Ref [16]. The IMU errors in Table 
3 are based on representative existing hardware that are classified by their apparent quality; however, it is noted that 
the error quantities listed in Table 3 do not consistently change with improved quality in all parameters because some 
are based on existing hardware. 
 
Table 3. IMU sensor measurement performance quality. All values are ±3s (Gaussian).  

Error Low Medium High 
Accel random walk 105 micro-g 150 micro-g 30 micro-g 

Accel Bias (micro-g) 900 300 84 

Accel Scale Factor (ppm) 900 525 450 

Accel Non-ortho (arcsec) 20 45 17 
Gyro random walk 
(deg/sqrt(hr)) 0.21 0.018 0.015 

Gyro Bias (deg/hr) 0.3 0.15 0.036 

Gyro Scale Factor (ppm) 100 15 27 

Non-orthogonality  (arcsec) 60 75 19 

Quantization 6.104e-05 m/s, 0.000109 deg 
 
Star Tracker: A behavioral model of the star tracker is implemented in the simulation. The model is not a physics-
based model and does not take into account the ephemeris of stars and interplanetary position of the spacecraft. Rather 
the true attitude of the spacecraft between the inertial and body frame is an input into the model, and the model outputs 
attitude with noise and misalignment errors (shown in Table 4) superimposed on the input. The vehicle body frame 
has its origin at the vehicle’s center of gravity. The x-axis is directed forward 
along the longitudinal axis along the apex, or nose of the vehicle. An image of 
the body coordinate frame is shown in Fig. 2. This sensor is operated every 10 
seconds prior to atmosphere interface or powered descent initiation at bodies 
without an atmosphere. The model operation assumes a stable spacecraft 
configuration and is not used during RCS burns. Currently, fuel slosh effects 
and other vehicle vibrations are not considered in the validity model of the 
sensor.  
 
Table 4. Star Tracker sensor measurement errors. All values are ±3s (Gaussian).  

Error Low Medium High 
Boresight Noise (arcsec) 207 68.2 24 

Cross-sight Noise (arcsec) 49 8.2 3 

Internal Misalignment  12 arcsec 10 arcsec 8 arcsec 

 
Altimeter/Velocimeter: The behavioral altimeter and velocimeter models need inputs of the true altitude and planet-
relative velocity in the vehicle body frame. The model output provides altitude above the surface and planet-relative 
velocity with errors. These sensors are based on heritage hardware like that found on Mars robotic missions, such as 
Mars Pathfinder, Mars Exploration Rovers, Phoenix, Insight, and Mars Science Laboratory, and are assumed to 
operate at higher starting altitudes than the Navigational Doppler Lidar (NDL) described in the next section. The 
operational envelope for this model includes altitudes up to 20 km down through powered descent initiation (in 
vacuum or atmosphere). At lower altitudes, only the NDL will be used to obtain altitude and velocity information. 
The purpose of including these sensors is to compare the navigation knowledge available at different points in the 
trajectory to the use of ground based (Earth or destination) communication assets and higher fidelity onboard assets 
like NDL. Error sources include random noise, scale factor and bias and are similar to those provided for NDL in the 
next section.  
 
Navigational Doppler Light Detection and Ranging (LIDAR) or NDL: The NDL model implemented in the POST2 
simulation is a behavioral model with rudimentary physics of doppler shift captured to inform the validity model. The 
NDL sensor includes three laser beams. Inputs to the model include true beam slant range to the ground, vehicle 

 
Fig. 2 Body axis definition. 
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attitude rates and velocity. The simulation can calculate the true beam slant range between the vehicle and digital 
elevation map (DEM), using ray-tracing methods that have been tested using the MSL and Mars 2020 mission 
simulations [17]. The model output includes line-of-sight range and velocity from each beam with errors as well as 
parameter indicating the validity of each beam measurement. Sensor errors include random noise, bias, scale factor 
and beam to beam misalignments. Sensor errors corresponding to various performance qualities for range and velocity 
are shown in Table 5 and Table 6 respectively. The quantities apply to each of the instrument’s three beams along the 
line-of-sight (LOS). The maximum LOS velocity is 218 m/s. A low-quality measurement is characterized by the return 
of one beam, while higher quality measurements would include two beams or three beams that return data. Current 
work has not characterized packaging or placement of the NDL instrumentation within the confines of the spacecraft. 
Instead, the LIDAR is assumed to be mounted at the vehicle center of gravity and it is assumed that it can point in the 
nadir direction without obstruction from any engine effluent. Figure 3 shows the definition of slant range.  
 
