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Finding solutions to sparse linear systems of equations is an essential step in Computational
Engineering applications of interest to NASA. Linear systems of equations are composed and
solved in almost every computational engineering application. The characteristics of linear
systems vary greatly from one application to another. Accordingly, there are a wide variety of
methods for the solution of linear systems of equations. The operations and methods prepared
by the authors are focused on linear systems of interest toNASA, primarily those associatedwith
Computational Fluid Dynamics (CFD), Aeroelasticity, and Aeroacoustics. The Sparse Linear
Algebra Toolkit (SLAT) is a coordinated collection of software featuring operations, methods,
and data structures that are useful when solving sparse linear systems of equations on modern
computer architectures. The implemented operations and methods are designed and tuned
for parallelism in shared memory, in distributed memory, and across the hybrid combination
of distributed-shared memory. The toolkit includes novel methods and implementations for
modern architectures and facilitates development of new approaches for meeting NASA’s
evolving computational engineering challenges using evolving computer architectures that are
not available in vendor libraries. In this paper, significant features and interfaces within SLAT
are presented and verified for simulations performed with NASA’s CFD solver, FUN3D. The
runtime and scaling performance of the Generalized Minimum Residual (GMRES) method
implemented in SLAT is analyzed for the linear subproblems within the solution of turbulent
Navier-Stokes equations employed in the simulation of high-lift configurations. Prior to this
work, the SPARSKITGMRES implementation was the only Krylov subspace method available
within FUN3D. A strong scaling study shows the SLAT GMRES implementation facilitates
accurate Reynolds-averaged Navier-Stokes CFD solutions between 15% and 56% faster than
the SPARSKIT GMRES implementation.

I. Introduction
The scalability of a Computational Fluid Dynamics (CFD) method on modern computer systems directly impacts its

efficacy as a tool for engineering design and optimization. A CFD method’s ability to scale is most often viewed in
light of two distinct goals, 1) "Strong scaling": produce a converged solution in the least wall clock time possible 2)
"Weak scaling": produce higher fidelity results in the same amount of wall clock while maintaining a constant ratio of
simulation work required to computational units utilized [1, 2]. Quick turnaround times are achieved by strong scaling
when a fixed workload is divided into numerous small tasks executed in parallel. Strong scaling usually applies only
over some finite range of utilized computational units (CPUs or GPUs) and breaks down when this number of units
becomes excessively large because of Amdahl’s Law and/or the overhead of parallel communication. Large capability
runs are typically achieved via weak scaling, by completing more tasks of fixed size in the same length of wall time,
rather than a fixed workload in less time.

The parallelization approach applied to an existing CFD method has a significant influence on its runtime and
scalability. Generally, a parallelization approach consists of a subdivision of work among a pool of computational
resources and a communication pattern that respects the constraints of the algorithms utilized. Partitioning, the
subdivision of a CFD problem’s spatial domain into parts for parallel processing, has significant influence on the
performance and scalability of a CFD method [3]. The spatial domains considered in this work are described by
unstructured meshes of elements where conservation laws are applied. An effective partitioning of a CFD problem
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divides the domain so that the workload is balanced and efficient communication patterns occur among computational
units. On recent and current computational hardware, the movement of data in memory and over interconnections
between computational units requires far more time than a floating point calculation [4]. Tuning a CFD method for
efficient memory use and communication traffic is critical to achieving high performance [5]. Tuning a CFD method to
effectively utilize heterogeneous hardware encompasses the considerations of partitioning and memory management
with the additional concern of unequal computational units [6].

The algorithms utilized within a CFD method can constrain scalability with inherently sequential steps and high
computational costs [7]. Frequently, and in this work, the solution of a nonlinear CFD problem also requires the solution
of linearized systems of equations. The formation of the linearized system of equations is a nontrivial task that is
linked to the chosen discretization [8]. Commonly, the linearized system is represented by a matrix equation, Ax = b,
where a sparse coefficient matrix, A, and a right-hand side nonlinear residual vector, b, constitute the interactions
between the solution update, x, the problem definition, and the current nonlinear solution. The solution of these
linear subsystems during each nonlinear iteration of a CFD solver can account for more than 50% of the wall-time to
solution (see details in Sec. V). Effective methods for the solution of a CFD solver’s linear subsystems are vital to the
solution of forward problems for analysis and to adjoint problems for mesh adaptation and design [9]. Krylov subspace
methods are potent tools for asymmetric linear systems that can arise in CFD problems [10, 11]. These methods involve
iteratively orthonormalizing trial solution vectors, commonly called search vectors, to minimize the linear residual.
Preconditioning the matrix equation with an approximation of the inverse coefficient matrix, A−1, can reduce the number
of linear search directions required [12, 13]. Incomplete Lower Upper (ILU) factorizations developed by discarding
some or all of the fill-in entries developed during the Gaussian Elimination of the sparse matrix, A, are prevalently used
as preconditioners to Krylov subspace methods [14].

A set of tools are required to develop efficient linear algebra operations that meet the evolving needs of NASA
projects. The challenges to software development posed by emerging computer architectures must be addressed in the
design of the tool set. Existing linear algebra packages and vendor libraries strive to be general purpose and are not
focused on the antisymmetric sparse linear systems that arise in CFD, Aeroelasticity, or Aeroacoustics. SPARSKIT [15],
MAGMA [16, 17], PETSc [18], MKL 2019 [19], and CUDA10.2.89 [20], are well regarded numeric packages and their
sparse linear algebra capabilities are widely used in scientific applications. However, these packages each target one
or two computer architectures and do not have compatible software interfaces. In addition, there is limited support
for multiple data types beyond real- and complex-value types. This serves as an impediment to the development and
validation of the computational components that rely on gradient computations based on additional data types. As a
result, none of these packages currently have all of the capabilities necessary to address the known priorities for NASA
projects. Developing a toolkit in-house offers the opportunity to create coordinated components that deliver value for
applications of interest. NASA has clear distribution rights to software toolkits developed in-house. Also, distributing
a sparse linear algebra toolkit with NASA tool suites avoids a third-party dependency that customers would have to
satisfy before obtaining engineering insights. SLAT is being introduced to address this evolving landscape of simulation
fidelity demands and computational architectures. In Section II, the context and motivation for this work is described in
an overview of a CFD solver’s methods. The implementations of key methods are discussed in Section III. General and
extensible interfaces to these implementations are presented in Section IV. Results obtained using SLAT are discussed
in Section V. A code sample depicting use of SLAT’s interfaces is presented in Section VI. This paper concludes with a
summarization of the enabling capabilities within SLAT in Section VII.

II. CFD Solver Overview
In this work FUN3D-SFE is utilized as a representative CFD solver to explore the demands placed upon a linear

solver. FUN3D-SFE is a continuous finite-element discretization within FUN3D [8]. The discretization is based on
a stabilized finite-element approach that includes the Streamlined Upwind Petrov-Galerkin (SUPG) scheme [21, 22],
Galerkin least squares [23], and variational multiscale methods [24]. In the results shown here, only the SUPG scheme
is considered.

For turbulent flows, the Negative Spalart-Allmaras One-Equation Model (SA-neg) turbulence model [25] is tightly
coupled with the flow equations, yielding a nonlinear algebraic system of equations with six variables at each mesh
point. A linear nodal basis is used in this study, which is designed to be second-order accurate in space. The current
implementation includes capabilities for computing on tetrahedra, hexahedra, pyramids, and prisms, although all the
results shown in the present paper are for pure tetrahedral mesh construction.

FUN3D-SFE is used to perform forward CFD analysis, sensitivity analysis, adjoint analysis [26], and linearized
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frequency-domain analysis [27]. Forward CFD analysis and adjoint problems use real-values, typically in double (64
bit) precision, to represent the domain, initial conditions, and solution [8]. Sensitivity analysis problems use double
precision complex or surreal values to perform algorithmic differentiation [28]. Linearized frequency-domain analysis
problems use double precision complex data to perform traditional complex arithmetic [27]. Accordingly, a linear solver
for computational aerodynamics needs to support these data types and modes of operation.

A. Solving the nonlinear system
To advance the solution toward a steady state, the density, velocities, temperature, and the turbulence working

variable are updated in a tightly-coupled Newton-type solver described in Ref. [8]. Here, an initial update to the
flow variables is computed using a locally varying pseudotime-step parameter that is later multiplied by the current
Courant–Friedrichs–Lewy (CFL) number. The CFL number is adjusted during the iterative process. The initial update,
∆Q, is the solution to a linearization of the nonlinear state that consists of the Jacobian matrix, ∂R/∂Q and residual, ∂R
as shown in Eq. 1:

∂R
∂Q
∆Q = −∂R . (1)

Using the full update of the variables, the L2 norm of the nonlinear residual is compared to its value at the beginning of
the iteration. If the L2 norm after the update is less than one half of the original value, the CFL number is increased and
the iterative process continues to the next iterative cycle. If the L2 reduction target for the residual is not met, a line
search is conducted to determine an appropriate relaxation factor. Here, the L2 norm of the residual is determined at
four locations along the search direction and the optimal relaxation factor is determined by locating the minimum of a
cubic polynomial curve fit through the samples. If the optimally relaxed update satisfies the residual reduction target
then the solution is updated using the relaxation factor and the CFL number is maintained for the next iteration. If the
optimal relaxation factor is small or if the relaxed update does not satisfy the minimum residual reduction target, then
the solution is not updated and the CFL number is reduced by a factor of 10.

B. Solving linear subsystems
During each iteration of the nonlinear solver, the linear system is solved using a preconditioned Krylov method.

