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An area of increasing interest for the next generation of aircraft is autonomy and the
integration of increasingly autonomous systems into the national airspace. Such an integration
requires humans to work closely with autonomous systems, forming teams. Our hypothesis
is that a team composed of both humans and autonomous systems will operate better than
either entity alone. We have existing procedures for certifying pilots to operate in the national
airspace and are currently working on methods for validating the function of autonomous
systems, however we have no method in place for assessing the interaction of these two disparate
systems. Communication is one avenue. This paper will examine the use of language as a metric
for ascertaining human-machine teaming effectiveness.

A proof-of-concept of the application of two communication-based analysis techniques,
Linguistic Inquiry and Word Count (LIWC) and Latent Semantic Analysis (LSA), for the
prediction of success in human/chatbot teaming was conducted. By running these analyses
over data from the 2014 and 2015 Loebner Prize competitions of human/chatbot teaming,
numerical scores were obtained that can be associated with scores provided by human judges
during the competition. Correlating their LIWC and LSA data with the scores provided by the
judges, and using linear regression over this correlation, formulae were obtained that predict
the score of human/chatbot interaction. These formulae were tested over the 2013 Loebner
Prize transcripts, determining that, though there was strong correlation between predicted and
actual scores, the predictive success of this method was not strong. However, with specialized
topic spaces and lexica, as well as larger data sets, the predictive power of these metrics will
improve. Given the importance of providing metrics for human-machine system team success
and given the promise shown by the communication-based LIWC and LSA methods, continuing
research in this area is necessary.

After examining the potential for using communication and spoken language as a metric for
the success of human/autonomous system teaming, this paper then examines aspects inherent
to communication systems that may contribute to unreliability and reduced trust. Modern
natural language processing tools rely on deep learning algorithms to create language rules
that produce accurate results, but these rules are uninterpretable. The resulting blackbox
system lacks transparency necessary for full validation and complete trust. Additionally,
speech-based interfaces pose other difficulties to developing coordinated teamwork between
humans and autonomous systems. Human communication is infrequently limited to speech
only, instead usually relying on a combination of verbal, gestural, and general body language
communication. Reducing an analysis of team effectiveness to a study of spoken language alone
is problematic as it leaves these other equally important forms of communication out. This
paper will examine these problems and the general deficiencies in speech-based metrics for
human-machine teaming.
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I. Introduction

N area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly
Aautonomous systems into the national airspace. Before such systems can be implemented, however, they must first
be certified for use. Given the unique interaction between human operators and autonomous components, we must be
able to certify not only the operation of the autonomous system and the human user individually, but also their operation
as a team. This is especially important because the intention with the implementation of these autonomous systems is
for the heterogeneous team to function better holistically than a homogenous one. Existing procedures for certifying
pilots exist and methods for validating the function of autonomous systems are currently being researched; however,
no methods are currently in place for assessing the interaction of these two disparate systems. Numerous reports and
projects have identified this as a crucial area of research, but little headway has been made in providing metrics to enable
the necessary certification.

It is therefore essential to establish an overview of available information on metrics for validation, verification, and
certification of human/autonomous system teams. The focus of such an overview should be on examining what metrics
have been tried, whether they have proven successful, what has prevented success, and any identified barriers to success.
It is important to remember during such an investigation, however, that we cannot rely on only measurements of the
individual components of the team if we want to be able to accurately predict success. No matter how complex the act
of verifying dynamic and non-deterministic systems becomes, it is worthwhile and necessary to measure how well they
function in situ, as a teammate. Assuring the efficacy of a human/autonomous system team increases the safety of the
national air space through enhancement of autonomy usage and increased reliability in human/autonomy teams.

