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An accurate physics-based transition prediction method integrated with computational
fluid dynamics (CFD) solvers is pursued for hypersonic boundary layer flows over slender hy-
personic vehicles at flight conditions. The geometry and flow conditions are selected to match
relevant trajectory locations from the ascent phase of the HIFiRE-1 flight experiment, namely,
a 7-degree half-angle cone with 2.5 mm nose radius, freestream Mach numbers in the range
of 3.8 − 5.5 and freestream unit Reynolds numbers in the range of 3.3 × 106 − 21.4 × 106 m−1.
Earlier research had shown that the onset of transition during the HIFiRE-1 flight experiment
correlated with an amplification factor of N ≈ 13.5 for the planar Mack modes. However,
to incorporate the N-factor correlations into a CFD code, we investigate surrogate models
for disturbance amplification that avoid the direct computation of stability characteristics. A
commonly used approach for low-speed flows is based on an a priori database of stability
characteristics for locally similar profiles. However, the results presented in this paper demon-
strate that the application of this approach to hypersonic boundary layers over blunt spherical
nose-tip cones leads to large, unacceptable errors in the predictions of amplification factors,
mainly due to its failure in accounting for the effects of the entropy layer on the boundary-layer
profiles along the length of the model. We propose and demonstrate an alternate approach
that employs the stability computations for a canonical set of blunt cone configurations to train
a physics-informed convolutional neural network model that is shown to provide substantially
improved transition predictions for hypersonic flow configurations with entropy-layer effects.
Furthermore, the excellent performance of the neural networkmodel is also confirmed for cone
configurations with nose radius and half-angle values that do not correspond to those used to
build the database. Finally, the convolutional neural network model is shown to outperform
the linear stability calculations for underresolved basic states.

Nomenclature

f = disturbance frequency [Hz]
ht = total enthalpy [J]
hξ = streamwise metric factor
hζ = azimuthal metric factor [m]
L = reference length [m]
m = azimuthal wavenumber
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M = Mach number
N = logarithmic amplification factor
q̄ = vector of base flow variables
q̃ = vector of perturbation variables
q̂ = vector of amplitude variables
Re∞ = freestream unit Reynolds number [m−1]
rb = local radius of axisymmetric body at the axial station of interest [m]
rn = nose radius [m]
t = time [s]
T = temperature [K]
Tw = wall temperature [K]
Tw,ad = adiabatic wall temperature [K]
(u, v,w) = streamwise, wall-normal, and spanwise velocity components [m s−1]
(x, y, z) = Cartesian coordinates [m]
α = streamwise wavenumber [m−1]
βH = Hartree parameter
δh = boundary layer thickness [m]
κ = streamwise curvature [m−1]
ω = disturbance angular frequency [rad s−1]
ρ = density [kg m−3]
σ = growth rate [m−1]
(ξ, η, ζ ) = streamwise, wall-normal, and azimuthal coordinates [m, m, rad]
θ = cone half-angle [rad]
Subscript
∞ = freestream value
tr = transition location
e = boundary-layer edge

I. Introduction
Laminar-turbulent transition of boundary-layer flows can have a strong impact on the performance of hypersonic

vehicles because of its influence on the surface skin friction and aerodynamic heating. Therefore, the prediction and
control of transition onset and the associated variation of aerothermodynamic parameters in high-speed flows are key
issues for optimizing the performance of the next-generation aerospace vehicles. Under low levels of background
disturbances, boundary-layer transition is initiated by the exponential amplification of linearly unstable eigenmodes,
i.e., modal instabilities of the laminar boundary layer. In two-dimensional boundary layers over sufficiently smooth
aerodynamic surfaces, different types of instability mechanisms dominate the exponential growth phase depending on the
flight speed. In the incompressible regime, the most amplified disturbances correspond to planar, i.e., two-dimensional,
Tollmien-Schlichting (TS) waves, whereas oblique first-mode instabilities are dominant in supersonic boundary layers.
The hypersonic regime is again dominated by the growth of planar waves of the second mode, i.e., Mack-mode type [1].