Typically, the GeneralizedMinimal Residual (GMRES) [10] method is used with a preconditioner based on an Incomplete
Lower Upper (ILU) decomposition [11]. A Krylov subspace of dimension 300 with one possible restart is usually
employed.

Within GMRES, an Arnoldi process is utilized to orthonormalize search vectors with the goal of efficiently traversing
the solution space (a Krylov subspace) toward a vector that satisfies the residual tolerance. Two orthonormalization
methods, Modified Gram-Schmidt [11] and Householder Transformation Arnoldi [29–31] processes, are utilized and
compared in this work.

Generally, preconditioning is a way of transforming a difficult problem into one that is easier to solve. More
precisely, preconditioning attempts to improve the spectral properties of the coefficient matrix. SLAT enables left-,
right- or both-side-preconditioning. Right-preconditioning was performed to produce the results presented in this
work. Right-preconditioning refers to right-multiplying the system of equations by a preconditioning matrix, M−1, that
approximates the inverse of a matrix, denoted A for generality,

AM−1y = b, x = M−1y . (2)

In forward CFD analysis, A is the Jacobian matrix, ∂R/∂Q, y is the update to the nonlinear system, ∆Q, b is the residual
−∂R and Eq. 2 represents Eq. 1 with right-preconditioning.

For Symmetric Positive Definite (SPD) problems, the rate of convergence of the conjugate gradient method depends
on the distribution of the eigenvalues of A. It is likely that the transformed (preconditioned) matrix, AM−1, will have a
smaller spectral condition number, and/or eigenvalues clustered around 1. For the asymmetric matrices considered
in this work, the eigenvalues may not be predictive of how well GMRES converges [11, 32]. However, a clustered
spectrum (away from 0) often results in rapid convergence, particularly when the preconditioned matrix is close to
normal [12, 14]. In this paper, two techniques for generating and applying preconditioners are discussed.
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III. Implementations
The implementations introduced in this work highlight significant features and toolkit design considerations required

to support CFD, Aeroelastic, and Aeroacoustic applications of interest to NASA. Capabilities not available in existing
linear algebra packages and vendor libraries are noted.

A. Data types

1. Real
Standard real-valued operations on scalar numbers, x ∈ R, are appropriately implemented within the standard

libraries of compilers prevalently utilized in HPC [20, 33, 34]. No alteration of scalar operations is required to manipulate
real-valued vectors of the vector space X = Rn. Forward analysis and adjoint problems pose no additional requirements
on the data types or operations of a linear solver.

2. Complex-step
The complex-step approach [28] uses complex variables to aid in the determination of discretely consistent derivatives.

This approach is similar to that obtained using either finite differences or automatic differentiation. However, unlike
real-valued finite differences, the present approach is not subject to subtractive cancellation errors.

The central idea is to represent a real-valued variable and its real-valued derivative throughout operations as the real
and imaginary components of a complex number, respectively, z ∈ R2. For example, to calculate the sensitivity, df /dx1,
of a multiplication operation, f = x1x2, using the complex-step method a small imaginary perturbation, h1 is applied as
shown in Eq. 3. The magnitude of the imaginary perturbation should be chosen small enough so that the accumulation
of products of imaginary values will not influence the real-valued solution.

h1 = 1.0e − 30
h2 = 0
z1 = x1 + ih1

z2 = x2 + ih2

f = z1z2

f = (x1 + ih1) (x2 + ih2)

f = x1x2 − h1h2 + i (x1h2 + x2h1)

df /dx1 = Im( f )/h1

df /x1 = (x1h2 + x2h1) /h1 . (3)

It is noteworthy that the real portion of the complex-step multiplication operation, x1x2 − h1h2, differs from the
real-valued operation, x1x2, by the product of the perturbations, h1h2, which in this example is conveniently 0. In
practical use cases where perturbations are applied to more than one variable, the real portion of the result of a
multiplication operation may be influenced by the product of accumulated perturbations. There are several operations
where standard complex arithmetic will not produce the desired propagation of a value and derivative pair. One such
operation that is frequently used within a linear solver, absolute value, abs, is detailed in Table 1.

Table 1 Possible implementations of the absolute value of a complex number.

abs (z) = abs (x + ih)
Complex-valued Complex-step

abs(z) =
√

x2 + h2 abs(z) =

{
x + ih , x >= 0
−x − ih , x < 0

For more details on the use of the complex-step method in CFD applications, interested readers are directed to the
thorough discussions in Refs. [28, 35–37]. Complex-step operations are not natively supported in MKL 2019 [19],
CUDA10.2.89 [20], SPARSKIT [15], MAGMA [16, 17], and PETSc [18].
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3. Surreal
The surreal approach defines a data type of the same name to represent a value and derivative pair instead of

repurposing a complex number for the task as the complex-step approach does [38]. By defining a separate data type
with bespoke operators for algorithmic differentiation, errors and complications arising from inadvertent use of standard
complex arithmetic operations can be avoided [35]. The sensitivity, df /dx1, of a multiplication operation, f = x1x2,
with respect to x1 can be directly calculated using surreals without any unintended interaction between the derivative
and the value as shown in Listing 1.

Listing 1 Surreal multiplication implementation snippet.

class surreal : public std::complex<double> {
public:
inline void val(const double& a) {std::complex<double >::real(a);}
inline void deriv(const double& b) {std::complex<double >::imag(b);}
inline void val(const double& a) {std::complex<double >::real(a);}
inline void deriv(const double& b) {std::complex<double >::imag(b);}
inline surreal operator*(const surreal&) const;

};

inline surreal surreal::operator*(const surreal& z) const
{
return surreal(val()*z.val(),val()*z.deriv()+z.val()*deriv());

}

The approach of defining a custom data type and operations for a value and derivative pair can be extended to store
a value and multiple partial derivatives [39]. This approach is potent for partial derivatives because it enables rapid
implementation and exploration of models and algorithms for CFD solvers [8]. Surreal datatypes are not supported in
MKL 2019 [19], CUDA10.2.89 [20], SPARSKIT [15], MAGMA [16, 17], and PETSc [18].

4. Complex-valued
The core algorithms of a linear solver are built upon mathematical vector operations such as dot (inner) products,

vector norms, and Givens rotations. While standard complex-valued operations on scalar complex numbers, z ∈ C,
are appropriately implemented within the standard libraries of compilers prevalently utilized in HPC [20, 33, 34].
Operations on mathematical vectors of complex numbers are not appropriately implemented in standard compiler
libraries because these libraries do not contain data structures or operations that represent mathematical vectors.

In the complex-valued vector space X ∈ Cn, a "canonical" inner product is the Euclidean inner product. The
Euclidian inner product of two vectors, x = (xj)j=1,...,n and (yj)j=1,...,n of Cn is defined by

(x, y) =
n∑
j=1

xj ȳj , (4)

in which the over-bar denotes elementwise complex conjugation, yj = (a + ib)j ; ȳj = (a − ib)j [11].
The Euclidean norm of a complex vector, x is defined by

| |x | |2 = (x, x)1/2 =

√√√ n∑
j=1

xj x̄j =

√√√ n∑
j=1

a2
j + b2

j . (5)

Givens rotations are a practical means of solving least-squares problems that require a slight but significant alteration
for complex-valued problems [11]. The sine and cosine for the Complex Givens rotation matrix for step j are given by:

sj =
hj+1, j√

|h(j−1)
j j |

2 + h2
j+1, j

, cj =
h(j−1)
j, j√

|h(j−1)
j j |

2 + h2
j+1, j

, (6)
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with, |cj |2 + |sj |2 = 1. The Complex Givens rotations are defined as

Ωj =

©«

1
. . .

1
c̄j s̄j
−sj cj

1
. . .

1

ª®®®®®®®®®®®®®®®®¬

← row j
← row j + 1

. (7)

The sine and cosine values defined by Eq. 6 can be stored in arrays because the conjugated terms in Eq. 7 are only
needed during the application of Givens rotations for each step.

B. Reordering
Reordering the rows and columns of a matrix can often make its LU or QR factors sparser, thus saving storage space

and memory access costs, and influencing the stability of the factorizations. Reordering a matrix can also reduce its
bandwidth, thus coalescing the indirect accesses to a vector during matrix-vector product operation. The Cuthill-McKee
(CMK) [40] reordering algorithm, which seeks to minimize the band-width of a matrix, is implemented within SLAT. A
Min-Max Independent Set Coloring (MMISC) algorithm developed for this work and ongoing research efforts [41] are
implemented within SLAT. The MMISC algorithm is developed from Luby’s Algorithm [42], which forms maximal
independent sets of nodes in a graph. Maximal independent sets are groups of nodes within a graph that are not directly
connected to nodes within the group. Restated, a node in a maximal independent set do not share edges with any other
nodes in the set. In Luby’s algorithm, a random number, r, is assigned to each node prior to parallel graph traversal.
Then during parallel graph traversal, an independent set is formed by selecting nodes that have maximum value of r
among neighbors. The set can then be made maximal by iterating on remaining nodes until no more can be added to a
set.

The Min-Max variant implemented in SLAT, forms two independent sets during each graph traversal by adding
nodes with maximum values of r among neighbors to one set and nodes with minimal r values to another. Forming two
sets during each traversal improves the runtime by more than 40% because the indirect memory access of the sparse
matrix structure dominates the computational cost. For the unstructured 3D CFD meshes examined in this work, the
Min-Max variant produces larger and more balanced sets, using fewer total colors to cover a graph, than greedy coloring
algorithms and Luby’s algorithm. The colors produced by MMISC can be used to reorder a matrix to facilitate parallel
operations on each independent set. Reordering operations are not supported in MAGMA [16, 17]. A limited selection
of "black-box" reordering operations are available in MKL 2019 [19], CUDA 10.2.89 [20]. The source code of a limited
selection of reordering operations is accessible in SPARSKIT [15] and PETSc [18].

