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Abstract—We describe analytic methods for the design of the
discrete elements of ultralight lattice structures. This modular
building block strategy allows for relatively simple element man-
ufacturing as well as relatively simple robotic assembly of low
mass-density structures on orbit, with potential for disassembly
and reassembly into highly varying and large structures. This
method also results in a structure that is easily navigable by rel-
atively small, mobile robots. The geometry of the cell can allow
for high packing efficiency to minimize wasted payload volume
while maximizing structural performance and constructability.
We describe the effect of geometry choices on the mechanical
properties and automated robotic constructability of a final
system. Geometric properties considered include number of
attachments per voxel, number of attachments per coefficient
of volume, and effects of vertex, edge, and face connectivity of
the unit cell. Mechanical properties considered include strength
scaling, modulus scaling, and packing efficiency of the lattice.
Automated constructibility metrics include volume allowance
for an end-effector, strut clearance angle for an end-effector,
and packing efficiency. These metrics were applied to six lattice
unit cell geometries: cube, cuboctahedron, octahedron, octet,
rhombic dodecahedron, and truncated octahedron. A case study
is presented to determine the most suitable lattice system for a
specific set of strength and modulus scaling requirements while
optimizing for ease of robotic assembly.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1. INTRODUCTION
This paper describes analytic methods for design of the
discrete elements of assembled ultralight lattice structures.
These modular building block based structures are intended
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to enable relatively simple robotic assembly of low mass-
density structures with the capability to be disassembled and
reassembled into varying configurations. These structures
are envisioned to have broad utility, largely as the primary
structure for various applications including kilometer scale
telescope arrays [1], large space habitats [2], spacecraft struc-
tures, or even as adaptable emergency ground structures.

The objective of this work is to investigate candidate cell
geometries and to assess their suitability for local reference
robotic assembly. This is accomplished by analyzing relevant
metrics, such as mechanical performance, manufacturing
methods, and effects on robot locomotion, to provide baseline
data to inform design choices for the cell geometry of an
integrated, robotically-assembled lattice structural system.

A brief literature review of cellular solids and automated
manufacturing technologies is presented, followed by the
methodology and metrics. Results for the study are presented
as well as a discussion of the findings and lessons learned.

2. BACKGROUND
Cellular Solids

The field of cellular solids encompasses natural cellular ma-
terials, such as bones, wood, and cork, which have stochastic
cells, as well as engineered cellular solids, such as foams,
architected lattice structures, and honeycomb core sandwich
panels. They are characterized by an open substructure, very
light mass density, and high surface area and often display
multi-functional characteristics. Unit cell geometry of the
substructure, together with constituent material, governs the
resulting mechanical performance of the bulk lattice. Pio-
neering work by Gibson and Ashby [3] has established that
the stiffness and strength of any cellular solid are, respec-
tively:

E ∝ ρα (1)

σ ∝ ρβ (2)
where ρ is the relative reference density (lattice density
normalized by constituent material density), and α and β are
geometry dependent constants greater than or equal to 1. An
ideally performing lattice has α and β approximately equal to
1.

Complex geometries associated with cellular materials
present many manufacturing challenges, but recent advances
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in additive manufacturing (i.e., 3D printing) have given
researchers new tools to carefully design lattice geometry.
These materials are generally classified as architected mate-
rials, and have demonstrated near-ideal performance [4–6].
There are various typical fabrication methods, including two-
photon lithography direct laser writing of hollow tube alu-
mina nano-lattices [7]. Zheng et al. has shown the fabrica-
tion of a record ultra-light and ultra-strong microlattice on
the centimeter scale using projection microstereolithography
[8]. Such local/relative reference performance can also be
achieved through polyjet 3D printing with print resolution
on the micrometer scale [9]. While these lattices provide
outstanding mechanical performance, the manufacturing size
limits of these processes restrict these monolithic structures
to the nano- to centimeter scale.