Although many practical aerospace vehicles have blunt, hemispherical and ogival nose tips, the mechanisms that
lead to boundary-layer instability and transition on such geometries are often not well understood. A detailed review of
boundary-layer transition over sharp and blunt cones in a hypersonic freestream is given by Schneider [2]. As described
therein, both experimental and numerical studies have shown that the modal growth of Mack-mode instabilities (or,
equivalently, the so-called second-mode waves) is responsible for laminar-turbulent transition on sharp, axisymmetric
cones at zero degrees angle of attack. Studies have also shown that increased nose-tip bluntness, i.e., radius of
hemispherical or ogival nose tips, lead to the formation of an entropy layer that can extend well beyond the vicinity of
the nose-tip region [3]. This entropy layer has been shown to have a stabilizing effect on the amplification of Mack-mode
instabilities, which is consistent with the observation that the onset of transition is displaced downstream as the nose
bluntness is increased. However, while the boundary-layer flow continues to become more stable with increasing nose
bluntness, experiments indicate that the downstream movement in transition actually slows down and eventually reverses
as the nose bluntness exceeds a certain critical range of values [3]. The observed reversal in transition onset at large
values of nose bluntness is contrary to the predictions from linear stability theory, and therefore, must be explained
using a different paradigm. Recently, several efforts have been devoted to studying frustum transition in blunt cones
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Fig. 1 Ratio of transition Reynolds numbers for blunt cones and the corresponding sharp cone, Reξtr ,b/Reξtr ,s ,
as a function of the nose Reynolds number Rern . Data are from the Reentry-F flight experiment at M = 20
[9, 10], and ground experiments from Horvath et al. [11] at M = 6 and from Stetson et al. [12] at M = 8. The
Reξtr ,s value is calculated by linear extrapolation.

with the absence of sufficient Mack-mode instability [4–8]. Figure 1 shows the ratio of transition Reynolds numbers for
blunt cones and the corresponding sharp cone, Reξtr ,b/Reξtr ,s , as a function of the nose Reynolds number Rern for the
Reentry-F flight experiment at M = 20 with a 5-degree half-angle cone [9, 10], and ground experiments reported by
Horvath et al. [11] with a 5-degree half-angle cone in the NASA Langley 20-Inch Mach 6 tunnel and by Stetson et al.
[12] with a 7-degree half-angle cone in the AEDC Tunnel B at Mach 8 with a 50-Inch diameter test section. The trend is
remarkably different between the ground and flight tests, which indicate that the value of Reξtr ,b/Reξtr ,s is affected not
only by Rern , but also by the freestream conditions and background disturbances. Therefore, an accurate prediction of
the transition location will have to account for the bluntness effects on the amplification of Mack-mode instabilities.

Despite neglecting the nonlinear physical processes involved in boundary-layer transition, the linear stability
approaches have yielded reasonable estimates for transition onset in a broad class of hypersonic flows (see Refs. [10, 13–
15]. Figure 2 shows the evolution of the heat-transfer coefficient for the HIFiRE-1 flight vehicle at t = 21.5 s of the
ascent phase. The transition location is prescribed using the PSE prediction of Li et al. [14]. However, the procedure
to run the stability calculation is decoupled from the computational fluid dynamic (CFD) solver, making the process
impractical for design applications.

Direct computations of boundary layer stability place rather stringent demands on the accuracy of mean flow
calculations, much more so in comparison with that required for the prediction of aerodynamic metrics such as the
skin-friction drag or thermal load. In addition, the solution to the eigenvalue problem associated with the discretized
version of the linear stability equations incurs a significant computational cost. Furthermore, due to the complex
nature of the eigenvalue spectra and their sensitivity to both input parameters and the numerical discretization, stability
computations are difficult to automate, and also require a sufficient expertise by user into the details of the hydrodynamic
stability theory. Consequently, the task of transition prediction based on the N-factor methods has been a specialist’s
domain, also amounting to a single post-processing step that follows the computation of the laminar boundary layer over
the flow configuration of interest.

A common approach to circumvent the difficulty with direct computations of the unstable eigenmodes has been
to use a database look-up procedure based on a precomputed set of linear stability characteristics of locally similar
profiles within the relevant domain of independent parameters [16]. The local boundary-layer characteristics, such as
the boundary-layer thickness, pressure gradient, edge Mach number, or wall-to-adiabatic temperature, are evaluated
during the CFD run to obtain an interpolated value of the disturbance growth rate from the database. Perraud and Durant
[17] investigated this method for Mach 0 to 4.5 conditions with T-S and first mode instabilities, while Pinna et al. [18]
focused on a sharp cone at Mach 6. However, this method is not applicable to nonsharp cones, because the effect of the
entropy layer is not captured by the self-similar profiles as confirmed later in the present paper. A neural network (NN)
based data driven model to predict the disturbance growth characeristics in low-speed flows was first presented by Fuller
et al. [19], who applied the model to free-shear flows. However, a significant advance related to transition prediction in
swept-airfoil boundary layers was made by Crouch et al. [20], who found that the expressivity of the NN model could
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Fig. 2 Streamwise evolution of the heat-transfer coefficient for HIFiRE-1 at t = 21.5 s.