Table 5. NDL Range measurement performance quality. All values are ±3s (Gaussian).  

Error Low Medium High 

Noise (m) 6.6 6.6 6.6 

Bias (cm)  60 60 60 

Scale Factor (ppm)  3.3x10-4 x Range 3.3x10-4 x Range 3.3x10-4 x Range 

Single Beam Internal Misalignment (deg) 0.05 0.05 0.05 
Beam to beam misalignment relative to 
optical bench (deg) 0.05 0.05 0.05 

Min/Max range based on surface albedo Moon:   30m to 5.5 km 10m to 6.5 km 5m to 7.5 km 

 Mars:   30m to 4.5 km 10m to 5.5 km 5m to 6.0 km 
 
Table 6. NDL Velocity measurement performance quality. All values are ±3s (Gaussian).  

Error Low Medium High 

Noise (cm/s) 5.1 5.1 5.1 

Bias (mm/s)  3 3 3 

Scale Factor (ppm) 3x10-5 x Range 3x10-5 x Range 3x10-5 x Range 

Internal Misalignment 0.05 0.05 0.05 

Min/Max range based on surface albedo Moon:   30m to 5.5 km 10m to 6.5 km 5m to 7.5 km 

 Mars:   30m to 4.5 km 10m to 5.5 km 5m to 6.0 km 
 

 
Fig. 3 Definition of slant range and slant range angle. 

 
Terrain Relative Navigation (TRN): The TRN system performs surface feature tracking using camera images to 
provide position estimates. The camera obtains a visible spectrum descent image. On board software allows for feature 
recognition and extraction. Each image is compared with a reference image for feature-landmark pairing. Finally, the 
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software algorithm makes an estimate of the vehicle position. At present, the EDL simulation uses a simplified state 
space TRN model that relies on an explicit relationship between position accuracy and hardware parameters with 
heritage from the Mars 2020 Lander Vision System. The true lander state relative to a surface frame is input to the 
model and a position estimate relative to the surface is output. The model is assumed to operate in the altitude range 
between 6 km down to 1.5 km. The camera is assumed to point nadir.  

Although current simulation results utilize a simplified TRN model, two different TRN model fidelities are 
available.  The low-fidelity mode generates a position estimate that is equal to the true position plus a bias and noise 
term. The noise term is based on a least squares error covariance of a nadir pointing single image TRN system. On the 
other hand, the mid-fidelity model contains additional fidelity in the form of an internal Extended Kalman Filter (EKF) 
which uses multiple, sequential data arrays representing artificial landmarks within the field of view of the camera to 
update the state estimate produced by the TRN system. Local perturbations, outlier errors, and map quantization errors 
are added to the landmark map. The map quantization errors model the resolution of the reference map. Since the 
feature matching is done in discrete space, the position accuracy of the reference features is limited by the resolution 
of the reference map. The position estimation is made using multiple landmarks from multiple images. Due to the use 
of an EKF, the position estimation error is correlated in time. Figure 4 shows the conceptual difference between the 
low and mid fidelity TRN models, where the C frame is the camera frame, the S frame is the North, West, Up frame 
centered at the intended landing point and the index k in Fig. 4 represents the EKF update index.  Since the model 
processes one landmark array at a time, k is also equal to the number of landmark arrays processed by the TRN system. 
Table 7 contains the TRN measurement performance quality parameters.  

 

                       
 

Fig. 4 Low (left) and Mid Fidelity (right) TRN model depictions. 
 
Table 7. TRN sensor measurement performance quality. All values are ±3s (Gaussian).  