Recent work in discretely assembled lattice structures demon-
strates a strategy to scalably manufacture architected lattice
structures with comparable absolute mechanical performance
to those made with additive manufacturing. Unlike 2D
sheet-based assembled fabrication [10], discretely assembled
lattices are a system of modular unit cells repeated in 3D
to create larger structures. Using these unit cells, termed
voxels, to build a larger working structure is part of the field
described by Cheung and Gershenfeld as ”digital materials”
[4]. There are many advantages to this process, including
an unlimited build envelope, reconfigurability, and tunability.
These systems have been demonstrated in a variety of appli-
cations, including as the substructure for a morphing, twisting
plane wing [11]. Jenett et al. used unit cells made of out of
unidirectional carbon fiber tubes and injection molded joints
to create bridges and structures that could support the weight
of a human [12]. Fully injection molded unit cells at ultra-
light densities have been demonstrated by Gregg et al. [6].

Discrete, Robotic Assembly

The unlimited build envelope and opportunity for error cor-
rection and repair [6] suggest discrete lattice assembly sys-
tems as a viable strategy for creating meter scale (or larger)
structures that utilize the outstanding mechanical perfor-
mance of architected materials. However, to truly enable
scalability in space applications, automated robotic assembly
is highly desirable due to the high number of connections
and limitations of current EVA processes [13]. Due to their
discrete, repeating nature, lattice systems in general are well
suited for large scale robotic assembly [14]. Though not
categorized as cellular materials, automated manufacturing
systems for truss assembly have been previously explored for
space applications. The Automated Structural Research Lab
at NASA Langley describes an autonomous truss assembler
that constructs an eight meter diameter planar structure [15].
In the cellular and digital materials literature, gantry style
robotic assemblers have been used to create lattice structures
from node connected octahedral unit cells [16].

Limitations associated with conventional robotic assembly
systems, such as a gantry or robot arm style assemblers, in-
clude build envelope limitations of the assembler and reliance
on a absolute reference system of fixed envelope. Beyond
this envelope, error identification and correction capability
necessarily degrades. With a goal of overcoming scaling
problems associated with fixed global metrology to enable
much larger scale lattice structures (such as kilometer scale),
digital material assembly systems propose the utilization of
local reference and metrology based robots assembly robots
that travel along periodic structures. Such systems should
allow for extensive parallelization. Early examples of digital-
structure, local-reference based locomotion include the Mod-

ular Assembly System work conducted by Terada and Mu-
rata, with modular blocks that have integrated attachment
mechanisms [17], and BILL-E, a bi-pedal inchworm robot
that walks along the outside of a lattice structure [18].

Since local reference robots are intended to locomote on the
structure as well as to assemble it, the lattice geometry and
robotic design are very closely integrated. Depending on
the desired application and required lattice performance, we
can choose an appropriate lattice geometry and design an
associated robotic system. However, are there certain ge-
ometries that are more suitable for robotic assembly than oth-
ers? In this study, we analyze prospective lattice geometries
and attempt to evaluate the relationship between mechanical
performance and ease of robotic assembly. In doing so, we
seek to provide a framework for evaluating lattice and robotic
systems to co-optimize lattice and robotic performance in the
context of application constraints to yield a high performance,
reliably automated, discrete lattice system.

3. METHODOLOGY
To determine the best suited geometry for a digital material
lattice system, we defined metrics to compare potential can-
didates. These metrics were intended as tools for objective
decision making for current and future digital lattice material
designers. For this study, a comprehensive set of metrics
was designed to assess the viability of the geometry as a
high performance, robotically assembleable voxel unit. This
study allowed us to explore the advantages, disadvantages,
and risks of each design. The end product of this analysis is
a case study to determine geometries that appear to be well
suited for large-scale local reference robotic assembly.

Geometry Candidates

Lattice framework options were generated though the discrete
affine translation of space-filling polyhedra. Also referred to
as convex uniform honeycombs, these uniform tessellations
fill three-dimensional space with non-overlapping convex
uniform polyhedral cells. Each honeycomb consists of one
or more types of polyhedra. These patterns were then divided
into two groups: regular and heterogeneous. In this study, a
lattice framework was referred to as ”regular” if the tessel-
lation is composed entirely of equal length struts and can be
decomposed into a single repeating unit cell; that is, only one
polyhedral unit cell geometry was needed to create the lattice.
A ”heterogeneous” lattice required more than one polyhedra
unit cell type to tessellate the space.