Additionally, significant focus is being given to certifying autonomous systems through ATTRACTOR (Autonomy
Teaming and TRAjectories for Complex Trusted Operational Reliability). By establishing a basis for certifying trustwor-
thiness and trust, ATTRACTOR seeks to facilitate multi-agent teaming between humans and autonomous/increasingly
autonomous systems. Interaction with such autonomous systems must be intuitive to human operators and rely on
multiple communication modes. To establish metrics for evaluating interactions, methods of understanding and
quantifying aspects of successful teams must be explored. To this end, previous methods both proposed and used to
evaluate the success of human/autonomous system teams are initially presented here.

I1. Background
Previous literature on human/autonomous system teams and existing teaming metrics has identified areas critical to
successful interaction, including trust, confidence, reliance, transparency, etiquette, and frustration. Additional research
from the area of human/robot interaction as well as human/human teaming can be leveraged in this initial analysis as
well. How these metrics are calculated and how they have been used previously provide information on whether they are
applicable to human/autonomous system teams and whether they are useful for ATTRACTOR.

A. Human/Robot Interaction and Human Performance Modeling

Numerous studies into human/robot interaction have allowed for the development of a number of metrics to assess
performance, including neglect tolerance, interface efficiency, fan out, robot attention demand, and human performance
moderator functions. Neglect tolerance describes how well the robot members of a team can function without input
from human members. This metric usually incorporates a measure of neglect time, or how long a robot can be neglected
before its productivity or functionality drops below some usability criteria. It also usually incorporates a measure of
neglect impact, or how the state of a robot may change without interaction from human team members. Neglect tolerance
is solely a method of analyzing robot performance, and usually not in the context of any advanced or increasingly
autonomous systems. Additionally, neglect of one robot is often the result of the human team member applying their
attention to different robotic team member. The application of neglect tolerance to teams with multiple human members,
able to attend to multiple robots at once, is not frequently acknowledged [[1]] [2] [3] [4]] 5] [6] [7] [8].

Interface efficiency describes a measure of how long it takes to interface with a robot, how much effort is needed to
interact with a robot, and how well a robot performs a particular task as a human operator interacts with it. Unlike
neglect tolerance, metrics of interface efficiency measure some aspects of the robots performance but also aspects
of how well the human performs using the robot’s interface. Despite seeming to take into account aspects of human
teammembers, however, interface efficiency metrics really measure intuitiveness and functionality of the interface rather
than human performance. This metric too, then, does not fully encompass the entire team and cannot serve, at least on
its own, as an accurate teaming metric [LL]] [2] [3] [4]] [5] [6] [7] [8].

Robot Attention Demand (RAD) outlines the amount of human operator attention required as a function of interface



efficiency and neglect tolerance. This in turn leads to the "free time" concept, or how much time the human operator
may spend on non-robot related tasks [6] [7]] [9]. Fan-out provides a metric for determining how many robots can
be effectively operated by one human user. Related to neglect tolerance, fan-out tends to increase as robotic team
members become able to operate with less human intervention, intuitively because human operators can ignore them
while providing instructions to other team members. This metric is also related to RAD, increasing as the demand of
each robot decreases [3]] [[LO] [L1]. While these metrics have been centered on addressing robot performance, they are
frequently driven by human input and therefore implicitly model human behavior during interaction with robots.

Some of these metrics may be valuable as-is for use in certifying the human component of a human/autonomous
system team. For instance, situation awareness and workload measurements can provide information on human
performance. More interesting, however, would be to refocus some of these other concepts on the human operator rather
than the autonomous system. What does it mean for the robot to neglect the operator? Is it a measure of human situation
awareness when a robot is not communicating? This definition of human neglect tolerance would certainly have an
impact on situation awareness, which is an established factor in human performance. Quantitatively measuring a robot’s
neglect time and the human operator’s neglect time may lead to the development of a holistic system neglect time that
provides an overall metric for human/autonomous system performance.