be improved by augmenting the set of scalar variables used in conventional database methods via the slopes of the
appropriately normalized velocity profiles at six equidistant points across the boundary layer. The details of the neural
network architecture used in that paper are somewhat limited; however, a free-forward network based on fully connected
hidden layers was used to approximate the maximum growth rate among all unstable modes at any given station. This
maximum growth rate was integrated along the airfoil surface to evaluate the N-factors. The selection of input features
in Ref. [20] was somewhat arbitrary and is unlikely to lend itself to other instability mechanisms. A recent extension of
the neural network (or, equivalently, deep learning) approach to hypersonic boundary layers over a nominally sharp cone
has been presented by Danvin et al. [21, 22]. Even though the neural network performed well in terms of predicting
the stability characteristics of the targeted flow configurations, it may be noted that the conventional database look-up
procedures have also been highly successful in those cases. In the present work, we present an alternate approach based
on a convolutional neural network, also known as a CNN or a ConvNet. As described by Zafar et al. [23], the CNN can
automatically learn a reduced order representation of the boundary layer profiles in terms of a specified number of most
significant features that can optimally predict the targeted linear stability characteristics across the training space. As
such, the proposed architecture can be easily adapted to predict the amplification characteristics of a broad range of very
different instability mechanisms.

Given the difficulty in both incorporating and applying stability correlations in CFD solvers, transition models
based on the augmentation of Reynolds-averaged Navier-Stokes (RANS) equations are often used for engineering
analysis, especially for subsonic flows. The RANS-based transition models do not include the detailed physics related
to the amplification of the instability waves that drive the actual boundary-layer transition process. For reasons of
computational cost, these models often require that only local information be used to model transition, instead of using
detailed boundary layer profiles for stability analysis or even integral boundary layer parameters that may be used
in metamodels for the stability characteristics. The RANS-based transition models often rely on solving additional
transport equations and using correlations that determine the onset of transition, allowing the codes to switch between
operating in the laminar and turbulent modes. An intermittency factor, γ, is usually introduced in the RANS equations
to allow for the transitional region. The evolution of γ in the transition region is assumed to be universal in an attached
boundary layer within a large range of freestream Reynolds and Mach numbers [24]. The survey of RANS-based models
in Fu and Wang [25] divides the RANS-based transition models into three categories: low-Reynolds number turbulence
models used as transition models, correlation-based transition models, and models formulated in terms of transport
equations involving local variables. Examples of the last class of models include the k − ω − γ model [26, 27], the
γ − Reθt model [28], or the laminar kinetic-energy transition model [29, 30], which all have shown good agreement
with the measured data for selected high-speed configurations. However, by virtue of lacking an adequate representation
of the complex transition process, such models are also less amenable to an extrapolation to new configurations and
must be validated on a case by case basis in general.

The current paper represents a first step toward developing a physics-based transition prediction capability for
high-speed flows that is integrated into CFD flow solvers. To that end, the HIFiRE-1 flight database is used to assess
the two different surrogate models for linear stability computations. §II provides a summary of the linear stability
theory and the convolutional neural network procedure. Results presented in section §III compare predictions using
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simple approaches based on Mangler’s transformation, or even on similar profiles based on local edge values and a
machine-learning approach incorporating a CNN architecture. Finally, summary and concluding remarks are presented
in §IV.

II. Theory
This section introduces the methodologies used in this paper.

A. Linear Stability Theory
In what follows, freestream values are used as the reference values for nondimensionalization. The computational

coordinates, (ξ, η, ζ ), correspond to an orthogonal, body-fitted coordinate system, where ξ denotes the streamwise
coordinate measured along the cone surface, η is the surface-normal coordinate, and ζ is measured along the azimuthal
direction. The relevant metric factors are defined as

hξ = 1 + κη, (1)
hζ = rb + η cos(θ), (2)

where κ denotes the streamwise curvature, rb is the local radius, and θ is the local half-angle along the axisymmetric
surface, i.e., sin(θ) = drb/dξ. For the present straight circular cone (with exception of the nose region that is not
included in this analysis), κ ≡ 0.

The instability characteristics of the axisymmetric boundary layer over the cone is calculated with quasiparallel
linear stability theory (LST), which assumes the boundary-layer profiles to be locally parallel by dropping the streamwise
derivative terms and setting the wall-normal velocity equal to zero. In the LST context, the perturbations have the form

q̃(ξ, η, ζ, t) = q̂(η) exp
[
i (αξ + mζ − ωt)

]
. (3)

The suitably nondimensionalized, orthogonal, curvilinear coordinate system (ξ, η, ζ ) denotes streamwise, wall-normal,
and azimuthal coordinates, respectively, and (u, v,w) represents the corresponding velocity components. Density and
temperature are denoted by ρ and T . The Cartesian coordinates are represented by (x, y, z). The vector of perturbation
fluid variables is q̃(ξ, η, ζ, t) = ( ρ̃, ũ, ṽ, w̃, T̃ )T , the vector of amplitude functions is q̂(η) = ( ρ̂, û, v̂, ŵ, T̂ )T , and the
vector of basic state fluid variables is q̄(η) = ( ρ̄, ū, v̄, w̄, T̄ )T . The streamwise and azimuthal wavenumbers are α and m,
respectively, and ω is the angular frequency of the perturbation. The azimuthal wavelength is defined as λ = 2π/m.
Substituting Eq. (3) into the linearized NS equations, an ordinary-differential-equation (ODE) based generalized
eigenvalue problem (GEVP) can be written in the following form by using the companion matrix method [31] to reduce
the quadratic terms in α from the viscous terms,