Error Low Medium High 

Horizontal Noise Range (m) 55 to 28 40 to 20 30 to 15 

Vertical Noise Range (m) 80 to 40 50 to 25 40 to 20 

Bias (m) 50 25 5 
 

An example of the difference between the low and mid fidelity TRN, the simulation was run for each and the Root 
Sum Square (RSS) of the position error was calculated and plotted in Fig. 5 where position accuracy is shown as a 
function of lander altitude. While the low-fidelity model shows a monotonically decreasing error in position, the mid-
fidelity model captures the realism of the EKF updates where the state estimate is corrected and the increase in error 
due to propagation error in between the state update states.  Both models capture the changes in position accuracy as 
a function of lander altitude.  The right plot of Fig. 5 is the result of a 600-trial Monte Carlo simulation.  The matching 
ensemble and filter statistics indicate the mid-fidelity model is implemented correctly.  The mid-fidelity model has 
improved performance due to the use of EKF and multiple updates.  The increase in RSS bound between updates is 
due to velocity uncertainty [18]. 
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Fig. 5 Low fidelity (left) and mid (right) TRN model RSS position error bounds. 
 

Hazard Detection (HD) System: Similar to the TRN, multiple sensors and onboard processing are necessary to 
generate HD output. Like the other models described so far, the HD model is behavioral in nature. The model takes 
as input the true and estimated lander state relative to the surface that is defined by a digital elevation map (DEM). 
Unlike the other models being considered, HD is the only one that does not provide input to the navigation filter; 
instead, it outputs a list of safe landing locations from which the guidance can choose. The general process for 
determining the list of safe sites is shown in Fig. 6. A LIDAR-derived DEM that the HD hardware would produce is 
simulated based on a true DEM and the model of the flash LIDAR. Using the LIDAR-based DEM, the HD algorithm 
generates a list of safe sites that meet the criteria of the safe map. The operational envelope of this instrument is fairly 
close to the surface, at an altitude of approximately 500 m.  
 

 
Fig. 6 Process for generating the list of safe sites in the Hazard Detection model. 

 
Like the TRN, both a low and mid fidelity HD model are available in the simulation. The low fidelity behavioral 

model precomputes the safe landing locations using an independent and offline hazard detection simulation. A table 
of the safe spots for different lander sizes and DEM elevation uncertainties are supplied to the simulation. The mid-
fidelity model includes a more mature LIDAR model and a previously developed ALHAT HD algorithm. The 
algorithm generates an estimated DEM that is processed by the HD algorithm to find safe sites. The HD algorithm 
uses the LIDAR DEM, the lander geometry, slope tolerance, roughness tolerance, and the navigation uncertainty to 
predict the probability of safe landing within the mapped region at 1-m resolution. Following the construction of the 
safety map, the algorithm selects aim points for guidance by searching for the peaks on the safety map [19]. For the 
mid fidelity HD model, the LIDAR position and orientation relative to the lander body frame as well as the detector 
field-of-view affect the final LIDAR field-of-view. The true DEM map of the terrain is shown in the left of Fig. 7. 
Then the estimated lander state is used together with the LIDAR ranges obtained using ray-intercept technique to form 
an LIDAR DEM which captures a region of the true DEM map. This image is shown in the middle of Fig.7. Finally, 
the HD algorithm calculates safety probability using LIDAR DEM map and generates a safety map that contains green 
areas of safe landing zones and identifies five specific locations with the highest probability of landing safety. This 
image is shown in the right of Fig. 7. The safe landing points are not input to the navigation filter but provided to the 
guidance algorithm to select the landing site. 

 
 
 
 
 

True

DEM

Flash LIDAR

Model

LIDAR

DEM
HD Algorithm Safe Sites



9 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7 True DEM map (left); LIDAR DEM map (middle); Safety map (right). 
 

TRN and HD are designed for very different phases of the trajectory. TRN occurs higher in altitude when the 
vehicle has a large horizontal velocity. HD typically occurs when the vehicle has almost no horizontal velocity and is 
moving vertically toward the surface above the landing site. An image of the differences between TRN and HD is 
shown in Fig. 8.  Determining the capability of both sensors to take adequate measurements for a wide range of 
precision landing trajectories is a key objective of the sensor evaluation.  A summary of the next generation of hazard 
detection system development is summarized in [20]. 
 