Engineered periodic cellular structures are also represented
in the literature from non-convex repeating units [3, 19], as
well as with cell walls as closed cell structures [20]. Neither
are considered for this study, for the purpose of limiting the
complexity of the lattice and associated robotic assembly.
Although recent results suggest that closed-cell lattices are
more mechanically efficient, they were not considered here
to enable internal cell access for robotic assembly, inspection,
and locomotion operations.

We have compiled a list of convex polyhedra that tessellate
regularly in 3D space, shown in Figure 5 in the Appendix.
The branch of regular lattice frameworks is complete as far
as is known, while the branch of heterogeneous frameworks
lists only a small number of the possible tessellations that are
known and described in the literature.
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Fixed Assumptions

To bound the design problem, several assumptions were made
regarding discrete unit cell joining methodology. Prior to the
design study, a range of possible methods for the joining of
the lattice structures were explored, including thermoplastic
and thermoset polymers, mechanical joining, welding, adhe-
sives, and molding. Although other methods may be used
in creating high performance lattice structures, we focused
in this study on mechanical joining due to its flexibility and
known reliability through multiple attachment and detach-
ment cycles [21]. Mechanical joints can range from threaded
as bolts and nuts, to bayonet type, to complicated latching
linkage systems and more. For the purposes of this paper,
we assumed a captive generic threaded bolt and nut joint
for vertex attached structures. Face and edge attachments
were also explored during the course of this study, but we
were unable to identify well-characterized high strength lin-
ear or planar reversible mechanical attachment mechanisms
in the literature (that were not otherwise well characterized
as a finite set of discrete point connections). Incidentally,
to remove the need for mechanical feeding systems in the
robotic assembler, captive fastening mechanisms were treated
as a requirement. We find that most mechanisms involving
discrete mating parts are not difficult to implement as captive
parts.

Design Parameters

To evaluate a given cell geometry against system require-
ments, design parameters were established. For any given
application, thresholds and optimum values can be defined
for each parameter to define system performance.

We define an adjacency as the location of neighboring voxels
with respect to each other, occurring at either the face, edge,
or vertex. An attachment is defined as the fastener location,
which can in principle also be at the face, edge, or vertex.
The nomenclature used here to describe this complete set
is in the format of Geometry-Adjacency-Attachment (e.g.,
Cube-Face-Face), and is seen in Figure 1. Some of the given
unit cell geometries can be employed in numerous ways to
construct lattices, depending on their adjacency. Varying
adjacency type for a given unit cell can alter the resulting
lattice; varying attachment location changed the applicable
types of fastening, and thus the robotic fastening method as
well. Hence, we considered how various adjacency and at-
tachment configurations influenced the dependent properties
of the assembled lattice. For an attachment to be a true
face attachment, it must spread the joining loads over an
entire face. Since we do not consider closed cell geometry,
it follows that we do not consider face attachment mecha-
nisms (open cell face adjacency results in edge attachment as
highest dimensional attachment type).

Number of attachments per voxel—The number of attach-
ments per voxel is considered as a measure of the complexity
of the unit cell.

Number of attachments per adjacency—The number of at-
tachments per adjacency is also considered as a measure of
cell complexity, and is a function of adjacency and attachment
types.

Coefficient of Volume—Coefficient of Volume is defined as
the ratio of the volume contained within the convex hull of
the voxel geometry to the space filling repeating volume that
defines its assembly to the intended lattice geometry. For
example, for a cuboct lattice, this can be either the volume

Figure 1. Examples of geometry configurations with
attachment locations shown in gray. An adjacency refers to

the location of a neighboring voxel with respect to the origin
voxel. An attachment is defined as the fastener location.

Starting in the top left and moving clockwise, 1 and 3 are SC
tiling, while 2 and 4 are BCC.

of an octahedron to the volume of the cube enclosing that
octahedron per simple cubic packing, or the volume of a
cuboctahedron to the same.

Average number of attachments per coefficient of volume—
The average number of attachments per coefficient of volume
as defined above.