C. Preconditioners

1. Incomplete Fill-in
The sparse n × n matrices of unstructured 3D CFD problems typically contain significantly less than 5% of the total

possible entries. A full LU factorization of a large sparse matrix with 5% occupancy results in a dense matrix that
requires 20× more storage and memory access than the original matrix. It is often impractical to compute and store a
full LU factorization. Incomplete LU can be performed with no fill-in, that is with only entries, (i, j), that are a part
of the sparsity pattern, S, of the original matrix A. This is termed a fill-level of 0 and denoted as ILU(0). One potent
strategy for controlling fill-in is to use a factor, k, to limit the level of fill-in entries added to the sparsity pattern, Ŝ, of
the LU factorization. The level of a candidate fill-in entry is determined by the access pattern that would occur during
the numeric phase of the ILU factorization to operate on the entry,

level(i, j) =

{
0 , i f (i, j) ∈ S
min1≤h<min(i, j)level(i, h) + level(h, j) + 1 , otherwise

. (8)
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The incomplete factorizations available in MKL 2019 [19] and CUDA 10.2.89 [20] do not include capabilities to
introduce fill-ins.

2. ILU(k)
A classic preconditioner to GMRES is the Incomplete Lower Upper (ILU) factorization generated from the sequential

Gaussian Elimination (GE) algorithm (see Algorithm 1) [11, 43, 44]. In this algorithm, a single thread of execution
updates each nq × nq block of A in series. The procedure begins with A11 then sequentially updates all blocks in the
second row of the sparsity pattern S. This algorithm then updates the third row from A2,min(j) ∈ S to A2,max(j) ∈ S.
The sequential access pattern of the GE algorithm results in the update of an arbitrary block Akl reading the block
elements of the k th row, Ak j , ( j < min(k, l)) ∈ S, and the lth column, Ail , (i < min(k, l)) ∈ S, that have already been
updated. In Algorithm 1, the factorization is formed in place (the elements of A are replaced with the elements of the
factors) with L being a strictly lower triangular block matrix; the identity block matrices on the main diagonal are
omitted in favor of the factored values of U, which is an upper triangular matrix. Note, zero-based indices are employed
throughout the Algorithm pseudocodes.

Algorithm 1 Block ILU Factorization [43, 45].
1 f o r i = 1 t o n do
2 f o r k = 0 t o i − 1 and (i, k) ∈ S do
3 Aik = Aik /Akk

4 f o r j = k + 1 t o n and (i, j) ∈ S do
5 Ai j = Ai j − Aik Ak j

6 end
7 end
8 end

Gaussian Elimination is a sequential algorithm. When applied to block sparse matrices, it is commonly referred to
as Block Incomplete Lower Upper (BILU) factorization. There is a loop-carry dependency between each of the loops
over rows, i, and the columns (indices j and k). This efficient access pattern results in an effective preconditioner.
However, parallelizing Gaussian Elimination relies solely on domain decomposition via partitioning. Because only one
thread of execution is possible within the Gaussian Elimination algorithm, each partition is assigned one computational
unit. Communication between partitions is conducted with MPI [46]. Only scalar implementations of ILU factorization
and application are available in MKL 2019 [19], CUDA 10.2.89 [20], and MAGMA [16, 17]. Scalar implementations
of ILU factorization and application routines require 36× more indirect memory accesses for 3D turbulent simulations.

3. Level Scheduled ILU(k)
An alternative approach is to expose parallelism in the Gaussian Elimination method by detecting the specific

dependencies between rows of the A matrix. An A matrix represents a mesh partition where the ith row in the matrix
represents the ith mesh point in the partition, and an entry in that row, Ai j , represents a connection between mesh points
i and j. This is how the adjacency graph of a mesh partition is encoded into its A matrix. Determining dependencies
within a directed graph is a fundamental problem in the field of graph theory known as topological sorting. The general
topological sorting problem has multiple variants and algorithmic solutions [47]. These variants all produce groups of
mesh points, called level sets, which are ordered from a starting mesh point, called the root mesh point. Mesh points
within a level set are not dependent on each other and only depend on mesh points in preceding level sets. The process
to construct level sets of mesh points that may be factored in parallel is shown in pseudocode in Algorithm 2. The
implementation is developed from fundamental discussions of graph sorting in [47, 48]. Algorithm 2 differs from
general topological sorting routines in the following ways: 1) the graph is symmetric (no constraints are placed on
symmetry of values in the matrix), 2) the graph’s adjacency is represented in the three array variant of Compressed
Sparse Row storage (CSR) [19], 3) the root mesh point is mesh point 0, row 0 in Compressed Sparse Row storage, and
4) all mesh points will be sorted.

The level sets formed by Algorithm 2 are stored, used for the generation of a Level Scheduled Block Incomplete LU
(LSBILU) Factorization as shown in Algorithm 3, and reused for the application of the factorization. In practice, it is
efficient to store the level sets in a static structure like CSR rather than to traverse a dynamic structure during each
application of the LSBILU preconditioner.

7



Algorithm 2 Topological Sort of Compressed Sparse Row Adjacency.
1 / / I n i t i a l i z e work a r r a y s
2 d i a g i d x [n] = e x t r a c t _m a j o r _ d i a g o n a l ( row[n + 1] , c o l [nnz] ) ;
3 dep th [n] = {0} ;
4 row_max_depth = 0 ;
5 s t d : : v e c t o r < i n t > emptyLevel ;
6 s t d : : v e c t o r < s t d : : v e c t o r < i n t > > l e v e l ;
7
8 / / Form l e v e l s e t s
9 f o r ( i = 0 ; i < n ; + + i ) {
10 row_max_depth = 0 ;
11 f o r ( j =row[i] ; j <= d i a g i d x [i] ; + + j ) {
12 row_max_depth = MAX( row_max_depth , dep th [ c o l [j] ] ) ;
13 }
14 dep th [i] = 1 + row_max_depth ;
15 i f ( l e v e l . s i z e ( ) < dep th [i] ) {
16 l e v e l . push_back ( emptyLevel ) ;
17 }
18 l e v e l [ dep th [i] − 1 ] . push_back ( i ) ;
19 }

Algorithm 3 Level Scheduled Block Incomplete LU Factorization.
1 / / I n i t i a l i z e unknowns o f t h e f u s e d LUi j ma t r i x t o v a l u e s o f Ai j

2 f o r ( i n t l = 0 ; l < l e v e l . s i z e ( ) ; + + l ) {
3 p a r a l l e l f o r ( ln = 0 ; ln < l e v e l [l] . s i z e ( ) ; + + ln ) {
4 i = l e v e l [l][ln] ;
5 f o r k = 1 t o i − 1 and (i, k) ∈ S do
6 LUik = LUik/LUkk

7 f o r j = k + 1 t o n and (i, j) ∈ S do
8 LUi j = LUi j − LUikLUk j

9 end
10 end
11 }
12 }

LSBILU produces a preconditioner that is equivalent to the BILU preconditioner if operations are performed with
infinite precision. OpenMP is utilized to orchestrate CPU cores in shared memory [33]. This topological parallelization
approach enables an amount of concurrency that is specific to a mesh, the partition sizes created, and the reordering
applied. For the sparse matrices considered in this work, the average number of independent mesh points in a level set is
less than 15 when reordered with CMK. When reordered with MMIS, the average number of independent mesh points
in a level set is less than 25. This suggests an upper limit to the speed up derived from this topological parallelization.
Parallel implementations of ILU are not available in MKL 2019 [19], CUDA10.2.89 [20], SPARSKIT [15], or PETSc
[18].

D. Linear solvers

1. Modified Gram-Schmidt
The Gram-Schmidt (GS) Arnoldi process is a method for orthonormalising a set of vectors in an inner product

space, most commonly the Euclidean space, Rn, equipped with the standard inner product [11]. In this notation, n is the
number of linearly independent equations in the linear system; the number of rows and the number of columns of the A
matrix. The GS process takes a finite, linearly independent set of vectors, V = v1, ..., vk for k ≤ n, and generates an
orthogonal set V ′ = u1, ..., uk that spans the same k-dimensional subspace of Rn as V [43]. The application of the GS
process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an
orthogonal matrix and a triangular matrix). When the GS process, is implemented on a computer, the vectors uk are
often not quite orthogonal, due to rounding errors. For the GS process, this loss of orthogonality is particularly bad;
therefore, it is said that the (classical) Gram–Schmidt process is numerically unstable [11]. The Gram–Schmidt process
can be stabilized by a small modification; this version is sometimes referred to as modified Gram-Schmidt (MGS). The
modification is to orthonormalize against any errors introduced in computation of a previous vector, u(i−1)

k
rather than

only orthonormalising against the previous vectors. This approach gives the same result as the original formula in exact
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arithmetic and introduces smaller errors in finite-precision arithmetic [43]. The projection operator defined by MGS is

proju (v) =
〈u, v〉
〈u, u〉

u , (9)

which is visualized in Figure 1.

Fig. 1 The first two steps of the Modified Gram–Schmidt process [49].