Aq̂+ = αBq̂+, (4)

where q̂+(η) = ( ρ̂, û, v̂, ŵ, T̂, αû, αv̂, αŵ, αT̂ )T . The entries of operators A and B are found in Refs. [13, 32]. The GEVP
is solved by the inverse Rayleigh iteration method [33]. The imaginary part of the eigenvalue α represents the damping
rate of the instability wave, and therefore, the growth rate is calculated as

σ = −=(α). (5)

The onset of laminar-turbulent transition is estimated using the logarithmic amplification ratio, the so-called N-factor,
relative to the lower bound location ξlb where the disturbance first becomes unstable,

N =
∫ ξ

ξlb

σ(ξ ′) dξ ′. (6)

Accordingly, we assume that transition onset is likely to occur when the peak N-factor reaches a specified value.

B. Physics-Informed Convolutional Neural Network
Neural networks are a sequence of composite functions, which represent mappings from input p to output y, and are

parametrized by weightsW and biases b that can be learned using available training data. Such sequences of composite
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functions is arranged in form of layers, where an NN with one intermediate (hidden) layer between input and output
layers may be represented by the following composite functional mapping:

y = W(2)h + b(2), (7)
h = λ(W(1)p + b(1)), (8)

where λ is an activation function,W(i) and b(i) represent weights’ matrix and biases vector for ith-layer. Activation
functions introduce the much-needed complexity/nonlinearity in the composite functions of NNs, which enables them
to represent complex mappings. Activation functions can be represented by sigmoid function λ(x) = 1/(1 + e−x ) or
rectifier linear unit (ReLU), λ(x) = max(0, x). Neural network with multiple hidden layers is generally termed as deep
NN.

Fully connected NNs have each neuron connected to every neuron in the previous layer, which is a general-purpose
connection pattern which makes no assumptions about the input features in the data. A fully connected NN is also
more expensive in terms of memory and computation. In comparison, CNNs make use of a number of attributes to
learn efficiently with lower number of model parameters. In the CNN model, each neuron is firstly locally connected to
several neurons in the previous layer to develop a correlation with neighboring neurons. Secondly, the convolutional
kernel has a translational invariance in terms of model parameters. Such attributes allow CNN to achieve comparable
performance much more efficiently [34].

CNN is composed of number of convolutional layers and pooling layers, followed by fully connected layers. For
the details of the CNN (or ConvNet) architecture used in this paper, the reader is referred to Zafar et al. [23], who
showed how this architecture provides a flexible approach to predict linear stability characteristics by learning the
relevant features of the mean boundary-layer profiles. The present work is based on a conceptually similar extension
of that approach to the Mack mode instability in high Mach number flows. Specifically, we introduce the locally
nondimensionalized disturbance frequency ωe = ωδh/ue and the Reynolds number Reδh = ρeueδh/µe , where the
subscript e denotes the value at the boundary-layer edge, into fully connected layers. The boundary-layer edge is defined
as the wall-normal position where ht/ht,∞ = 0.995, with ht denoting the total enthalpy, i.e., ht = h + 0.5(ū2 + v̄2 + w̄2),
where h is the static enthalpy. The azimuthal wavenumber was not introduced because it is set to zero for the planar
Mack waves of interest to the present work. The convolutional and pooling layers mapped the boundary-layer profiles to
physical quantity space. The physical quantities are then nonlinearly mapped to instability growth rate as final output.
This extended network architecture is referred to as physics-informed CNN. The dependence of physical parameters
ωe and Reδh was introduced into the network architecture in an explicit yet flexible manner. That is, the dependency
of instability growth rate on ωe and Reδh along with boundary-layer profiles is known and their exact relation can be
inferred by training. While ωe and Reδh appears to be the preferred choice, other choices of input parameters have also
been tested in the current study with different combinations of boundary-layer profiles.

The convolutional NN architecture is chosen to minimize the mean squared error in growth rate predictions for the
training database, which corresponds to a randomly sampled subset of the overall data. Convolutional kernels of size 3
x 1 are used for feature extraction from the boundary layer profiles sampled at 60 equidistant points from the surface.
The CNN distills the information from these boundary-layer profiles to identify a smaller number of parameters that are
used, along with four scalar input features, as the input to the fully connected layers. A total of seven layers are used in
the fully connected portion of the network and ReLU are used as activation functions throughout the network. The
number of fully connected layers is selected empirically, to ensure a sufficiently expressive neural network that is able to
learn all of the required information without causing an overfitting of the data. The above CNN architecture has been
implemented by using the machine learning framework PyTorch.