Human Performance Moderator Functions (HPMFs) provide a more explicitly human-centric method for assessing
team function. HPMFs are equations developed from a combination of subjective, self-reported measurements as well as
objective, biophysiological measurements of human performance in human/robot teams. These equations are then used
to predict how a human teammember’s performance will be impacted by aspects such as workload, fatigue, temperature,
and many others. Such metrics may lay the groundwork for providing evaluative metrics for human/autonomous system
interaction by using already existing HPMFs to model the human component of human/robot teams. If HPMFs provide
accurate modeling of human/robot teaming, then we already have at our disposal a method for quantitatively assessing
this interaction. However the subjective nature of HPMFs, dependent as they are on self-reported characteristics, makes
this somewhat suspect [[12]] [13]] [[14].

Quantitative evaluation and modeling tools for evaluating human performance have been in use for a while, however.
While evaluation of the human component of a human/autonomous system team will probably be necessary, these
performance models may prove useful as an evaluation tool for the entire team. For instance, evaluating a human
operator’s workload during a task and during the same task with help from an autonomous system can provide us with a
metric for determining any workload benefits associated with the introduction of the autonomous system. In a high risk
area, increases to workload may be a small price for the introduction of an autonomous system, while a low risk area
may be less tolerant of workload increases.

B. Trust

Another focal point of previous research has been trust, focusing especially on the identified components of trust,
including confidence, reliance and reliability, transparency, etiquette, and frustration. Because trust plays such a critical
role in the efficacy of a team, it is important to establish trust with human/autonomy teams. This may mean both the
human trusting the autonomous system as well as the autonomous system trusting the human. Some of the literature
discusses ways for the autonomous system to self-evaluate confidence levels for information reported to the human,
providing a metric for evaluating confidence which, in turn, impacts trust levels in a potentially-quantifiable way [15]
[16]. Finding ways to establish and enhance trust levels, preventing both over-trust and under-reliance, produces more
successful teams [[17] [18] [19]. This may be an area with established metrics that can be leveraged for evaluation,
but if not it may still be important for the impact that it has on other crucial areas of human/autonomy interaction
(communication, transparency, teaming, etc.).

Transparency and Etiquette help describe ways in which the autonomous system can better communicate with the
user to increase trust and, therefore, the success of the team. The more transparent the system is and the more the user
understands decisions made, the more likely the user is to trust in the system. However, transparency comes at a cost —
often presenting all of this extra information takes a toll visually on the user, and misinterpretation of the presented data
can be as detrimental as not presenting any data at all. A system the reports information with etiquette by checking to see
if a user is already responding to a situation before alerting the user, or by not interrupting to present new alerts, often
results in smoother operations. Both of these have been measured qualitatively, but developing quantitative metrics may
allow for better determination of the success of the team [20] [21] [14].

Frustration within a team can work to reduce trust and thereby undermine the overall success of the team. This
aspect has been measured in a number of different ways — including quantitatively — and can provide information



on how effective the human/autonomy team is. Specifically, researchers have used physiological measurements to
determine when it is most likely that a user will quit an interaction. If the autonomous system had such knowledge, they
could personalize settings, information presentation, etc. to help reduce frustration and improve success. Additionally,
researchers have investigated various methods for reducing frustration, by prevention, fixing the problem that lead
to frustration, or reducing the effects. The implementation of the most effective method could lead to improved
human/autonomy teaming, and the use of frustration metrics could allow us to measure this success [22] [23]] [24] [25].

C. Communication

One final aspect of human/autonomous system teaming that could contribute to the development of teaming metrics
is communication. Occurring in many different forms, from spoken to written to input methodologies, communication
between team members can often signal the health of the team based on tone, word choice, or even style of communication
[LLO] [26] [27] [28] [29] [301] 131] [32] [33].

Previous research based on emails used for team communication identified linguistic style matching to correlate to
overall success in teams composed of all humans, as measured in the grades received by teams [27]. Such correlation
has met middling success at predicting how well teams perform, with the best performance focused on the use of
future-oriented words [27]]. Additional research has relied on Latent Semantic Analysis (LSA) to evaluate team cognition
as teams of all humans collaborate to complete tasks such as writing a paper or flying a plane [28].