Even the MGS Arnoldi process can introduce significant error if the vectors on which it operates are not sufficiently
independent. The performance of an Arnoldi process can be measured by monitoring the errors in orthogonality between
the vectors spanning the subspace. The orthogonality errors between a set of vectors, (v1, ..., vm), can be calculated as
follows: Let V = (v1, ..., vm) be an n×m matrix of column vectors which are to be orthonormalized. Let Q = (q1, ..., qm)
be the computed result of applying an Arnoldi process to the columns of V . Then the orthogonality error matrix, E , is
defined as

E = QTQ − I . (10)

In exact arithmatic, E , would be the zero matrix. When using floating point arithmetic with unit rounding error u,
Bjorck [50] shows that the orthogonality error, | |E | |Frobenius , scales as

| |EMGS | |Frobenius ≈ uk2(V) , (11)

where k2(V) is the condition number of V .

Algorithm 4 Modified Gram-Schmidt Arnoldi [11, 51].
1 / / Choose a v e c t o r v1 wi t h | |v1 | |2 = 1
2 f o r j = 1, 2, ...,m do
3 / / Compute an or t honorma l v e c t o r wj

4 wj := Avj
5 n1 = | |wj | |2
6 f o r i = 1, 2, ..., j do
7 hi j = wT

j vj

8 wj := wj − hi jvi
9 end
10 h j+1 = | |wj | |2
11 / / Check f o r l o s s o f o r t h o g o n a l i t y
12 n2 = h j+1
13 n3 = (n1 + 10−6 ∗ n2) − n1
14 i f n3 < ε t h en
15 f o r i = 1, 2, ..., j do
16 n1 = wT

j vj

17 hi j = hi j + n1
18 wj := wj − n1vi
19 end
20 h j+1 = | |wj | |2
21 end
22 / / Compute a new Arno l d i v e c t o r vj+1
23 vj+1 = wj/h j+1, j
24 end
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2. Householder Transformation
An alternative orthonormalization procedure based on the use of Householder transformations is shown by Walker

[29] to be reliable even if the vectors to be orthonormalized are not very independent. A Householder transformation is
a linear transformation given by the matrix, P,

P = I − 2v̂v̂T

where I is the identity matrix and v̂ is a unit vector. Px is the reflection of x about the hyperplane passing through the
origin with normal vector, v̂.

Px = (I − 2v̂v̂T )x
= x − 2v̂v̂T x

Since v̂v̂T x is the projection of x onto v̂, then Px reflects x about the hyperplane with normal, v̂ as shown in Figure 2
[52]. To orthonormalize the columns of V = (v1, ..., vm), one determines Householder transformations P1, ..., Pm such

Fig. 2 Diagram representing the Householder transformation.

that Pm...P1V = R, is an upper-triangular matrix. It is natural to determine P1, ..., Pm inductively by the requirement
that Pk ...P(v, ..., vk) be upper-triangular for k = 1, ...,m if Pm...P1V = R. This requirement is met if and only if for
k = 2, ...,m the first k − 1 components of the Householder vector determining Pk are zero. This process is described
in Algorithm 5. Since V = P1...PmR, the matrix Q consisting of the first m columns of P1...Pm gives the desired
orthonormalization of the columns of V . If Q is computed in floating point arithmetic with unit rounding error u, then
Bjorck [50] shows that the orthogonality error scales as

| |EHouseholder | |Frobenius ≈ u . (12)

Comparing Figures 1 and 2 provides a visual sense of the difference between the projections within MGS and the
reflections within a Householder Transformation Arnoldi process and an indication of how orthogonality errors differ
between the approaches.

Algorithm 5 Householder Transformation Arnoldi [11, 29–31].
1 / / Choose a v e c t o r v1 wi t h | |v1 | |2 = 1
2 f o r j = 1, 2, ...,m + 1 do
3 / / Compute t h e Househo lder u n i t v e c t o r wj such t h a t
4 (wj )i = 0, i = 1, ..., j − 1, and
5 (Pjvj )i = 0, i = j + 1, ..., n, where Pj = I − 2wjw

T
j

6 h j−1 = Pjvj
7 vj = P1P2...Pje j
8 i f j ≤ m
9 / / Compute a new Arno l d i v e c t o r vj+1
10 vj+1 := PjPj−1...P1Avj
11 end
12 end
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The linear systems considered in this work indicate that the Householder Transformation Arnoldi implementation
developed by Walker [29] has better numerical properties than the modified Gram-Schmidt implementation, especially
in the final GMRES iterations when the residual is reduced below single precision, 10−8. Walker’s Householder
implementation uses slightly less storage than the Gram-Schmidt implementation; however, it requires additional
arithmetic. The increase in arithmetic is always less than a factor of three per search direction [29]. There are linear
systems where the reduced orthogonality error produced by the Householder Arnoldi process enables an approximate
solution to be found in significantly fewer search directions than required when orthonormalization is performed
using MGS [53]. Since the arithmetic cost of an approximate solution obtained by GMRES is proportional to the
number of search directions required to meet the residual tolerance, the Householder Transformation Arnoldi process is
more efficient than MGS for linear systems sensitive to orthogonality error. Orthonormalization by the Householder
Transformation Arnoldi process is not available in MKL 2019 [19], CUDA10.2.89 [20], SPARSKIT [15], MAGMA
[16, 17], or PETSc [18].

3. Flexible GMRES
The flexible GMRES (FGMRES) variant of the GMRES method with right preconditioning allows variable

preconditioning of each search vector. In this work, a single preconditioner is applied throughout the search for an
approximate solution to a linear system. The flexible implementation is utilized as a building block for ongoing
explorations of guided preconditioning during the search for an approximate solution. The only difference between
FGMRES and the standard GMRES using MGS is that the preconditioned vectors, zj , are saved and used to update the
approximate solution. It should be noted that when the preconditioner is constant throughout (Mj = M for j = 1, ...,m)
then the new method is mathematically equivalent to the standard GMRES using MGS with right preconditioning [54].

IV. Interfaces
The interfaces introduced in the work are part of a broader effort to define interfaces for computational engineering

components [55, 56]. The "tinf_" prefix of function names provides disambiguation and signifies the goal of supporting
interoperable components by providing generic interfaces that are extensible beyond the "time t + 1" problem solution
to represent the "time t +∞" solution. Inspired by Buzz Lightyear [57], the design is extensible "to infinity and beyond".
The common thread of this effort is the management of an individual component state in an opaque object pointer, or
handle. The pointer is created by the interface implementation and subsequently supplied to functions that perform
a desired action. The pointer is opaque and cannot be interpreted outside the component implementation but allows
multiple instantiations of a given component, each with independent state.

Again, the broader effort is detailed in Ref. [56], but of interest here is the parallel communications component. This
component will be exchanged with SLAT to enable the interaction of partitioned data. The communications component
is referred to as Iris in the broader effort (the messenger of the Olympian gods). With respect to SLAT, the Iris handle
is provided so that the SLAT implementation can utilize it in internal invocation of the Iris interface. Similarly, Iris
is also used to produce a synchronization pattern (i.e., send/receive pairs) for communication of partition boundary
data. Again, an opaque pointer is used to represent this pattern and is meaningful only to the Iris implementation. The
synchronization pattern is provided to SLAT, where needed, for its internal use of Iris to perform these operations.

A. Hybrid BLAS
The increasing heterogeneity of computer architectures is motivating development of linear algebra algorithms that

exploit multilevel parallelism and mixed-precision [4–6, 58, 59]. While the form and action of these operations is an
open and evolving research area, the fundamental operations of linear algebra remain pertinent tools for exploratory and
production use cases. To support current concurrency options, and the possibility of new modes of concurrency, an
extensible type enumeration (enum), TINF_CONCURRENCY_TYPE, has been defined as shown in Table 2.

To support the data types used in operations of forward analysis, sensitivity analysis, design, adaptation, and
linearized frequency-domain in an extensible way an enum, TINF_DATA_TYPE, has been defined as shown in Table 3.

To support the variety of matrix storage formats utilized within CFD solvers and their coupled components in an
extensible way, an enum, TINF_MATRIX_TYPE, has been defined as shown in Table 4. The names of the matrix
storage formats follow the prevalent naming conventions [19, 20, 60, 61]. The DENSE format is logically defined as an
m × n matrix with 100% element occupancy. Three storage arrays with generalized names, value, index1, and index2,
are used to define each sparse matrix format. The Column Oriented format, COO, represents a sparse matrix as a list of
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Table 2 enum TINF_CONCURRENCY_TYPE.

TINF_SEQUENTIAL 1
TINF_THREAD 2

TINF_MPI 3
TINF_MPI_THREAD 4

Table 3 enum TINF_DATA_TYPE.

TINF_INT32 1
TINF_INT64 2
TINF_FLOAT 3

TINF_DOUBLE 4
TINF_CHAR 5
TINF_BOOL 6

TINF_CMPLX_FLOAT 7
TINF_CMPLX_DOUBLE 8

TINF_CMPLX_STEP_FLOAT 9
TINF_CMPLX_STEP_DOUBLE 10

TINF_SURREAL_FLOAT 11
TINF_SURREAL_DOUBLE 12

(row, column, value) tuples in index1, index2, and value, respectively. The COO format can be convenient for matrix
assembly operations. The Compressed Sparse Row format, CSR, represents a sparse matrix by storing nonzero values in
the val array, the index1 array contains the index of the first value of each row followed by the total number of nonzero
scalar values, and the column indices of each scalar nonzero value in the value array are stored in the index2 array. The
Compressed Sparse Column format, CSC, is similar to CSR except that values are read first by column, the index1
array contains the index of the first value in each column followed by the total number of nonzero scalar values, and a
row index is stored for each value in the index2 array. The CSR and CSC formats can be convenient for matrix-vector
products. The Block Sparse Row format, BSR, is similar to the CSR format except that each column index corresponds
to a group of consecutive scalar in the values array that form a square row-major dense block. The Block Sparse Column
format, BSC, has a relationship to the BSR format that is similar to the relationship between CSC and CSR; BSC is
similar to the CSR format except that each row index corresponds to a group of consecutive scalars in the values array
that form a square column-major dense block. The Block Sparse Row Column format, BSRC, is a variant of the BSR
format that stores values of square dense blocks in column-major order. The Block Sparse Column Row format, BSCR,
is a variant of the BSC format that stores values of square dense blocks in row-major order. Storing a matrix in one of
the Block Sparse storage format variants rather than CSR or CSC reduces the number of indirect memory accesses
required during an arithmetic operation by the square of the block size and is recommended when possible. It should be
noted that all the implementations within SLAT will operate with a block size of one when processing the CSR and
CSC formats. A storage format conversion utility is implemented within SLAT.