III. Results
The basic state approximations to the axisymmetric boundary layer over a circular cone at zero degrees angle of

attack in a hypersonic free stream are presented first. Quasiparallel linear stability theory (LST) is used to calculate the
instability characteristics of the selected basic state approximations, namely, the laminar Navier-Stokes (NS) solution, a
sharp-cone self-similar solution based on Taylor-Maccoll (TM) post-shock conditions and the Mangler transformation,
and self-similar solutions that locally match the boundary-layer-edge (LE) characteristics and boundary-layer thickness
of the Navier-Stokes solution. Then, the performance of the physics-informed convolutional NN based on a database
composed by LST results for laminar NS solutions is evaluated.
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A. Basic State Approximations
The flow configuration of interest corresponds to the HIFiRE-1 geometry, specifically, a 7◦ half-angle, circular cone

at zero-degrees angle of attack in a hypersonic free stream. The length of the cone is Lc = 1.0 m, and the nose radius is
rn = 2.5 mm. The basic state corresponding to the laminar boundary-layer flow over the cone surface is computed by
using a second-order accurate algorithm as implemented in the finite-volume compressible Navier-Stokes flow solver
VULCAN-CFD∗ [35]. The VULCAN-CFD solution is based on the full Navier-Stokes equations and uses the solver’s
built-in capability to iteratively adapt the computational grid to the shock. Sutherland’s law is assumed for bulk viscosity.

The freestream conditions are selected to replicate those of the HIFiRE-1 flight experiment during the ascent phase
[36]. The specific conditions for the selected times and the corresponding measured transition locations are shown in
Table 1. The imposed surface temperature distribution was obtained by combining the results of thermal analysis based
on axisymmetric, finite-element calculations using the AFRL TOPAZ code [37] and the experimental data based on
thermocouple measurements [36]. Li et al. [14] present a thorough stability analysis of the flight experiment. Figure 3(a)
shows the prescribed distribution of surface temperature along the length of the cone for t = 21.5 s.

Table 1 Freestream conditions at selected times during ascent phase of HIFiRE-1 vehicle and measured
transition locations [14].

Time (s) p̄∞ (Pa) T̄∞ (K) M∞ Re∞ (106 m−1) Altitude (km) ξtr (m)
17.5 16, 416.3 213.4 3.82 21.37 13.66 −

18.0 15, 011.2 209.9 4.10 21.44 14.22 −

19.0 12, 317.9 205.3 4.66 20.58 15.42 0.672
20.0 9, 851.9 201.0 5.07 18.46 16.75 0.708
21.5 6, 878.1 201.4 5.30 13.42 18.86 0.847
22.0 6, 102.5 203.7 5.31 11.74 19.58 0.929
23.0 4, 811.9 209.2 5.31 8.93 21.03 −

25.0 3, 014.7 219.6 5.36 5.29 24.00 −

27.0 1, 886.1 225.0 5.41 3.29 27.07 −

The computational grid has 865 points in the streamwise direction and 513 points in the wall normal direction.
A minimum of 120 points is clustered next to the cone surface to resolve the thickness of the boundary layer. This
grid resolution is based on the work of Li et al. [14], who computed the laminar flow over the HIFiRE-1 geometry at
selected instances of times during the flight experiment by using the VULCAN-CFD flow solver. They also performed
a grid-convergence test by doubling the number of points in each direction, and furthermore, verified the results by
comparing the solution with that computed with a different Navier-Stokes solver in the form of the CFL3D code [38].

The edge Mach number Me and boundary-layer thickness δh are plotted in Figs. 3(b) and 3(c), respectively, for the
flight time t = 21.5 s. Besides the NS solution, the boundary-layer solution corresponding to a sharp cone with the same
freestream conditions, which are related to boundary-layer-edge values through the Taylor-Maccoll (TM) equations, is
also used with a constant wall temperature of Tw = 393.44 K that corresponds to a wall-to-adiabatic temperature of
Tw/Tw,ad = 0.34. Figure 3(b) shows how the edge Mach number of the NS solution nearly coincides with that of the
TM solution for ξ > 0.2 m, however, Fig. 3(c) shows that the boundary-layer thickness of the TM solution does not
match the NS solution within the length of the cone. Therefore, two boundary-layer solutions composed by self-similar
profiles that match the local edge (LE) values and boundary-layer thickness of the NS solution have been calculated,
one locally assuming a zero-pressure gradient through selecting the Hartree parameter equal to zero (βH = 0) and one
including the local pressure gradient effects with βH , 0, as made by Perraud and Durant [17]. The streamwise velocity
and temperature profiles with the four approaches are compared in Fig. 4 at ξ = 0.2, 0.4, 0.6, and 0.8 m. The profiles
based on LE values agree better than the TM solution, but the profile comparisons show clear differences in the vicinity
of the boundary-layer edge even for ξ = 0.8 m. Therefore, the effect of the entropy layer generated by the blunt nose tip
extends over the length of the cone, although, as shown in Fig. 3(b), the edge Mach number coincides with the sharp
cone solution for ξ > 0.2 m.