Geometric Effects (Dependent Properties)

Stiffness and Strength Scaling—It is shown in literature that
stiffness and strength scaling are governed by the cell wall
bending and can be determined using beam theory and di-
mensional analysis [3, 22]. The resulting scaling laws with
respect to the relative reference density are shown in equation
1 and 2.

A few geometries are particularly well studied in the field
of cellular solid materials. Where possible, empirical values
for the stiffness and strength scaling were identified and cited
herein. If experimental results were not available, computa-
tional estimations for the scaling laws were determined using
the connectivity of the unit cell, as described by Deshpande
et al. [23]. This provided a coarse estimation of the behavior
of the lattice depending on whether the structure is transverse
bend or axial stretch dominated, in terms of microstructural
behavior under load.

Assembly Efficiency—We define assembly efficiency to in-
clude the cost and time of assembly as well as the method
(COTS vs custom) and the tolerances required.

Efficient assembly is seen as key to achieving an efficient
overall system. Assuming the consistent use of mechani-
cal fasteners as stated earlier, the number of fasteners was
considered to be a primary factor in determining assembly
efficiency.
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Tiling— The tiling of the unit cell referred to the packing
type of the unit cells once they were fastened to each other.
Simple cubic packing (SC) occurred when consecutive layers
of unit cells lay directly on top of the cells below them. Body
centered cubic (BCC) tiling was defined as alternating layers
of cells sitting offset to one another. This can be seen in
Figure 1. Tiling and the spatial relationship of unit cells
became important when characterizing the complexity of
locomotion needed by the robot to move across the structure.

Packing efficiency— The packing efficiency relates the de-
ployed volume (the volume of a completed lattice) to the
payload volume of unassembled voxels.

Volume allowance for robotic end-effector—The robotic end-
effector must be able to access all attachment points in order
to join unit cells to each other. It is presumed that a larger
volume allowance offers more range of motion to maneuver
to each attachment. This was calculated by determining the
volume ratio of the largest clearance volume for the end-
effector to enter and exit the unit cell to the total volume of
the cell. This end-effector clearance volume can be visualized
in Figure 2.

Figure 2. Images of end-effector clearance volume for
some unit cells with arrows indicating which direction the

end-effector enters the unit cell. The clearance volume is the
largest volume for an and effector for enter and exit a cell for

assembly. The ratio of the clearance volume and the total
volume of the unit cell defines the volume allowance for the

end-effector.

Strut Clearance Angle— The strut clearance angle, θ, was
another metric related to end-effector clearance. It was
defined as the angle between the vector orthogonal to the node
and the adjacent strut, as shown in Figure 3. A larger angle
provided more clearance for the end-effector to operate near
the node.

Figure 3. The strut clearance angle is defined as the angle
between the end-effector entry vector (the vector orthogonal

to the node), and the nearest adjacent strut.

4. RESULTS
The polyhedra studied in this analysis, shown in Figure 4, are:

• Cube

• Cuboctahedron
• Octahedron
• Octet
• Rhombic Dodecahedron
• Truncated Octahedron

Figure 4. Images of chosen polyhedral unit cells for
analysis.

The candidates were then divided by their geometry configu-
rations, i.e., the types of adjacencies and attachments that the
polyhedra can have in order to create their resulting lattice.
The independent properties described in the Methodology
section above are listed in Table 1. These include the number
of attachments per voxel, number of attachments per adja-
cency, average number of attachments per coefficient of vol-
ume (COV), and symmetry type. The truncated octahedron
and rhombic dodecahedron have significantly higher numbers
of attachments per voxel. The rhombic dodecahedron and the
cube had the highest average number of attachments per COV.
All of the geometries had four fold symmetry.

The dependent metrics for the selected candidates are shown
in Table 2. These include the stiffness and strength scaling,
tiling, packing efficiency, volume allowance for an end-
effector, and strut clearance angle for an end-effector. The
cuboctahedron, octahedron, octet, and truncated octahedron
scaling factors are found in literature. About half of the
geometry candidates are found to have simple cubic tiling.
While the cube shows the highest volume allowance for an
end-effector, it also provides the least amount of clearance,
as will be explained in the following Discussion section.
The octet unit cell shows zero volume allowance for an end-
effector due to its complex shape and the presence of interior
struts.