The TINF_CONCURRENCY_TYPE, TINF_DATA_TYPE, and TINF_MATRIX_TYPE enums are extensible
and sufficient to define a wealth of linear algebra operations. To introduce the interface design, three operations are
presented in this work, the L2 norm of an array, the dot product (inner product) of two arrays, and a sparse matrix-vector
product operation.

The tinf_norm2 function shown in Listing 2 calculates the L2 norm, r = | |x | |2, of a vector, x, and stores the value
in a scalar, result. The output argument, result, is underlined in Listing 2 to distinguish it from the input arguments.
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Table 4 enum TINF_MATRIX_TYPE.

TINF_DENSE 1
TINF_COO 2
TINF_CSR 3
TINF_CSC 4
TINF_BSR 5
TINF_BSC 6

TINF_BSRC 7
TINF_BSCR 8

The extensible TINF_DATA_TYPE and TINF_CONCURRENCY_TYPE enums along with the iris_context, and
iris_sync_pattern arguments that are active for MPI parallelism enable the calculation of L2 norms of 12 different
data types using four modes of concurrency. The interfaces presented in this work along with the iris_context and
iris_sync_pattern arguments are part of a broader effort to define interfaces for computer aided engineering applications
[56].

Listing 2 r = | |x | |2.

int32_t tinf_norm2 ( const int32_t select_tinf_data_type ,
const int32_t select_tinf_concurrency_type , const int64_t n, const void *const x,
const int64_t incx, const void *iris_context , const void *iris_sync_pattern ,
void *const result )

select_tinf_data_type identify the data type of the x array and result
select_tinf_concurrency_type identify the concurrency execution type
n number of scalar values in x
x dense input array of size n
incx spacing between scalar values in x
result L2 norm of x, output
iris_context IRIS communications context
iris_sync_pattern IRIS communications synchronization pattern
returns error code, TINF_SUCCESS or TINF_FAILURE

The tinf_dot function shown in Listing 3 calculates the dot product (inner product), r = x · y, of two arrays, x and y,
and stores the value in a scalar, result. The output argument, result, is underlined in Listing 2 to distinguish it from the
input arguments. The use of enums to select the data type and concurrency mode enables 48 different procedures to be
executed.
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Listing 3 r = x · y.

int32_t tinf_dot ( const int32_t select_tinf_data_type ,
const int32_t select_tinf_concurrency_type , const int64_t n, const void *const x,
const int64_t incx, const void *const y, const int64_t incy,
const void *const iris_context , const void *const iris_sync_pattern , void *const result )

select_tinf_data_type identify the data type of the x array and result
select_tinf_concurrency_type identify the concurrency execution type
n number of scalar values in x
x dense input array of size n
incx spacing between scalar values in x
y dense input array of size n
incy spacing between scalar values in x
result inner product of x and y, output
iris_context IRIS communications context
iris_sync_pattern IRIS communications synchronization pattern
returns error code, TINF_SUCCESS or TINF_FAILURE

The tinf_matvec function in Listing 4 performs a sparse matrix-vector product operation, y = Ax, with a block-sparse
row-major matrix,A, and dense column vector, x, and stores the result as a dense column vector, y. The output argument,
y, is underlined in Listing 2 to distinguish it from the input arguments. The use of enums to select the data type, matrix
storage format, and concurrency mode enables 384 different procedures to be executed. An introduction to the use of
tinf_matvec is included in Section VI.

Listing 4 y = Ax.

int32_t tinf_matvec ( const int32_t select_tinf_data_type ,
const int32_t select_tinf_concurrency_type , const int32_t select_tinf_matrix_type ,
const int64_t num_rows , const int32_t block_size , const int64_t nnz,
const void *const a_val, const int64_t *const index1, const int64_t *const index2,
const void *const x, const void *const iris_context , const void *const iris_sync_pattern ,
void *const y )

select_tinf_data_type identify the data type of the x array and result
select_tinf_concurrency_type identify the concurrency execution type
select_tinf_matrix_type identify the matrix storage type
num_rows number of block rows in the A matrix
block_size number of scalar rows in each block
nnz number of non-zero blocks
a_val contiguous array of matrix values
index1 stores the locations in the a_val array that start a major storage direction followed by nnz
index2 stores the minor storage direction indices of the blocks in the a_val array
x dense input array of size num_rows∗block_size
y dense output array of size num_rows∗block_size
iris_context IRIS communications context
iris_sync_pattern IRIS communications synchronization pattern
returns error code, TINF_SUCCESS or TINF_FAILURE
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B. Reordering
The three functions in Listing 5 define a generic and extensible interface to reordering operations. In Listing 5,

the output arguments are underlined and the input/output arguments are italicized to distinguish them from the input
arguments. SLAT’s implementation of the reordering interface provides CMK and MISC and facilitates the evaluation
of ongoing research [41] in applications. The ipar and dpar arrays are used to specify options (e.g., reverse) and
return information from reordering operations (e.g., bandwidth). SLAT’s implementation of the reordering interface
requires ipar_length >= 16 and dpar_length >= 16 and specifies ipar[0] := starting node. Part of the design of the tinf_
interfaces allows other implementations to define larger arrays if necessary. The tinf_reordering_create function creates
a reordering context for a particular reordering method (e.g., CMK) that is not tied to a particular single matrix. The
tinf_reordering_generate_symbolic function is used to create the permutation arrays old_to_new and new_to_old for a
particular sparsity pattern defined by the a_index1, a_index2, and a_diag arrays. The tinf_reordering_apply function
can be used to apply the the permutation arrays and store the reordered matrix in the ra_index1, ra_index2, ra_diag, and
ra_val arrays. A full description and exemplar use of the reordering interface will be included in the documentation
when SLAT is released.

C. Preconditioners
The three functions in Listing 6, define a generic and extensible interface to preconditioning operations. In

Listing 6, the output arguments are underlined and the input/output arguments are italicized to distinguish them
from the input arguments. SLAT’s implementation of the preconditioning interface provides symbolic ILU(k) fill-in,
ILU, and LSBILU and facilitates the evaluation of ongoing research in applications. The ipar and dpar arrays are
used to specify options (e.g., fill level) and return information from reordering operations (e.g., fill-ratio). SLAT’s
implementation of the reordering interface requires ipar_length >= 16 and dpar_length >= 16 and specifies ipar[0] :=
level of fill. Part of the design of the tinf_ interfaces allows other implementations to define larger arrays if necessary.
The tinf_preconditioner_create function creates a preconditioning context for a particular reordering method (e.g.,
LSBILU) that is not tied to a particular single matrix. The tinf_preconditioner_generate_symbolic function is used
to create the sparsity pattern of the preconditioner based upon the A matrix defined by the a_index1, a_index2, and
a_val arrays. The tinf_preconditioner_initialize_numeric is used to initialize or reinitialize the preconditioning matrix
with the values of the A matrix in the a_val array. The tinf_preconditioner_apply function can be used to apply the
the preconditioner to the x array and store the result in the y array. An introduction to the use of the preconditioner
interface is included in Section VI. A full description and exemplar uses of the preconditioner interface will be included
in the documentation when SLAT is released.

D. Linear Solvers
The three functions in Listing 7 define a generic and extensible reverse communication interface (RCI) to linear

solvers. In Listing 7, the output arguments are underlined and the input/output arguments are italicized to distinguish
them from the input arguments. The linear solver interface has been included with the FUN3D 13.6-717bd48 release [62]
along with an implementation of the interface that enables seamless run-time selection of linear solvers implemented
within SLAT or those implemented within SPARSKIT. SLAT’s implementation of the linear solver interface provides
symbolic GMRES, Flexible GMRES with the choice of orthonormalization by Modified Gram-Schmidt or Householder
Transforms methods and facilitates the evaluation of ongoing research in applications. The ipar and dpar arrays are used
to specify options (e.g., Krylov dimension) and return information from reordering operations (e.g., residual norm).
SLAT’s implementation of the linear solver interface requires ipar_length >= 16 and dpar_length >= 16 and specifies
ipar[0] := starting node. Part of the design of the tinf_ interfaces allows other implementations to define larger arrays if
necessary. The tinf_linear_solver_rci_create function creates a linear solver context for a particular reordering method
(e.g., GMRES) that is not tied to a particular linear system. The tinf_linear_solver_rci function can be used to progress
through the reverse communication pattern. An introduction to the use of the linear solver interface is included in
Section VI. A full description and exemplar uses of the linear solver interface will be included in the documentation
when SLAT is released.
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Listing 5 Reordering interface.