Communication analysis suggests a unique method for evaluating team success since it is not limited to only one
team member but inherently measures the interaction between multiple team members. Moreover, metrics based on
communication may incorporate evaluation of previously discussed metrics; changes in aspects of trust, frustration,
attention demand, etc. may be realized in changing communication patterns and styles. Communication measurements
may also be made over written and spoken modalities, providing an easy transition from application to human/human
teams to application to human/autonomous system teams.

D. Metric Discussion

Previous research has clearly identified aspects that may help identify good teams — high levels of trust, low
frustration, and a shared workload all contribute to the identification of a good team. However, measuring such subjective
metrics remains problematic. Subjective questionnaires, like the NASA TLX, have been used to allow subjects to
self-select levels of trust [[12]] [13] [[14], but holistic measures of all of these, especially holistic measures applied from
outside the team rather than self-rated among team members, remain more difficult.

Many of the identified metrics focused on only one aspect of the team (i.e., either the human or the autonomy).
Since the goal is for the overall team to be more successful than either of the individual components alone, it is therefore
critical to develop metrics of overall team success rather than component success. While additional individual metrics
may still be necessary (e.g., autonomy verification, pilot certification), identifying methods for holistic evaluation of
the human/autonomous system team is of significant value. Initial review of the extant metrics identified one likely
candidate for a likely holistic metric technique: Communication. This area in particular encompasses data about
other aspects of teaming that have been identified as critical, such as trust, situation awareness, etc., without stopping
to measure these values independently. For example, any changes in situation awareness may appear as changes in
communication, while differing levels of trust may similarly appear in the language used to communicate with the
autonomous system. By examining team communication, it is therefore not necessary to separately measure these
individual aspects. Instead, their contribution the overarching team communication can be measured.

However, existing studies on team communication have focused on teams composed only of humans. As the primary
language users of this planet, such a focus makes a great deal of sense. Is there anything preventing such metrics,
however, from being applied to communication between humans and autonomous systems? As voice recognition and
speech-based interfaces have improved and become increasingly ubiquitous, analyzing their communication not only
becomes possible but may provide insight on team performance. Recent work has identified communication as a
possible method for identifying levels of many of these aspects [34]. Examining the language used between members
can provide additional information on how well the team is performing, and available linguistic analysis methods provide
for quantitative measures of this success [35] [36]. These tools indicate that speech and communication analysis may
allow for evaluating team success.



I1I. Proof of Concept

To identify whether communication between human and autonomous team members can serve as such a metric, a
proof-of-concept of a language-based human/autonomy team analysis has been carried out. Specifically, this project has
been designed to demonstrate the application of metrics that assess communication among human teams to situations
where part of the team is a non-human autonomous system.

Two communication analysis tools described in the literature were evaluated: Latent Semantic Analysis (LSA) and
Linguistic Inquiry and Word Count (LIWC) [36] [35]. Each of these methods analyzes textual communication data
based on differing characteristics, producing numerical results that can be used for predicting the success of a team.
LIWC is a computerized text analysis tool developed by James W. Pennebaker in 1991 to quantify the relation between
natural language features and psychological states [37]. The 2015 version provides 94 different variables and a robust
internal dictionary associating words in the English language with these 94 variables. For 89 of these variables, LIWC
provides a percentage-of-total-wordcount number after analysis, meaning that the software counts the total number of
words in the body of text, then counts the number that correspond to a given category, and provides that percentage. A
number of 4.6 for the variable “Pronoun” would mean that 4.6% of the document was pronouns. In addition, LIWC also
provides five “summary variables” that are based on algorithms proprietary to the software [38]].

LSA is a technique for comparing the semantic space of documents, or even within documents. In LSA, a document
is compared to other documents within a group based on term use frequency. Documents can then be weighted and
compared numerically to produce quantitative assessments of semantic similarity. For this study, a pre-fabricated
LSA tool provided by the University of Colorado — Boulder was used, including their existing semantic topic spaces.
LSA then easily provides numbers for the similarity between differing documents as well as the sentences within each
document [35]].