∗visit http://vulcan-cfd.larc.nasa.gov for further information about the VULCAN-CFD solver
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Fig. 3 Streamwise evolution of (a) wall temperature, (b) edge Mach number, and (c) boundary layer thickness
for the Navier-Stokes (NS) and sharp-cone self-similar based on Taylor-Maccoll (TM) solutions. The wall
temperature values measured in the flight experiments are included.
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Fig. 5 (a) Neutral curves and (b) N-factor envelopes of planar Mack-mode disturbances for the HIFiRE-1
vehicle at flow conditions corresponding to a flight ascent time of t = 21.5 s.

B. Instability Characteristics
Experimental measurements and theoretical predictions based on the parabolized stability equations (PSE) have

confirmed that laminar-turbulent transition in this flow is driven by the modal growth of planar Mack-mode instabilities
[14]. For the conditions of the experiment at t = 21.5 s, transition onset in the cone was measured to occur near
ξtr = 0.847 m. The peak N-factor at the measured transition location was calculated with the parabolized stability
equations by Li et al. [14] and resulted in an Ntr = 14.51. The peak N-factor is first reached by a planar Mack-mode
disturbance with a frequency of f = 530 kHz. Here, the quasiparallel LST is used to calculated the instability
characteristics of the flow field, because the nonparallel effects are negligible for this configuration. Quasiparallel
LST gives an N-factor of N = 14.63 at ξtr = 0.847 m. Figure 5(a) shows the neutral stability curve for the selected
basic flow approaches. Neither planar nor oblique first-mode instabilities were found to be unstable in the present
boundary-layer flow because of the low surface temperature relative to the adiabatic temperature. The neutral stability
curves show that the onset of Mack-mode instabilities for the basic state solutions based on self-similar profiles is
significantly upstream in comparison with the profiles based on the NS solution. The discrepancy between the TM
and NS solutions in regard to the range of unstable frequencies is corrected by the LE solutions. However, Fig. 5(b)
shows that the N-factor values for the LE solutions are higher than those corresponding to TM and NS basic state
solutions. The addition of the favorable pressure gradient through the Hartree parameter reduces the N-factor values,
but only slightly, and the disagreement with the NS solution remains unacceptable. Using the same transition N-factor
of Ntr = 14.63, the predicted transition location for the LE solution with βH , 0 has a relative error of 39.3%. On the
other hand, the sharp-cone solution based on TM post-shock conditions lead to a relative error of 21.7%. It is worth
noting that the blunt-to-sharp transition Reynolds number ratio for the present configuration with ReRN = 33, 550
is equal to Reξtr ,b/Reξtr ,s = ξtr,b/ξtr,s = 1.31, which is consistent with the Reentry-F flight data from Fig. 1. The
different slopes for the ground and flight data in Fig. 1 could be related to the different associated transition N-factor.
Figure 5(b) shows that for Ntr = 5, which is a typical value for ground experiments in conventional hypersonic tunnels,
the blunt-to-sharp transition Reynolds number ratio would be Reξtr ,b/Reξtr ,s = 2.88; this ratio is also consistent with
the ground experiment data from Fig. 1.

The large discrepancies in N-factor envelopes between the basic state solutions observed in Fig. 5(b) is further
examined in Fig. 6 by comparing the growth-rate spectra at selected streamwise locations. The growth rates for the TM
and the LE basic states are consistently larger than those for the NS basic state. The N-factor envelope for the TM
solution shows a closer agreement with that of the NS solution, but the frequency range of the Mack-mode instabilities
is remarkably different from the NS case.

C. Performance of the Physics-Informed Convolutional Neural Network
Herein, the results assessing the predictive performance of the machine learning model are presented. The database

is composed of the LST results for 693 basic states calculated with the VULCAN-CFD solver for the HIFiRE-1 circular
cone at freestream conditions corresponding to M∞ = 4.0 : 0.25 : 6.0, T̄∞ = 200 K, and p̄∞ = 6, 000 : 2, 000 : 18, 000
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Fig. 6 Growth rates of planar Mack-mode disturbances for the HIFiRE-1 vehicle at flow conditions corre-
sponding to a flight ascent time of t = 21.5 s

Pa, and a constant wall temperature of T̄wall = 300 : 50 : 800 K. The database includes the parameters that define the
boundary layer profiles, namely, ξ/rn , δh (m), ūe (m/s), T̄e (K), ρ̄e (kg/m3), Reδh , Me , and the values of boundary layer
profiles at 61 equispaced points from the wall to η = 3δh . For every streamwise station, the disturbance frequency
ω ∗ δh/ūe and the corresponding growth rate σ ∗ δh calculated with quasiparallel LST with disturbance frequency
increments of ∆ f = 5 kHz. In total, the database contains nearly 4.41 × 106 entries.