int32_t tinf_reordering_create( void **reord_context,
const char *method_name , const int32_t method_name_length ,
const int32_t select_tinf_data_type , const int32_t select_tinf_matrix_type ,
int64_t *const ipar, const int32_t ipar_length ,
void *const dpar, const int32_t dpar_length ,
const int32_t global_id )

int32_t tinf_reordering_destroy( void **reord_context )

int32_t tinf_reordering_generate_symbolic( void *const reord_context , const int64_t num_rows ,
const int32_t block_size , const int64_t a_num_blocks ,
int64_t *const a_index1 , int64_t *const a_index2 , int64_t *const a_diag,
int64_t *const ipar, void *const dpar, int64_t **old_to_new, int64_t **new_to_old )

int32_t tinf_reordering_apply( void *const reord_context , const int64_t num_rows,
const int32_t block_size , const int64_t a_num_blocks , int64_t *const ipar,
void *const dpar, const int64_t *const old_to_new , const int64_t *const new_to_old ,
const void *const a_val, const int64_t *const a_index1 , const int64_t *const a_index2 ,
const int64_t *const a_diag, void **ra_val, int64_t **ra_index1, int64_t **ra_index2,
int64_t **ra_diag )

reord_context reordering context
method_name reordering method name, eg. cmk
method_name_length length of the method_name (including null terminator)
select_tinf_data_type identify the data type of the dpar array
select_tinf_matrix_type identify the matrix storage type
ipar integer parameter array for the reordering operation
ipar_length length of the ipar array
dpar data parameter array storing inputs and outputs from the reordering operation
dpar_length length of the dpar array
global_id partition id
num_rows number of block rows in linear system
block_size number of scalar rows in each block
a_num_blocks number of blocks in linear system
a_index1 stores the locations in the a_val array that start a row
a_index2 stores the column indices of the blocks in the a_val array
a_diag stores the indices of the main diagonal blocks in the a_val array
a_val contiguous array of A matrix values
old_to_new permutation array of row indices that maps from the original ordering to the new ordering
new_to_old permutation array of row indices that maps from the new ordering to the new original
ra_index1 stores the locations in the reordered a_val array that start a row
ra_index2 stores the column indices of the blocks in the reordered a_val array
ra_diag stores the indices of the main diagonal blocks in the reordered a_val array
ra_val contiguous array of reordered A matrix values
returns error code, TINF_SUCCESS or TINF_FAILURE
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Listing 6 Preconditioner interface.

int32_t tinf_preconditioner_create( void **precond_context, const char *method_name ,

const int32_t method_name_length , const int32_t select_tinf_data_type ,
const int32_t select_tinf_concurrency_type , const int32_t select_tinf_matrix_type ,
int64_t *const ipar, const int32_t ipar_length , void *const dpar,
const int32_t dpar_length , const void *const iris_context ,
const void *const iris_sync_pattern , const int32_t global_id )

int32_t tinf_preconditioner_destroy( void **precond_context , const int32_t block_size )

int32_t tinf_preconditioner_generate_symbolic( void *const precond_context , int64_t *const ipar,
void *const dpar, const int64_t num_rows, const int64_t num_cols ,const int32_t block_size ,
const int64_t a_num_blocks , const void *const a_val, const int64_t *const a_index1 , const

int64_t *const a_index2 )

int32_t tinf_preconditioner_initialize_numeric( void *const precond_context , int64_t *const ipar,
void *dpar, const void *const a_val )

int32_t tinf_preconditioner_update_numeric( void *const precond_context , int64_t *const ipar,
void *const dpar, const void *const a_val )

int32_t tinf_preconditioner_apply( void *const precond_context , int64_t *const ipar,
void *const dpar, const int64_t num_rows, const void *const x, void *const y )

precond_context preconditioner context
method_name preconditioner method name, eg. iluk
method_name_length length of the method_name (including null terminator)
select_tinf_data_type identify the data type of the dpar and a_val arrays
select_tinf_concurrency_type identify the concurrency execution type
select_tinf_matrix_type identify the matrix storage type
ipar integer parameter array for the preconditioner
ipar_length length of the ipar array
dpar data parameter array storing inputs and outputs from preconditioner
dpar_length length of the dpar array
iris_context IRIS communications context
iris_sync_pattern IRIS communications synchronization pattern
global_id partition id
num_rows number of block rows in A matrix
num_cols number of block cols in A matrix
natural_block_size number of scalar rows in each block of the original A matrix
a_num_blocks number of blocks in A matrix
a_index1 stores the locations in the a_val array that start a row
a_index2 stores the column indices of the blocks in the a_val array
a_diag stores the indices of the main diagonal blocks in the a_val array
a_val contiguous array of A matrix values
x dense input array of size num_rows∗natural_block_size
y dense output array of size num_rows∗natural_block_size
returns error code, TINF_SUCCESS or TINF_FAILURE
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Listing 7 Linear solver interface.

int32_t tinf_linear_solver_rci_create ( void **linear_solver_context,
const char *const method_name , const int32_t method_name_length ,
const int32_t select_tinf_data_type ,
const int64_t num_rows , const int32_t block_size ,
int64_t *const ipar, const int32_t ipar_length ,
void *const dpar, const int32_t dpar_length ,
void *const iris_context , void *const iris_sync_pattern ,
void **work_space )

int32_t tinf_linear_solver_rci_destroy ( void **linear_solver_context, void **work_space )

int32_t tinf_linear_solver_rci ( void *const linear_solver_context , const int64_t num_rows ,
const int32_t block_size , void *const rhs, void *const sol, int64_t *const ipar,
void *const dpar, void *const work_space )

linear_solver_context linear system solver context
method_name linear system solver method name, eg. gmres, fgmres, or jacobi
method_name_length length of the method_name (including null terminator)
select_tinf_data_type identify the data type of the dpar, work_space, rhs, and sol arrays
num_rows number of block rows in linear system
block_size number of scalar rows in each block
rhs right-hand-side array
sol solution array
ipar integer parameter array for the reverse-communication protocol
ipar_length length of the ipar array
dpar data parameter array storing inputs and outputs from a linear solver
dpar_length length of the dpar array
work_space array utilized by linear solver for intermediate calculations
iris_context IRIS communications context
iris_sync_pattern IRIS communications synchronization pattern
returns error code, TINF_SUCCESS or TINF_FAILURE

V. Results
The data presented in this work are from computations performed on the NASA Langley K4 and NASA HECC

Electra computing clusters. Intel® 20-Core Xeon® Gold 6148 processors [63], commonly referred to as Skylake CPUs,
are utilized on a 4x EDR Infiniband interconnect (∼ 100Gbits/s) [64].

A. Forward CFD Analysis
The computational fluid dynamics problem presented in this work is Case 2 from the 1st AIAA CFD High Lift

Prediction Workshop [65]. The case embodies a subsonic aerodynamic flowfield associated with three-dimensional,
swept, medium-to-high aspect ratio multielement wings required by commercial and military transport aircraft for
landing and takeoff [66]. The mesh chosen is small enough to enable expedient evaluation of the effectiveness of the
preconditioners across a range of partition sizes from an average of as few as 130 mesh points on each of 5120 partitions
to 328202 mesh points on two partitions. The flight conditions and mesh specifications are detailed in Table 5. Figure 3
depicts the pressure coefficient, Cp , distribution on the surface of the trapezoidal wing body geometry and Mach number
field on the symmetry plane from a simulation converged until the RMS residual is less than 5.E−13. Significant flow
features such as wake/boundary layer interactions and regions of separated flow are present in the simulation.
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Table 5 Trapezoidal Wing "Config 1" - Slat 30◦, Flap 25◦.

Flight Conditions Mesh
Mach 0.2 Number of tet cells 3, 852, 709
Angle-of-attack [◦] 13 Number of mesh points 656, 403
Reynolds number [based on MAC] 4.3E6 number of edges 4, 538, 241
Reference Temperature [R] 520 Number of boundaries 26

Fig. 3 Visualization of Cp distribution on the surface of the trap wing geometry andMach number field on the
symmetry plane.

B. Strong Scaling
Two views of runtime details from the baseline simulation using unthreaded BILU preconditioning (80 MPI

partitions, 1 CPU core per partition) are shown in Figure 4. The nonlinear and linear solver performance are depicted
in Figure 4a as represented by the RMS residual, GMRES search directions, and Courant–Friedrichs–Lewy (CFL)
number per nonlinear iteration. The RMS residual of the solution falls below 5.E−13 after 123 nonlinear iterations
at a wall time of 53763 [s] (89.60 minutes). GMRES is used to solve the linear subproblem for the initial nonlinear
update during each nonlinear iteration. A Krylov subspace of 300 search directions is used and at most one restart is
allowed. GMRES terminates when the linear residual reaches an absolute tolerance of 1.E−15 or a relative tolerance of
1.E−8 or after a maximum of 600 search directions. GMRES fails to converge to a relative tolerance of 0.5 during
nonlinear iteration 83 and the update is rejected. The CFL history depicts the global multiplier to local element time-step
parameters. The CFL number is an indictor of the size of the nonlinear iteration taken toward a steady-state solution.
The maximum CFL allowed during the simulation is 1.E6. The wall time required per nonlinear iteration for selected
phases of FUN3D-SFE’s solution process are shown in Figure 4b. Residual calculation is depicted by a red line with
square markers. The assembly of the linearized coefficient matrix for the left-hand side of the equations is depicted by a
grey line with right facing triangle markers. Timing for both residual calculation and the assembly of the left-hand
side are stable throughout the simulation because the work load and distribution of the work load are constant. These

19



two phases form the linear problem and comprise the temporal context to evaluate the impacts of preconditioning
methods. Timing of GMRES core calculations is plotted by an orange line with left facing triangle markers. This timing
encompasses the time required to orthonormalize the Krylov search space through a modified Gram-Schmidt Arnoldi
process, update the Hessenberg matrix by applying Givens rotation matrices, and the final backward-substitution of the
upper Hessenberg matrix to obtain the updated linear solution vector. Preconditioning of each GMRES search direction
and matrix-vector products required for the linear solution are timed separately to facilitate comparison.