A. Methodology

These two communication analyses were tested by applying them to transcripts of human/autonomous system teams
in the Loebner Prize competition. The Loebner Prize is an annual competition for artificially intelligent chatbots, where
prizes are awarded for the most human-like bot [39]]. This is essentially a Turing test for chatbots, and the gold medal
and highest monetary prize has been reserved for a chatbot that is able to fool human judges into thinking that it, too, is
human. To date, this medal remains un-awarded. To test how human a chatbot is, each chatbot is asked 20 questions by
a human judge; while these questions change from year to year, within a particular year each chatbot is asked the same
set of questions. The answers given to these questions are then evaluated by human judges in order to obtain an overall
numerical score. Bots with higher scores are better able to approximate humanity and fool judges, and were therefore
more successful [40].

The Loebner Prize is useful for this initial proof-of-concept because it provides transcripts of the communication
between the competing chatbots and a human judge, as well as records of the final scores assigned to each chatbot [41]].
Both communication analysis tools can therefore be run over these transcripts in order to obtain numerical results.
By plotting the numerical results of these analyses against the judge-provided score, formulae defining the relation
between these two variables can be obtained using linear regression. In order to test how well these formulae work, how
effective they are at predicting team success, they can be applied to the data from a previous Loebner Prize Competition.
Running the same analysis techniques over transcripts from this competition, the formulae can then be applied to the
provided numerical results to get our predicted score. These predicted scores can then be compared with the actual
scores assigned by the judges in order to determine the efficacy of the developed scoring metric.

Transcripts of chatbot and human judge conversations from the 2014 and 2015 Loebner Prize competitions were
edited to remove the labels for each statement. Where once the transcript might have read “Judge: My name is...,” it
was made to read only “My name is. .. ” This was done to better mimic verbal communication, where these identifying
labels are not provided. For LIWC analysis, these modified transcripts were used without further changes. For LSA
analysis, the judge’s statements were separated from the chatbot’s statements into two documents for comparison.
For each chatbot, data were collected for all 94 LIWC variables, and for LSA the term and document one-to-many
comparison were gathered, as well as the mean sentence coherency and standard deviation for sentence coherence,
using two different pre-defined corpora. Each data point was then compared with the chatbot’s original, judge-assigned
score to see how well they correlated. For this initial analysis, our correlation threshold was set at Pearson correlation
coeflicient (r) > 0.4 and Two-tailed T-distribution (p) < 0.05.



Table 1 Predictive algorithms, r-values, and p-values based on LIWC and LSA categories

Category Formula r-value p-value
Dictionary Words (0.0307 * Dictionary Words Value) + 3.3985 -0.50 0.0026
Emotional Tone (0.0058 * Emotional Tone Value) + 0.1633 0.57 0.00038
Total Pronouns (-0.0294 * Total Pronouns Value) + 1.2532 0.43 0.0117
Auxiliary Verbs (-0.0358 * Auxiliary Verbs Value) + 1.2 -0.48  0.0039
Prepositions (0.0369 * Prepositions Value) + 0.3597 043 0.0117
Regular Verbs (-0.0222 * Regular Verbs Value) + 1.1738 -0.48  0.0039
Positive Emotion (0.0712 * Positive Emotion Value) + 0.3354 0.49 0.0036
Negations (-0.0479 * Negation Value) + 0.7901 -0.59  0.0003
Insight (-0.0407 * Insight Value) + 0.7868 -0.56  0.0006
Present Focus (-0.0238 * Present Focus Value) + 1.0849 -0.49  0.003
Term Comparisons (2.2315 * Term Comparison Value) — 1.4767 0.55  0.0009

Document Comparison  (0.6727 * Document Comparison Value) + 0.2456  0.45  0.008

IV. Results

Ten LIWC categories showed statistically significant correlation: Total Pronouns, Prepositions, Auxiliary Verbs,
Regular Verbs, Positive Emotion, Present Focus, Dictionary Words, Insight, Emotional Tone, and Negations. Of
these ten categories, eight are the straight forward percentage-of-total-wordcount variables, while Emotional Tone and
Dictionary Words are proprietary summary algorithms native to LIWC. In addition, both LSA Term and Document
comparison, when used with the "General_Reading_up_to_1st_ year_college” corpus, proved correlated with score (see
table EI) For these twelve concepts, then, formulae were obtained using linear regression in order to predict the score
based on a transcript’s value for that variable.