The performance of the convolutional NN is first evaluated for the HIFiRE-1 vehicle at the selected times during
ascent phase shown in Table 1. Figure 7 shows the comparison of the N-factor curves with disturbance frequencies of
∆ f = 10 kHz between the LST results and the NN predictions. The agreement is excellent for all cases, and small
discrepancies are distinguishable only in Figs. 7(a) and 7(i), for times t = 17.5 s and t = 27.0 s, respectively. However,
the flow conditions of these two cases lie outside the database conditions, because the freestream Mach number at
t = 17.5 s is M∞ = 3.82, while the minimum value in the database is M∞ = 4.0, and the freestream pressure at t = 27.0
s is P∞ = 1, 886.1 Pa, while the minimum value in the database is P∞ = 6, 000 Pa. Therefore, we expect that the small
differences observed in Figs. 7(a) and 7(i) can be easily reduced by extending the database to include a broader set of
freestream conditions.

The applicability of the NN predictive capability of planar Mack mode amplification to different configurations
is explored next. Figure 8 shows the high level of agreement for four circular cones with a half-angle of 7◦, as the
HIFiRE-1 vehicle, but with nose radii equal to rn = 0.5 rn,0, 1.5 rn,0, 2.0 rn,0, and 4.0 rn,0, where rn,0 = 2.5 mm
corresponds to the nose radius of the HIFiRE-1 vehicle. The freestream flow conditions corresponds to the HIFiRE-1
flight time of t = 20.0 s. Therefore, the NN based on a constant nose radius and selected freestream conditions is able to
predict the downstream movement of the transition location as the nose radius is increased. Figure 9 shows a similar
assessment for a circular cone with a smaller half-angle of 5◦ and a nose radius of rn = 2.5, as the HIFiRE-1 vehicle
for freestream conditions corresponding to t = 20.0 s (Fig. 9(a)) and t = 21.5 s (Fig. 9(b)). For both conditions, the
performance of the NN is excellent.

For the comparisons shown in Figs. 7, 8, and 9, the excellent accuracy of the CNN predictions in relation to ground
truth predictions is not limited to the small number of modes that determine the onset of transition on the bases of the
N-factor correlation, but it seems to cover most of the parameter space where the Mack mode instability is present.

Finally, the robustness of the convolutional NN is evaluated by using underresolved basic state solutions of the
boundary layer over the HIFiRE-1 vehicle at freestream conditions corresponding to the flight ascent time of t = 20.0
s. The quality of the basic state solution is deteriorated by switching off the shock adaptation process (“no adapt.”),
by reducing the discretization order from second to first order (“1st”), and by reducing the number of points in the
wall-normal direction by half (“nη/2”) and by four (“nη/4”). Figure 10 shows the comparison of N-factor envelopes
calculated with LST using the original solution (NS) and the underresolved solutions, and the prediction of the NN
model based on the inputs from the underresolved solutions. A similar comparison for the analogous case with no shock
adaptation but second-order discretization is not shown here because no significant differences were observed relative to
the ground truth predictions. Surprisingly, the prediction of the physics-informed convolutional NN model outperforms
the LST results based on the underresolved basic state solutions, which reflects that the NN model is less sensitive to the
accuracy of the basic state definition than the actual stability computations. Table 2 shows the relative error in transition
location for the LST results (NS) and the NN model using the four underresolved basic state solutions. As expected, the
LST error increases as the accuracy of the basic state solution decreases, yielding an error of nearly 8% for the solution
with no shock adaptation, first discretization order and one fourth the number of wall-normal points with respect to the
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Fig. 7 N-factor curves for planar Mack-mode disturbances over the HIFiRE-1 vehicle at flow conditions
corresponding to flight ascent times: (a) t = 17.5 s, (b) t = 18.0 s, (c) t = 19.0 s (ξtr = 0.672 m), (d) t = 20.0 s
(ξtr = 0.708 m), (e) t = 21.5 s (ξtr = 0.847 m), (f) t = 22.0 s (ξtr = 0.929 m), (g) t = 23.0 s, (h) t = 25.0 s, and (i)
t = 27.0 s. The vertical arrow indicate the transition location.
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Fig. 8 N-factor curves for planar Mack-mode disturbances over a 7◦ half-angle cone with a nose radius of (a)
rn = 0.5 rn,0, (b) rn = 1.5 rn,0, (c) rn = 2.0 rn,0, and (d) rn = 4.0 rn,0, where rn,0 = 2.5 mm, at flow conditions
corresponding to a flight ascent time of t = 20.0 s.
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Fig. 9 N-factor curves for planar Mack-mode disturbances over a 5◦ half-angle cone with a nose radus of
rn = 2.5 mm and at flow conditions corresponding to a flight ascent time of (a) t = 20.0 s and (b) t = 21.5 s.
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Fig. 10 N-factor envelopes for planar Mack-mode disturbances over the HIFiRE-1 vehicle at flow conditions
corresponding to a flight ascent time of t = 21.5 s and selected numerical methods: “no adapt.” refers to no
shock adaptation, “1st” refers to first order finite-volume discretization, “nη/2” refers to a reduction of the
number of points along the wall-normal direction by half, and “nη/4” refers to a reduction by four.