Preconditioning operations are parsed into three steps delineated as,
symbolic: creation of the sparsity pattern and storage for a partition’s preconditioning matrix via ILU(k = 2) fill
update: computation of the numeric values of the incomplete lower upper factorization
apply: application of the incomplete lower upper factorization to a vector via a forward and a backward-substitution
The symbolic operations to form the sparsity pattern for a preconditioning matrix are performed once at the start of

the simulation, indicated by the pink circle at the first iteration. The time required to initialize preconditioning matrices
at each nonlinear iteration is indicated by a red line with circle markers. The time required to update a preconditioning
matrix at each nonlinear iteration is indicated by a green line with filled square markers. The time required to apply a
preconditioning matrix at each nonlinear iteration is indicated by a green line with filled upward triangle markers. The
time required for matrix-vector products at each nonlinear iteration is indicated by a grey line with large square markers.
Error bars indicate the range of time required across the 80 partitions for each solution phase.

The time required to initialize and update a partition’s preconditioning matrix once per nonlinear iteration is
independent of the number of GMRES search directions. There are linear relationships between the number of GMRES
search directions and the time required to perform matrix-vector products and apply the BILU preconditioner, each
occurs once per search direction. The time required for GMRES core operations is related quadratically to the number
of GMRES search directions during a nonlinear iteration because each search direction is orthonormalized against all
prior search directions. The timings shown in Figure 4 indicate that the three largest portions of wall time are dedicated
to BILU preconditioner application, left-hand side updates, and SPARSKIT’s GMRES operations for the baseline
parallelization strategy of 80 MPI partitions each using one CPU core.

Figure 5 presents an overview of FUN3D-SFE’s performance when employing unthreaded BILU preconditioning
for a range of parallelization strategies. One CPU core is assigned to each MPI partition to perform the sequential
operations of BILU preconditioning. In Figure 5a, the variation of wall time, the total number of GMRES search
directions, and the nonlinear iterations required to converge the solution are plotted against the number of CPU cores
utilized. The trends indicate that as the number of partitions and CPU cores utilized increases (mesh points per partition
decreases) the wall time to solution decreases with diminishing returns. The departure from ideal strong scaling is
influenced by the cost of MPI communication during each nonlinear iteration and the increase in the total number of
GMRES search directions required. The portion of time spent in solution phases relative to the wall time to solution is
plotted in Figure 5b.
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(a)Histories of theRMSnonlinear residual, number ofGMRES search directions,
and CFL number during 200 nonlinear iterations.

(b) Wall time of selected solution phases per nonlinear iteration. Symbols mark
the mean value and bars mark the minimum and maximum among the 80 parti-
tions.

Fig. 4 Visualization of FUN3D-SFE performance characteristics from a steady state simulation of the trapezio-
dal wing configuration 1 case. The solutions were obtained using SPARSKIT’s GMRES and BILU precondi-
tioning (See Algorithm 1) on 80 MPI partitions each employing one CPU core. Progress toward convergence is
depicted in (a) and the wall time required by solution phases is plotted in (b).
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(a) Variation of wall time, nonlinear iterations, and total GMRES search direc-
tions required to converge the solution with the number of CPU cores.

(b) Relative proportion of the wall time to solution spent in each phase of a
nonlinear iteration.

Fig. 5 Two perspectives summarizing how FUN3D-SFE calling SPARKIT’s GMRES strong scales when em-
ploying unthreaded BILU preconditioning (Algorithm 1): (a), the total GMRES search directions and nonlinear
iterations depict the variation in the workload as partition size decreases, and (b), the nonlinear workload is
parsed into solution phases to identify performance bottlenecks as partition size decreases.
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Figure 6 presents an overall comparison of strong scaling when using the implementations of GMRES in SPARSKIT
and SLAT. FUN3D-SFE solves the 16-degree angle of attack trap wing case from the first high lift workshop 49% faster
on 40 CPU cores when utilizing the GMRES implementation within SLAT than when utilizing SPARSKIT’s GMRES.
On 1280 CPU cores, FUN3D-SFE converges 56.6% faster when calling GMRES from SLAT than from SPARSKIT.

Fig. 6 Comparison of wall time to solution using unthreaded BILU preconditioning and GMRES implementa-
tions from SPARSKIT and SLAT within FUN3D-SFE.

C. Adjoint, Complex-step, & Surreal verification
A brief summary of an adjoint problem is provided in this work to discuss the requirements placed upon a linear

solver. Readers interested in a deeper discussion of adjoint CFD applications are directed to Refs. [26, 67]. The adjoint
solution, λ, for a particular output functional I, is obtained by solving the linear system of equations[

∂Rh

∂qh

]T
λ = −

(
∂I
∂qh

)T
(13)

where qh is the set of solution state variables, and Rh is the discrete residual of the partial differential equations under
consideration. The implementations of complex-step and surreal operations within SLAT’s preconditioners and linear
solvers are verified with adjoint solutions produced by solving Eq. 13 for the sensitivity of the z force component to
the state variables in four simulations. Directional derivatives of the z force component along a random direction
of the states are calculated with complex-step, surreal, and real-valued finite-difference methods. The same random
directions are used for all three mothods. A complex source term, h =1.0E-30, is used to perturb the flow equations in
the complex-step method. A derivative source term, h =1.0E-30, is used to perturb the flow equations in the surreal
method. A real-valued source term, x =1.0E-8, is used to perturb the flow equations in the real-valued finite-difference
method. The results presented in Table 6 cover inviscid, laminar, and turbulent flow regimes with geometry of moderate
and high complexity from three test cases, and exercise both strong and weak boundary conditions. The first test case is
VERIF/3DB, a 3D bump in channel [68], the second test case is Onera M6 [69], and the third test case is the JAXA
Standard Model case 2c [70]. It is noteworthy that the linear solver and preconditioner operations are also stress-tested
by adjoint systems. These adjoint systems are exceptionally stiff due to an effective CFL of∞ which negates the boost
to diagonal dominance provided by the pseudotime term. The results in Table 6 show a minimum of 8 significant
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digits of agreement between adjoint, complex-step, and surreal solutions, along with the expected limited agreement
with finite-difference approximation of the sensitivity of the z force component to the residual. Bold digits indicate
agreement with adjoint results.

Table 6 Adjoint Verification.

Adjoint Complex-step Surreal Finite-difference
h =1.0E-30 h =1.0E-30 x =1.0E-8

VERIF/3DB Re=1.0E+02, Weak BC
5.7284164824E+04 5.7284164542E+04 5.7284164801E+04 5.7281302000E+04

VERIF/3DB Re=1.0E+02, Strong BC
-5.6696566536E+05 5.6696566536E+05 5.6696566536E+05 5.6703983900E+05

VERIF/3DB Re=3.0E+06, Weak BC
5.5016646209E+04 5.5016646234E-26 5.5016646264E-26 5.4370470300E+04

VERIF/3DB Re=3.0E+06, Strong BC
5.2945989606E+04 5.2945989602E-26 5.2945989603E-26 5.1965968500E+04

Onera M6 Inviscid Re=4.6E+05, Weak BC
2.4564327703E+03 2.4564327703E-27 2.4564327703E+03 2.4565248712E+03

JAXA Standard Model Re=3.647E+06 Strong BC
1.0233096937E+08 1.0233096934E+08 1.0233096938E+08 1.0120000087E+08

D. Linearized Frequency-domain Method
A brief summary of the Linearized Frequency-Domain (LFD) method is provided in this work to discuss the

requirements placed upon a linear solver. Readers interested in LFD applications are directed to Ref. [27]. The LFD
method provides accurate flutter predictions at reduced computational costs compared to time-accurate CFD simulations.
The LFD method assumes small, harmonic perturbations about the equilibrium RANS solution. Based upon this
assumption, an exact linearization of the governing residual is formed,(

iωM +
∂R
∂q

����
XG0,q0

)
q̂ = −

∂R
∂XG

����
XG0,q0

X̂G − iw
∂R
∂ ÛXG

����
XG0,q0

X̂G , (14)

where, X̂G is the harmonic mesh motion due to a perturbation of a structural mode, ω is the frequency at which structural
mode is oscillated, and q̂ is the frequency-domain flow state (Fourier coefficient), The linear system defined in Eq. 14 is
complex-valued and is solved once per frequency of interest and perturbed mode pair.

Fourier transformations of forced motion time-domain simulations of an NACA 64A010 airfoil are used to verify
the LFD implementation as shown in Figure 7 and Table 7. The forced motion amplitude is small, modal displacements
of 0.001, in order to approximate the linear response with the nonlinear time-domain solver. The Fourier coefficients of
the flow field and generalized aerodynamic forces both match at least to the precision of the amplitude of the force
motion. This verifies the implementation and linear solver for the complex-valued frequency-domain problem.
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Fig. 7 Visualization of imaginary part of the Fourier coefficients of pressure perturbations around an NACA
64A010 airfoil predicted by time-domain and LFD methods.

Table 7 Comparison of generalized aerodynamic forces from LFD and time-domain simulations for an NACA
64A010 airfoil with pitch and plunge degrees of freedom.