To test the usability of the acquired formulae, LIWC and LSA were applied to transcripts from the 2013 Loebner
Prize competition, processed in the same manner, to obtain values for the twelve correlated variables. These formulae
were then used to predict the scores for these transcripts, and compared these predicted scores with the actual scores
given each chatbot.
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Fig. 1 Predicted score vs. actual score based on LIWC categories with positive correlation

The predicted scores for only eight of the ten LIWC categories were positively correlated. The highest correlation
came from averaging the scores from the three of these variables that were positively correlated and statistically
significant. An average of all LIWC categories with positive correlation predicted scores with an average difference of
16.97% from actual scores (see figure [2). Of these positively correlated categories, only three proved to be statistically
significant: Pronoun, Insight, and FocusPres. Averaging these three categories provided less predictive power, with an
average absolute difference of 17.20% between predicted and actual scores and an r of 0.69 and p of 0.004 (see figure|[I).
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Fig.2 Predicted score vs. actual score based on LIWC categories that were statistically significant

A smaller difference is attainable by relying only on the LIWC summary category “Dictionary Words,” though this
variable has a reduced correlation.

100.00%

90.00%

80.00%
70.00%
60.00%
50.00%

40.00%

Predicted Score

30.00%

20.00%
10.00%

0.00%
50.00% 55.00% 60.00% 65.00% 70.00% 75.00%

Actual Score

Fig.3 Predicted score vs. actual score based on LSA document comparison
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Fig. 4 Predicted score vs. actual score based on LSA term comparison

Both LSA categories provide high correlation between predicted and actual scores. Using document comparison,



LSA predicted scores that differed an average of 15.34% from the actual scores awarded to the chatbots, with an r of
0.72 and a p of 0.002 (see figure[3). Term comparison provided an average difference of 15.84% with an r of 0.73 and p
of 0.002 (see figure[d). The most strongly correlated prediction method provided by LSA was based on term comparison
with a correlation coefficient. Document comparison, however, provided the smallest average difference. Both term
and document comparison proved more strongly correlated with smaller average differences than any LIWC category.
Despite this, reliance on general purpose LSA algorithms and topic spaces produced middling predictive results.

V. Discussion and Limitations

Though there are some LIWC and LSA variables that are significantly correlated with score, their success at score
prediction was not very strong. While this proof-of-concept work demonstrates the possibility of using communication
as a metric of human/autonomy team success, the predictive capability must be improved before these metrics can
be used. Additional and continuing research should focus on increasing this functionality in two key ways. First,
the formulae we used to predict scores were generated from the 34 available transcripts from the 2014 and 2015
Loebner Prize competitions, with testing done over the 2013 competition. With more data points we can develop more
accurate formulae, and even carry out multivariate analysis and generate better formulae from combinations of different
variables that have better predictive power. Second, all of the formulae were developed with off-the-shelf algorithms
and non-specialized dictionaries and lexica. By specializing these databases to the domain of research — either chatbot
communication, for this example, or eventually to the national airspace — researchers can likely generate results that are
far improved. Similarly, implementing our own LSA algorithms, rather than relying on pre-trained and non-specialized
ones provided online, will likely improve our results as well.

As the chatbot case study demonstrates, evaluating the speech patterns between human and autonomous team
members may provide a method for determining the efficacy of the team. However, certain aspects of speech-based
communication and team behaviors could not be studied in this proof-of-concept analysis. Limitations of written
language analysis and team size, as well as the benefits of non-speech data in understanding language are examined in
this section.