 
Fig. 8 TRN and HD operational modes. 

 
Earth Update – Deep Space Network (DSN): Like other models, the Earth based updates sensor models are behavioral 
and do not take into account the ephemeris of the Earth or interplanetary position of the spacecraft. The model input 
includes true inertial position and the velocity of the spacecraft. Model outputs include the same quantities with errors 
associated with random noise. Table 8 shows the assumed navigation position and velocity error as the number of 
orbits and/or station data available prior to performing the deorbit burn [21]. Sensitivity studies using this model can 
influence mission architectural decisions and must be balanced with the reality of earth-based operations and multiple 
missions requiring DSN capabilities. The errors associated with DSN are characterized using the UVW frame. The 
UVW frame is defined as follows with respect to the landers inertial position (r) and velocity (v) vectors: 
 

U = r/|r|                                                                                        (1) 
W = r x v / |r x v|                                                                                (2)  

V= W x U                                                                                      (3) 
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Table 8. Earth Update – Deep Space Network performance quality. All values are ±3s (Gaussian). 

Error Low Medium High 

[U,V,W] position (km) [0.9, 30.05, 3.07] [0.15, 4.51, 0.61] [0.03, 0.26, 0.21] 

[U,V,W] velocity (m/s) [28.54, 0.85, 0.15] [4.57, 0.14, 0.03] [0.24, 0.03, 0.01] 
 
Flush Air Data System (FADS): The FADS system produces estimates of the freestream atmospheric state conditions 
by making measurements of the pressure distribution across the forebody and fitting them to a pressure model [22]. A 
FADS system was successfully flown as part of the Mars EDL Instrumentation (MEDLI) suite on the Mars Science 
Laboratory EDL mission [23] and is planned for the Mars 2020 mission. While MSL demonstrated the capability of 
the system at Mars and used the data to reconstruct the trajectory and validate models post flight, the intended use of 
a FADS system for precision landing is different. Notionally, the pressure and derived density data obtained during 
flight can be passed to the guidance and control systems to improve the knowledge state. A performance assessment 
was completed and summarized in Ref [22]. The FADS model is included as part of the SPLICE sensor suite to be 
evaluated at mission destinations with an appreciable atmosphere. Like other models being considered, the FADS 
model is a physics informed behavioral model. It uses a vehicle specific aerodynamic database derived pressure 
coefficient table that is a function of Mach number, dynamic pressure, angle of attack, sideslip angle, and instrument 
location on the forebody. The sensor input includes sensor location, true Mach number and dynamic pressure. Sensor 
errors include random noise and scale factor (see Table 9). The model outputs errors in angle of attack and sideslip. 
Due to current sensor limitations, the operational envelop includes the hypersonic to low supersonic flow regime. This 
sensor is not used for lunar applications. Even though the noise and scale factor are identical for each port, increasing 
the number of ports provides a more accurate measurement.  
 
Table 9. FADS performance quality. All values are ±3s (Gaussian).  

Error Low – 3 pressure ports Medium – 5 pressure ports High -  10 pressure ports 

Noise (Pa) 5 5 5 

Scale factor 0.5 0.5 0.5 
 
Other Models: One of the other models being considered for the sensor assessment but not yet implemented is a 
Terrain Camera, or optical navigation camera, capable of detecting and characterizing craters at higher altitudes than 
the TRN model described herein.  A second model being considered is ground beacons. These are assumed to provide 
Electra-like [24] state updates providing relative spacecraft position and velocity with respect to known preplaced 
surface assets at the mission destination. Finally, models of orbiting beacons are also being considered in the suite. 
These sensors would provide relative spacecraft position and velocity with respect to known states of the orbiting 
asset. While not currently being modeled, these sensors provide alternatives in the event that onboard sensor options 
cannot meet landing requirements.  
 