A11 GAF value Amplitude Phase[◦]
Time-domain least-squares fit -0.062034714+0.009486982j 0.062755945 171.305110883
Linearized frequency-domain -0.061998716+0.009479661j 0.062719253 171.306750664

A12 GAF value Amplitude Phase[◦]
Time-domain least-squares fit 0.309573196-0.236955257j 0.389850430 -37.431369012
Linearized frequency-domain 0.309443029-0.236805496j 0.389656042 -37.425516008

A21 GAF value Amplitude Phase[◦]
Time-domain least-squares fit -0.003903398-0.020899123j 0.021260523 -100.579426188
Linearized frequency-domain -0.003914324-0.020910025j 0.021273248 -100.602961521

A22 GAF value Amplitude Phase[◦]
Time-domain least-squares fit 0.099903089+0.096984878j 0.139236108 44.150842391
Linearized frequency-domain 0.099990495+0.096988284j 0.139301207 44.126806007
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VI. Sample code
The error checking macro in Listing 8 can be used to capture the return values from interface functions and produce

feed back that aids debugging.

Listing 8 Error Checking Macro.�
#ifdef _DEBUG
#define SLAT_CHECK(err) \
do \
{ \
slat_int_t e_ = (err); \
if (e_ != 0) \
{ \
fprintf(stderr, "SLAT_CHECK ERROR %d : (%s, line %d)\n", e_, __FILE__, \

__LINE__); \
exit(-1); \

} \
} while (0)
#else
#define SLAT_CHECK(err)
#endif
� �
The code snippet in Listing 9 uses the preconditioner, matrix-vector product, L2 norm, and linear solver interfaces

to solve a linear system. Sample screen output from Listing 9 is shown in Listing 10.

Listing 9 Preconditioned GMRES snippet.�
int32_t dtype = TINF_DOUBLE;
int32_t concurtype = TINF_MPI;
int32_t mattype = TINF_BSR;
void *iris_handle{nullptr};
void *iris_sync_pattern{nullptr};
void *workPtr = nullptr;
double *workPtr_ = nullptr;

int64_t n = num_rows * block_size;
double *x{nullptr};
x = (double *) calloc(static_cast <size_t >(n), sizeof(double));
//
// Create ILU(K) preconditioner
//
SLAT_CHECK( tinf_preconditioner_create(preconditioner , "iluk", 5, dtype, concurtype , mattype,

precond_ipar , precond_dpar , iris_handle , iris_sync_pattern , my_rank, &precond_handle) );
SLAT_CHECK( tinf_preconditioner_generate_symbolic( precond_handle , precond_ipar , precond_dpar ,

a_num_rows , a_num_cols , a_block_size , a_num_blocks , a_val, a_row, a_col) );
SLAT_CHECK( tinf_preconditioner_initialize_numeric(precond_handle , precond_ipar , precond_dpar

a_val) );
SLAT_CHECK( tinf_preconditioner_update_numeric(precond_handle , precond_ipar , precond_dpar ,

a_val) );
//
// Create Preconditioned GMRES linear solver
//
SLAT_CHECK(tinf_linear_solver_rci_create(&gmres_context , "gmres", 6, dtype, num_rows ,

block_size , ipar, 16, dpar, 16, iris_handle , iris_sync_pattern , &workPtr) );
workPtr_ = static_cast <double *>(workPtr);
//
// Perform Preconditioned GMRES until convergence criteria or maximum number of matvecs
//
while (ipar[RCI_INDEX] > 0)
{
SLAT_CHECK( tinf_linear_solver_rci(gmres_context , num_rows , block_size , RHS, x, ipar, dpar,

workPtr) );

switch (ipar[RCI_INDEX])
{
case USER_MATRIX_VECTOR_PRODUCT:
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{
//
// Matrix vector product
//
SLAT_CHECK( tinf_matvec(dtype, concurtype , mattype, a_num_rows , a_block_size , a_nnz,a_val,

a_row, a_col, &(workPtr_[ipar[MATVEC_INPUT_INDEX]]),
&(workPtr_[ipar[MATVEC_OUTPUT_INDEX]])) );

break;
}
case USER_RIGHT_PRECONDITIONER_APPLICATION:
{
//
// Apply Right Preconditioning
//
SLAT_CHECK( tinf_preconditioner_apply(precond_handle , precond_ipar , precond_dpar ,

a_num_cols , &(workPtr[ipar[MATVEC_OUTPUT_INDEX]]),
&(workPtr[ipar[MATVEC_INPUT_INDEX]])) );

std::cout << "Search direction " << std::setw(7)
<< ipar[MATVEC_COUNT_INDEX] << " residual = " << std::scientific << std::

setprecision(10) << std::setw(19)
<< dpar[CURRENT_RESIDUAL_INDEX] << " rate = " << std::scientific << std::

setprecision(10) << std::setw(19)
<< dpar[CONVERGENCE_RATE_INDEX] << std::endl;

break;
}
}

}
//
// Calculate actual residual
//
for (int64_t i = 0; i < n; ++i)
{
workPtr_[ipar[MATVEC_OUTPUT_INDEX] + i] = 0.0;

}
SLAT_CHECK( tinf_matvec(dtype, concurtype , mattype, a_num_rows , a_block_size , a_nnz, a_val,

a_row, a_col, x, &(workPtr_[ipar[MATVEC_OUTPUT_INDEX]])) );
for (int64_t i = 0; i < num_rows * block_size; ++i)
{
workPtr_[ipar[MATVEC_OUTPUT_INDEX] + i] =

RHS[i] - workPtr_[ipar[MATVEC_OUTPUT_INDEX] + i];
}
double actual_residual = 0.0;
SLAT_CHECK( tinf_norm2(dtype, concurtype , n, &(workPtr_[ipar[MATVEC_OUTPUT_INDEX]]), 1,

iris_handle , iris_sync_pattern , static_cast <void*>(&actual_residual)) );
std::cout << "Final Search direction " << std::setw(7)

<< ipar[MATVEC_COUNT_INDEX] << " residual = " << std::scientific
<< std::setprecision(10) << std::setw(19)
<< dpar[CURRENT_RESIDUAL_INDEX] << " rate = " << std::scientific
<< std::setprecision(10) << std::setw(19)
<< dpar[CONVERGENCE_RATE_INDEX]
<< " actual residual = " << std::scientific << std::setprecision(10)
<< std::setw(19) << actual_residual
<< " actual rate = " << std::scientific << std::setprecision(10)
<< std::setw(19) << actual_residual / dpar[INITIAL_RESIDUAL_INDEX]
<< std::endl;

SLAT_CHECK( tinf_preconditioner_destroy(&precond_handle , a_block_size) );
SLAT_CHECK( tinf_linear_solver_rci_destroy(&gmres_context , &workPtr) );
free(x);
� �
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Listing 10 Preconditioned GMRES output.�
Search direction 1 residual = 2.2737634002e+01 rate = 1.0000000000e+00
Search direction 2 residual = 3.1534083154e+00 rate = 1.3868673914e-01
Search direction 3 residual = 9.0634257238e-01 rate = 3.9860900756e-02
Search direction 4 residual = 1.8851084760e-01 rate = 8.2906975979e-03
Search direction 5 residual = 7.9700723187e-02 rate = 3.5052337979e-03
Search direction 6 residual = 7.9700723187e-02 rate = 3.5052337979e-03
Search direction 7 residual = 2.6208388113e-02 rate = 1.1526435913e-03
Search direction 8 residual = 1.2166420496e-02 rate = 5.3507856159e-04
Search direction 9 residual = 5.7675401363e-03 rate = 2.5365612517e-04
Search direction 10 residual = 2.4035707720e-03 rate = 1.0570892168e-04
Search direction 11 residual = 2.4035707720e-03 rate = 1.0570892168e-04
Search direction 12 residual = 7.0467717035e-04 rate = 3.0991666516e-05
Search direction 13 residual = 3.6316902968e-04 rate = 1.5972155663e-05
Search direction 14 residual = 1.9115884718e-04 rate = 8.4071564862e-06
Search direction 15 residual = 4.7455575799e-05 rate = 2.0870938372e-06
Search direction 16 residual = 4.7455575799e-05 rate = 2.0870938372e-06
Search direction 17 residual = 1.8886082400e-05 rate = 8.3060895421e-07
Search direction 18 residual = 6.2855803720e-06 rate = 2.7643950868e-07
Search direction 19 residual = 2.7976821341e-06 rate = 1.2304191957e-07
Search direction 20 residual = 1.1897224964e-06 rate = 5.2323935564e-08
Search direction 21 residual = 1.1897224958e-06 rate = 5.2323935538e-08
Search direction 22 residual = 5.0648136309e-07 rate = 2.2275024879e-08
Search direction 23 residual = 2.0488648853e-07 rate = 9.0108974625e-09
Final Search direction 23 residual = 2.0488648853e-07 rate = 9.0108974625e-09

actual residual = 2.0488648734e-07 actual rate = 9.0108974100e-09
� �
VII. Summary

The Sparse Linear Algebra Toolkit (SLAT) for Computational Aerodynamics has been introduced. Pivotal design
and implementation choices to provide a light-weight and extensible toolkit for computational research and production
simulations have been highlighted and their accuracy verified. Support for the data types and operations required
for forward CFD analysis, sensitivity analysis, design, adaptation, and linearized frequency-domain applcations have
been verified. Functionality not presently available in five sources of prevalent linear solver routines, MKL 2019 [19],
CUDA10.2.89 [20], SPARSKIT [15], MAGMA [16, 17], and PETSc [18], have been highlighted. The performance
of Reynods-averaged Navier-Stokes simulations conducted with FUN3D’s Stabilized Finite Element (SFE) library
and SLAT have been evaluated and shown to be between 15% and 56% faster than those conducted with SPARSKIT.
The linear solver interface presented in this work has been included with the FUN3D 13.6-717bd48 release [62]. The
interfaces for linear algebra, reordering, and preconditioning operations introduced in this work will be included in future
releases of FUN3D in concert with the broader effort to provide interfaces for computational engineering components
[55, 56].
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