The nature of chatbots is such that this study was necessarily conducted over written language. The most intuitive
method of human communication, however, is spoken language, and most real, observable team communication will
likely take this form [42]] [43]. The LIWC and LSA tools used in this study require written transcripts, indicating that
their application to analyzing spoken team communication requires an extra step: speech-to-text translation. Introducing
a stage of translation in this analysis simultaneously introduces the potential for translation errors, leading subsequently
to potential errors in team success analysis. The steady improvement of natural language processing tools suggests that
such errors can be limited, but their likelihood and impact must first be understood [44].

Within each chatbot conversation, every line of dialogue from the human could be safely assumed to be addressed
to the chatbot. Similarly, everything that the chatbot wrote was intended for the human. In two-member teams, the
direction of the dialogue is easy to understand. This relationship is complicated in teams composed of more than
two members, where directions and questions may be given toward any number of fellow teammates. There is some
evidence that the larger the team, the better the performance, due to concurrent work, the ability to handle more tasks
and more complex tasks, and the tendency of humans to perform even practiced tasks better when in the presence of
their peers [45]. The skills necessary to navigate and interpret multi-person conversations could severely impact the
conversation patterns of human/autonomous system teams and make speech monitoring more difficult or potentially less
successful. The sterile enforced two-member environment of this proof-of-concept chatbot study provides no insight on
larger teams.

Additionally, speech-based systems have some inherent limitations, most often understood in the context of speech
processing. Suprasegmental information, including intonation, stress, and even gestural data, is left out of speech
analysis, though often this information includes valuable data on the conveyed content and certainly on team dynamics
[44]. Additionally, recent studies have suggested that multimodal systems that account for gestural suprasegmental data
are more intuitive for users [46] [47]. Extending evaluation beyond just speech data to include additional information on
team gesture, tone, and intonation may lead to better determination of team success. Such measures may be limited,
however, as autonomous systems rarely have the ability to respond with gestures, intonation, or changing stress patterns.

Natural language processing tools used in communication evaluation introduce some further difficulties into the
analysis. Advanced language tools are often black boxes that produce good results without providing complete
understanding of how those results were arrived at [44]. Without offering a way to understand how conclusions about
communication success are drawn, trust in these language analysis tools is inherently reduced. If communication



evaluation is proposed as a way to evaluate team success in order to establish levels of trust and trustworthiness in
human/autonomous system teams, there must simultaneously be trust in the methods used for evaluation.

VI. Conclusion

Despite current limitations, the proof-of-concept described here seems to demonstrate that communication may be a
helpful metric in evaluating human/autonomous system teams. Though limited only to analysis of text, evaluation of
team communication provided methods to predict the overall success. If expanded to incorporate verbal communication,
multimember teams, and suprasegmental information, this suggests the potential for a powerful method of evaluating
teams.

Test and evaluation needs extend beyond the non-trivial issue of dealing with non-deterministic systems and dynamic
environments. In addition to evaluating the autonomous system itself, considering its function as part of a team in
cooperation with humans is critical. Evaluation metrics for determining if increasingly autonomous systems add value to
a given task are likely to inform the adoption and implementation of these systems. Moreover these evaluation procedures
may lead to new training techniques for human operators and collaborators. Because the goal of using increasingly
autonomous system and human teams is to produce results better than homogenous teams, the next generation of metrics
must account for team success.

As ATTRACTOR works to establish a baseline for certifying trust and trustworthiness in such teams, a focus on
communication between these team members may provide necessary and valuable information. Speech analysis has
been identified as an area of interest for evaluating heterogeneous human/autonomous system team success due in no
small part to the intuitive nature of speech-based communication in humans. This study suggests that use of Latent
Semantic Analysis and the Linguistic Inquiry and Word Count tools may provide a method for assessing the success of
team speech patterns to determine their efficacy, providing the necessary tools to aid in certifying safety within the
national airspace. While current natural language processing tools, and therefore speech analysis techniques, bear some
significant difficulties and express some inherent limitations, the intuitiveness and ubiquity of speech identifies it as still
worthy of consideration.
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