5. DISCUSSION
Metrics Discussion

The particular weighting of various metrics in evaluating
geometries are application specific, but the compilation in this
study provides insight into how candidate geometries affect
robotic assembly and mechanical performance. Though most
structural applications optimize for high specific strength and
stiffness, the sufficiency of any geometry scaling is applica-
tion dependent. For example, energy absorption applications
may desire quadratic scaling materials with bending domi-
nated microstructural behavior.
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Table 1. Independent Properties
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Cube Face Edge 24 4 12.0
Cube Face Vertex 24 4 12.0
Cube Edge Edge 12 1 6.00
Cube Edge Vertex 24 2 12.0
Cube Vertex Vertex 8 1 4.00
Cuboctahedron Face Edge 24 4 5.09
Cuboctahedron Face Vertex 24 4 5.09
Cuboctahedron Vertex Vertex 12 1 2.55
Octahedron Vertex Vertex 6 1 6.37
Octet Edge Edge 24 1 4.26
Octet Edge Vertex 30 1.25 5.32
Rhombic Dodecahedron Face Vertex 12 4 7.79
Truncated Octahedron Face Edge 72 5.14 2.83
Truncated Octahedron Face Vertex 72 5.14 2.83

To simplify the assembly process and increase reliability, a
reduction in the number of robotic processes is advantageous.
A lower number of attachments per voxel indicates a lower
number of fasteners (a decrease in requirement for robotic
fastening) and likely faster assembly times. This measure-
ment was also normalized by the number of adjacencies per
voxel, as well as the coefficient of volume to better capture
how the attachment quantities propagate across a completed
lattice. The data presented in Table 1 shows that there
are several geometries that exhibit a much lower number
of attachments per voxel compared to others. Vertex-vertex
geometry configurations are advantageous in this aspect as
they result in a low number of attachments per voxel, and
therefore have higher assembly efficiency. On the other hand,
a geometry that has a higher number of attachments, greater
robotic assembly requirements, and slower assembly times
may not necessarily result in higher specific strength and
stiffness. It should be noted that there may be mechanical
solutions to actuate multiple attachments at the same time.

Unit cell geometry, when paired with adjacency type, affects
the robotic placement motions needed to assemble a lattice.
When placing a voxel in the proper position (such that it may
be fastened and become part of the structure), interference
with pre-placed voxels is a concern. This results in a number
of placement motions needed for non-interference. It is
expected that more placement motions will require more
degrees of freedom and more mechanisms. This is expected
to increase weight and control parameters, increasing system
complexity and failure modes. Certain geometry configura-
tions, such as Cuboctahedron-Vertex-Vertex, present partic-

ularly difficult placement and interference when alignment
features are incorporated. Regular polyhedra that exhibit
reflectional and 4-fold symmetry have many additional sim-
plifying benefits to a digital material system. As orientation
of the cell during system assembly is not limited to a single
option, this property helps simplify robotic assembly and
fastening by removing additional placement motions.

The existence of alignment features ideally allows for an im-
precise assembler (here, local reference robots) to assemble
precisely, affecting system reliability. Adjacencies can be
used as purely geometric alignment features to aid robotic
assembly. As alignment feature size increases relative to the
unit cell size, accuracy also increases; thus edge adjacencies
have a greater alignment potential than vertex adjacencies.

We consider access to the interior of a voxel structure by
the robot as essential for activation of the attachment with-
out considerably mass-expensive mechanisms. The volume
allowance, shown in Table 2, is intended to provide insight
into interference and trajectories that a robot may encounter.
Higher volume allowances reduce risk for collisions, catch-
ing, and other unexpected issues that may occur during the
assembly process. The cube geometry provides the maxi-
mum volume allowance, while the octet geometry, due to
the internal strut interference, has a volume allowance of
zero. Another metric that affects the end-effector clearance
is the strut clearance angle, shown in Table 2. A larger
angle reduces interference and risk. In the case of the Cube-
Face-Vertex and Octet-Edge-Vertex geometry, the vertex joint
is located in an orientation where the strut is in line with
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Table 2. Dependent Properties
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Cube Face Edge 21 1.51 SC 1 1 90◦