Mounting Errors: All of the errors covered to this point are internal to the respective sensors. Additional error is 
associated with the location/orientation of the sensor with respect to the navigational filter assumptions. It is noted 
that there is a physical limitation that a specific sensor cannot be mounted to better than a 0.001m error without adding 
cost to the assembly. Table 10 provides the errors in position and orientation for poor and tight mount assumed in the 
sensor assessment.  
 
Table 10. Mounting errors. All values ±3s (Gaussian). 

Error Poor Mount Medium Tight Mount 

Position (m) in [x,y,z] 0.005 0.001 0.001 

Orientation (boresight) (deg) 0.25 0.1 0.05 
 

A note regarding vehicle accommodation. The assumption is made that all sensors are located at the vehicle center 
of gravity in order to perform the initial sensor assessment. Considering the vehicle configuration shown in Fig. 2, 
that is not realistic or feasible. The first priority of the assessment is to determine which sensor combinations are 
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needed at various destinations to achieve precision landing. Future work will include vehicle specific details, account 
for displacement from the center of gravity, and assess sensor accommodation though all phases of flight, especially 
powered descent where the sensor could be obstructed by engine plume and near touchdown when the engine plumes 
interact with the surface regolith.    

IV.  Results  

 In the POST2 simulation, the EKF was activated at entry interface (EI). Also, the star tracker and DSN updates 
occur at EI. These are not realistic assumptions given that the navigation filter would be running during the parking 
orbit, deorbit, and coast to entry interface, and DSN and star tracker updates would occur prior to EI. However, it was 
sufficient to demonstrate the overall sensor suite in the simulation. The IMU was active starting at EI and operated 
through to landing. The TRN was active between altitudes of 1.5 km and 6.0 km. Several Monte Carlo simulations 
consisting of 8001 cases were run. Each Monte Carlo considered a different combination of sensor suites. A single 
random dispersed trajectory from each Monte Carlo was selected for the following analysis. 
 Figure 9 shows the navigation position error from 120 km altitude to touchdown (left) and an expanded view from 
6 km to touchdown (right) for several different simulated trajectories. The navigation position error is difference 
between the square root of the sum of the squares of x-y-z inertial navigated state and truth position. The first trajectory 
assumes only a perfect IMU (no noise, bias, scale factor, or misalignment errors) with measurement quantization is 
used as the only navigation sensor (denoted in Fig. 9 as Perfect IMU). It can be seen that even with a perfect IMU 
with quantization, the final navigation error is approximately 75 m due to continuous integration and pointing errors. 
It is noted that navigation errors depend on the length of the flight and the sensor measurement frequency, which are 
assumed to be the same in all cases presented here. Studies to evaluate optimal sensor measurement frequency are not 
included.  

The second trajectory replaces the perfect IMU with the high-quality IMU with quantization (as defined in Table 
3) (denoted in Fig. 9 as Hi IMU). In this case, the navigation error at touchdown increases only slightly, though this 
is misleading as this is a single dispersed case (Fig. 10 will present these results in a statistical sense). This highlights 
the need to have sensors that update the navigated states and complement the integrated IMU.  

 
Fig. 9 Navigation position errors with various sensor suites, one random case selected from 8001-case Monte 

Carlo runs.  

The third trajectory assumes a high-quality IMU with quantization and a high-quality TRN was run as part of the 
sensor suite (denoted Hi IMU + Hi TRN). The high-quality TRN was activated at 6 km and deactivated at 1.5 km per 
the TRN sensor specifications. In this case, the navigation error at TRN initiation immediately dropped from over 60 
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m to approximately 10 m and stayed at this magnitude until the TRN was deactivated at an altitude of 1.5 km. At this 
point, the navigation error slowly increased to 250 m at touchdown. The increase in position error after TRN is turned 
off is likely due to velocity uncertainty. These analyses did not consider a velocimeter. If velocity errors can be reduced 
through the use of a velocimeter, then the increase in position error after the TRN is turned off can also be reduced. 
Position error could also be reduced with further navigation filter tuning and additional sensors. Beyond the 
performance of individual trajectories, Fig. 10 shows the histograms for the same Monte Carlo cases. Table 11 lists 
the relevant statistics. From the plots and the table, it can be seen that the perfect IMU case has a relatively small NAV 
position error distribution, though they are biased by approximately 77 m. The high-quality IMU case has a 
significantly larger spread with a correspondingly higher mean error due to noise, bias, scale factor, and misalignment 
error propegation. Finally, it can be seen that the high-quality IMU with high-quality TRN case helps bring these 
navigation errors back down (smaller distribution), though a bias still exists. These results represent preliminary 
analyses and emphasize the need to include additional sensors updates to the navigation filter during the terminal 
phase of flight. An evaluation of the performance of all sensors presented in this paper is on-going. 