converged solution. However, the relative error of the NN predictions remains below 2% for all of these cases.

Table 2 Performance of physics-informed convolutional NN model with underresolved basic state solutions.

Numerical Method εNS (%) εNN (%)
no adapt. 0.24 0.25
no adapt., 1st 2.60 1.48
no adapt., 1st , nη/2 4.13 1.43
no adapt., 1st , nη/4 7.67 1.14

IV. Summary and Concluding Remarks
Boundary-layer transition modeling approaches based on stability analysis for hypersonic boundary layers at

representative flight conditions are investigated. First, the boundary-layer transition predictions based on quasiparallel
linear stability theory (LST) for self-similar boundary-layer profiles are compared with LST results for the laminar
Navier-Stokes boundary-layer flow over the HIFiRE-1 flight experiment configuration, namely, a 7◦ half-angle cone
with 2.5 mm nose radius at flight ascent time of t = 21.5 s. The simplified boundary-layer flows are calculated for
an equivalent sharp cone using Taylor-Maccoll relations, and for locally equivalent edge values and boundary-layer
thickness with and without local pressure gradient effects. The comparison of streamwise velocity and temperature
profiles show how the entropy layer introduced by the blunt nose-tip extends along the vehicle and leads to modified
profiles that are not fully corrected by the local boundary-layer edge properties and thickness. Although the LST results
for the profiles that match the local boundary-layer properties also match the unstable frequency range of Mack-mode
instabilities, the predicted growth rates are consistently larger than for those calculated with the Navier-Stokes solution,
resulting in transition onset predictions that are in error by approximately 40%. Therefore, the use of stability analysis
results based on self-similar profiles is not appropriate for realistic blunt geometries.

A machine learning approach based on physics-informed convolutional neural network (CNN) trained on LST
calculations for the laminar boundary layer over a 7◦ half-angle cone with with 2.5 mm nose radius at selected freestream
conditions (M∞ = 4.0 : 0.25 : 6.0, T̄∞ = 200 K, and p̄∞ = 6, 000 : 2, 000 : 18, 000 Pa) and an isothermal surface
corresponding to T̄w = 300 : 50 : 8004 K is shown to alleviate the shortcomings of the local similarity model and
provide substantially improved transition predictions for hypersonic flow configurations with moderate entropy layer
effects. The performance of the NN model is evaluted for a broad range of the HIFiRE-1 flight ascent phase times, as
well as for alternate circular cone geometries with a half-angle of 5◦ and nose radii of 1.25, 3.75, 5.0, and 10.0 mm. For
all configurations, the agreement between the NN model predictions and the LST results is excellent. Furthermore, the
NN model is shown to outperform the LST calculations when the basic state solution is underresolved by not invoking
shock adaptation, reducing the discretization order from second to first, and by reducing the number of wall-normal
points.
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The present study provides a preliminary proof of concept to establish the feasibility of accurate, robust, yet higly
efficient stability predictions via the deep learning approach. We note that stability computations for axisymmetric cones
can be performed in a relatively straighforward manner. However, the deep learning approach is found to generalize well
to cones with nonuniform surface temperature distributions, a different cone angle in comparison with the 7◦ half-angle
cone used during training, and even to freestream conditions that amount to an extrapolation beyond the parameter
space covered by the training space. Thus, with limited extra validation, it is quite possible that the present model or a
modification thereto based on transfer learning would also apply to other flow configurations involving the Mack mode
instability. Another benefit of this model is that the prediction of the disturbance growth rates requires little expertise on
the user’s part, making physics-based transition prediction accessible to nonexpert users. On a practical front, the highly
efficient transition predictions based on this model can be used for accurate estimations of the temporal variations in the
heat load on the vehicle as the latter flies through various candidate trajectories, making it a useful, physics-based tool
during trajectory analysis. The follow-on efforts will focus on the integration of the stability-based transition model
within a CFD computation for an automated prediction of the transition location.
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