Cube Face Vertex 21 1.51 SC 1 1 0◦

Cube Edge Edge 21 1.51 BCC 2 1 90◦

Cube Edge Vertex 21 1.51 BCC 2 1 54.7◦

Cube Vertex Vertex 21 1.51 BCC 3 1 54.7◦

Cuboctahedron Face Edge 1.52 1.52 SC 1 0.6 90◦

Cuboctahedron Face Vertex 1.52 1.52 SC 1 0.6 45◦

Cuboctahedron Vertex Vertex 1.52 1.52 BCC 3 0.6 60◦

Octahedron Vertex Vertex 1.52 1.52 SC 2.75 0.67 45◦

Octet Edge Edge 1.13 1.13 SC 1 0 90◦

Octet Edge Vertex 1.13 1.13 SC 1 0 0◦

Rhombic Dodecahedron Face Edge 21 1.51 BCC 1 0.5 90◦

Rhombic Dodecahedron Face Vertex 21 1.51 BCC 1 0.5 54.7◦

Truncated Octahedron Face Edge 2.23 1.53 BCC 1 0.56 90◦

Truncated Octahedron Face Vertex 2.23 1.53 BCC 1 0.56 71.6◦

1 Scaling factor was estimated due to the connectivity of the unit cell [23].
2 Scaling factor was experimentally determined by Gregg et al. [6].
3 Scaling factor was experimentally determined by Zheng et al. [5].

the entry vector of the end-effector, requiring an orthogonal
component to either the strut or the fastener direction.

The aforementioned metrics apply to both absolute and local
reference robotic assembly. In the case of a local reference
robotic assembly system, there are additional criteria to con-
sider when evaluating the cell geometry. Since the local
reference robot assembly system consists of the locomotion
system as well as the assembly system, certain aspects of the
cell geometry affect how the robot traverses across the lattice
structure. For instance, the tiling of unit cells affects the
types and number of motion primitives necessary to traverse
the structure. SC tiling of unit cells, compared to BCC
tiling, simplifies robotic locomotion down to the three XYZ
coordinate axes. In locomotion through a BCC tiling lattice,
the robot must traverse extra distance in order to reach the
neighboring voxel.

Additionally, as the local/relative reference assembly robot
transverses the lattice that it is building, it imparts local load
concentrations on the structure. While robot locomotion
loading is reduced in a microgravity environment, it may
result in a damaged or deformed cell in a 1 G environment.
The impact of these loads on the structure and the assembly
process depend on how the voxel is connected to the rest
of the lattice. Having a higher number of attachments per
adjacency, shown in Table 1, increases this connectivity

between voxels, thereby lessening the severity of the robotic
loads effects by providing pathways to react to moment loads.
However, as previously discussed, increasing the connectivity
of a structure will increase robotic assembly complexity, so
this should be balanced with locomotion and path planning
requirements.

Packing efficiency, the essential factor in minimizing the
transport volume of the pre-assembled system, is contingent
on the geometry of the unit cell and the adjacency of the
ensuing lattice. This property is shown in Table 2. In order for
a packing efficiency to be greater than one, there must exist a
packing orientation more efficient than the assembled lattice
itself. This existence depends on the density of the assembled
lattice (if holes exist in comparison to the respective full
lattice) as well as the negative space of the full lattice. Such
holes exist when a unit cell can have multiple adjacency
types; moving from face to edge to vertex adjacency increases
the quantity of the holes. Additionally, if the repeating neg-
ative space of a full lattice is greater than the volume of the
unit cell, it is implied that packing efficiency is greater than
one. Packing efficiency can be increased even further by
breaking down a unit cell into smaller packable components,
but characterization of this option was outside the scope of
the present study.
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Prototypical Selection Process

As a prototypical example, we select here for geometries
that optimize the reliability and ease of local reference robot
assembly while maintaining the highest possible mechanical
properties. For this down selection, time of robotic assembly
is not a concern, but reliability and ease of robotic assembly
are highest priority. Metrics that simplify robotic locomotion,
such as low total number of attachments and end-effector
clearance, are also of high priority. Stiffness and strength
scaling and packing efficiency are important metrics, but are
not as high of a concern.