 

 
Fig. 10 Histograms, navigation position error with various sensor suites, 8001-case Monte Carlo runs.  

 
Table 11 Statistics, navigation position errors with various sensor suites, 8001-case Monte Carlo runs. 

 Mean (m) 99%-tile (m) 
Perfect IMU 76.7 81.4 
Hi IMU 161.6 410.7 
Hi IMU + Hi TRN 76.3 230.6 

 

V. Trades and Sensitivities 
Specific trades and sensitivity studies will be driven by further analysis of the Monte Carlo simulations results 

presented in Section IV. As the initial results indicated, using the high-fidelity sensors within the sensor defined 
operation limits resulted in almost 250 m position error at touch down (Fig. 9 Hi IMU + Hi TRN) and exceed the 
desired 50m position error. However, in addition to position error, other landing criteria, from Table 1 need to be 
analyzed (e.g., velocity, attitude, and attitude rates).  Likewise, prior to including hazard detection, other analyses can 
be made to fully evaluate the initial sensor set. First, efforts are needed to tune the guidance algorithm and navigation 
filter to optimize performance. Second, modifications to the trajectory geometry can be considered to improve sensor 
performance. Based on the results of the characterization of the high-quality sensor suites, follow on studies will focus 
on obtaining data earlier in the trajectory, using an altimeter and/or velocimeter at altitudes above the 6 km TRN limit 
need to be explored. Then orbiting and surface beacons can be added as needed to meet precision landing constraints. 
Extensive trades may be needed to determine the number and location of the beacons. The beacon study adds a 
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dimension to the analysis. It moves beyond vehicle specific trades into architecture level trades. Besides sensor 
performance, other metrics that impact vehicle design are of interests such as total propellant used and conditions at 
engine initiation (especially Mach and flight path angle for the human Mars trajectories).  

Once optimal and successful precision landing trajectories are identified, hazard detection can be incorporate along 
with sensor quality trades. Eventually sensor vehicle accommodation can be considered. It is noted that these trades 
are applied to a human Mars low L/D vehicle concept of operations. The POST2 simulation framework has been 
designed to be flexible to incorporate many vehicle descriptions and landing destinations. While near term work will 
focus on characterizing human lunar and Mars concepts of operations, notionally, the simulation can support precision 
landing and hazard avoidance sensor characterization for a wide range of concepts of operation and mission types, 
both robotic and human scale.  As of publication, these trades have just begun and will be the focus of follow-on 
efforts.  

VI. Conclusion 
To meet NASA’s challenge to return humans to the Moon in 2024 and establish a sustainable presence in 2028 

requires advances in autonomous spacecraft navigation. This paper summarizes the simulation framework being 
developed to evaluate the navigation sensor performance that will enable precision landing and autonomous navigation 
for a variety of concepts of operations, including human lunar missions. This paper summarized the sensor models 
currently being incorporated in the simulation and presented initial sensor suite combination results. The results will 
guide detailed trade and sensitivity analyses for precision landing in the upcoming year. While the simulation 
framework and analysis capabilities being developed to evaluate various sensor combinations and mission concepts 
will inform technology investments and mission design, the ultimate goal of the task it to identify sensor or sensor 
suite commonalities that exist across destinations and mission type. Those sensor suites become technology 
investment recommendations that will affect both near- and long-term missions. 
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