In our case, the selection process for determining the best
suited geometry for robotic assembly follows a process of
elimination method. From the tree of possible candidates,
Fig. 5, regular non-heterogeneous geometries that meet the
minimum material performance specifications, or are very
close, are selected for further study. In the next pass of
the elimination process, candidate geometries are evaluated
and selected via the above metrics. Geometry configurations
that are non-simple cubic tiling are eliminated due to the
added complexity in locomotion and voxel placement that
they added. Geometry configurations that have zero volume
allowance for the end-effector or have strut interference at the
joints are eliminated. Configurations with a high number of
attachments are also eliminated, and the resulting geometries
below are chosen for the next phase.

The resulting geometries include:

1. Cube-Face-Vertex
2. Cube-Face-Edge
3. Cube-Face-Face
4. Cuboctahedron-Face-Vertex
5. Cuboctahedron-Face-Edge
6. Cuboctahedron-Face-Face
7. Octahedron-Vertex-Vertex

In the final phase of the down selection, the questions that
need to be answered are related to the design of face and
edge attachments and the effects of local reference robot
locomotion and assembly on the structure. Face and edge
attachment mass scale much higher than vertex attachment
mass when multiple designs are evaluated; this leads to the
elimination of those geometry configurations. In evaluating
the remaining geometry configurations for compatibility with
local reference robot locomotion, configurations that have at
least three attachments per adjacency are advantageous be-
cause they allow locomotion on the newly attached structure
directly after attachment. This results in the Cubocahedron-
Face-Vertex geometry being the remaining candidate, and
therefore the best suited geometry for local reference robot
assembly.

Cuboctahedron-Face-Vertex—The Cuboctahedron-Face-Vertex
configuration does not have the lowest total attachment con-
figuration or highest mechanical performing geometry, but
the benefits of having a moment resisting structure from
just one additional unit cell greatly reduces the locomotion
and path planning requirements for the system as a whole.
Volume allowance and strut clearance angle is moderate
compared to the other geometries.

6. CONCLUSION
Discrete lattice structures allow robotic assembly of large
scale structures with high mechanical performance. We

propose using autonomous assembly processes with modular
unit cell building blocks to be able to build these structures
on a larger scale. To develop a high-performing structural
system that is efficient for robotic assembly, multiple types of
geometry were investigated for use as the structural building
block for these lattice systems.

Using metrics catered to robotic assembly while still main-
taining desired structural properties, various polyhedra were
studied. Taking into account the stiffness and strength scal-
ing values of the lattices led to a deeper study of how a
cubic, cuboctahedral, and octahedral unit cell could be au-
tonomously assembled. Metrics including the number of at-
tachments per voxel, ability to form a moment-resisting struc-
ture, and volume allowance for a joining end-effector were
evaluated. It was decided that the most suitable geometry
configuration for a near term local reference robot assembly
project is Cuboctahedron-Face-Vertex. This geometry con-
figuration demonstrated high mechanical performance, while
also providing reasonable end-effector clearance, a moderate
number of attachments, and helping simplify robotic locomo-
tion requirements.

Future work for these systems includes analyzing optimal
attachment schemes for the unit cells. This study was catered
towards local reference robotic assembly, and may be ex-
tensible to metrics and geometries for other digital material
assembly systems, such as extrusion or gantry style assem-
blers. It is hoped that the comparisons made in this study will
aid in the development of automated manufacturing for space
applications.

For this study, we analyzed geometries that resulted in regular
lattices. We further restricted the candidate geometries to
those well studied in the field of cellular materials literature.
Further constraints were accepted with the intent of reducing
system complexity for robotic assembly and to assure that
mechanical behavior metrics could be well characterized, but
it is expected that success of near-term efforts will lead to
future studies that relax these restrictions as robotic systems
develop the capability to handle more complexity and as
cellular mechanics literature progresses.
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