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Unstructured anisotropic mesh adaptation is known to be an efficient way to control dis-

cretization errors in Computational Fluid Dynamics (CFD) simulations. Method verification

is required to provide the confidence for routine use in production analysis. The current work

aims at verification of anisotropic mesh adaptation for RANS simulations over the ONERA

M6 wing. The present verification study is performed using four different flow solvers, three

different implementations of the metric field, and three mesh mechanics packages. Two of the

flow solvers use stabilized finite-element discretizations (FUN3D-SFE and GGNS), one uses

finite-volume discretization (FUN3D-FV), and the last one uses mixed finite-volume and finite-

element discretizations (Wolf). The mesh adaptation is based on an error estimator that aims

to control the quadratic error term in the linear interpolation of Mach number. Two sets of

adaptations were performed; the first one controls the interpolation error in L2 norm and the

second one controls the interpolation error in L4 norm. Convergence studies were performed

on the forces and the pitching moment using all four solvers, and the results are compared with

previously verified convergence studies on fixed (nonadapted) meshes. Both forces and pitch-

ing moment on adapted meshes are found to be converging to the fine mesh values faster than

those on fixed meshes. In addition to forces and moments, convergence of surface pressure

and skin friction coefficients at various measurement locations on the wing are also presented.

Adapted-mesh surface pressure distributions agree with the fine fixed mesh pressure distribu-
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tions. Adapted-mesh skin friction distributions contain high frequency noise with mean values

approaching the fixed mesh pressure skin friction distributions.

I. Introduction

The CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences [1] proposes a research strategy

for developing visionary CFD capability by the year 2030. The CFD Vision 2030 study specifically identifies mesh

generation and adaptive-mesh technology to be significant bottlenecks in the current CFD work flow. There has been

an ongoing effort to address the issues that prevent the use of mesh adaptation in routine production analysis. One of

the issues being addressed is the verification of the end-to-end mesh adaptation process for problems of increasing

complexity, including the benchmark test cases listed on the Turbulence Modeling Resource (TMR) web site [2]. The

present work is part of such a verification effort, and focusses on unstructured anisotropic mesh adaptation for RANS

simulations over the ONERA M6 wing.

Mesh adaptation is a means for automating turbulent flow simulations by providing an effective tool for system-

atically reducing discretization errors. In this context, metric-based mesh adaptation that relies on the concept of

continuous mesh and metric fields to control interpolation and output errors has gained broader application. Loseille

et al. [3] demonstrated the potential of metric-based anisotropic mesh adaptation using several three-dimensional test

cases. Fidkowski and Darmofal [4] provide an excellent summary of various techniques for doing anisotropic mesh

adaptation based on output error estimators of CFD simulations. Alauzet and Loseille [5] review the progress made in

anisotropic mesh adaptation for CFD during the last decade. In a more recent paper, Park et al. [6] review the status of

unstructured mesh adaptation, identify the impact of robust automated unstructured mesh technologies, and recommend

the adoption of newly developed and matured unstructured mesh adaptation technologies with an intent of contributing

to the CFD 2030 Vision Study capabilities mentioned in Ref.[1].

Park et al. [7] examined the anisotropic mesh adaptation by decomposing the adaptation cycle into individual

steps consisting of flow solution, error estimation, metric construction and mesh generation (see Fig. 1). Multiple

implementations of each of these steps were compared to each other. The informal Unstructured Grid Adaptation

Working Group (UGAWG) has been formed to continue this process as described in their first benchmark [8]. The

work focused on evaluating adaptive mesh mechanics for analytic metric fields on planar and simple curved domains.

UGAWG’s efforts continued with the verification of various anisotropic mesh adaptation tools using several test cases

including the benchmark cases listed on the TMR wesbsite [9, 10]. TMR provides the results of multiple codes on a set

of uniformly-refined meshes to evaluate the convergence of integrated forces. Independently implemented anisotropic

mesh adaptation procedures showed consistent convergence to fine-mesh forces and moments for each of those test

cases.

The current work is a continuation of the verification efforts of UGAWG, and focusses on the anisotropic mesh
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adaptation for RANS simulations over the ONERA M6 wing. The mesh adaptation is based on a metric field that aims

to control the linear interpolation error in Mach number. The TMR website has detailed documentation for the ONERA

M6 test case and provides results from uniform mesh refinement using multiple numerical schemes that were originally

published by Diskin et al. [11]. The results from the uniformly refined meshes are also used here to compare those

from adapted meshes. The general adaptation methodology and specific implementations evaluated are described in

Section II, adaptive results are then presented for the RANS simulations over ONERA M6 wing.

II. Anisotropic Mesh Adaptation Processes

The components of metric-based anisotropic unstructured mesh adaptation are shown on Fig. 1. Starting with an

initial mesh, a flow solution is computed. The information from the flow solution is used to estimate error and specify a

new mesh resolution request via an anisotropic metric fieldM. If the estimated errors are larger than limits specified

by the practitioner, the current mesh system is modified by mesh mechanics such as edge swap, node movement,

and adding nodes if needed, etc., to conform to the anisotropic metricM. Once the adapted mesh is available, the

previous flow solution is optionally interpolated to the new mesh to provide an initial condition for the flow solver that

approximates the converged solution. This improved initial condition can decrease the execution time and improve

the robustness of the flow solution calculation, but standard initialization is also possible. The process is repeated

until exit criteria are met (e.g., accuracy requirement, resource limit). Details of the specific implementations of these

components is detailed in the following sections.

Initial mesh Flow
solution

Error
estimation
& metric

construction

Continue?Mesh
mechanics

Interpolate
solution

Stop
yes no

Fig. 1 Solution-based mesh adaptation process with optional components indicated by dashed outlines.

There are several ways a metric field,M, can be constructed that encodes anisotropic mesh information. Loseille

and Alauzet [12] provide a thorough introduction to the metric tensor field. Here we consider what is known as the

multiscale metric field. The multiscale metric controls the Lp-norm of the interpolation error of a solution scalar field

[13]. The multiscale metric balances refinement of smooth and nonsmooth regions of the solution, which differs from

classic Hessian-based metric approaches [14] that primarily focus on nonsmooth regions by controlling error in the

L∞-norm. The metric fieldMLp is constructed from the (reconstructed) Hessian,H , of the scalar field that is locally
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scaled by the Hessian determinant, det(H ), and globally scaled to a specified target to get,

MLp = DLp det(H )
−1

2p+d |H |, (1)

where the global scaling DLp ,

DLp =
*...
,

Ct

C ∗
(
det(H )

−1
2p+d |H |

) +///
-

2/d

, (2)

corrects the complexity of the locally scaled Hessian to produceMLp with specified target complexity Ct . |H | is
derived fromH by taking the absolute value of the eigenvalues. Both scaling operations depend on the dimensionality

of the domain, which is d = 3 in the present case. The complexity, C, of a continuous metric field,M, is defined as the

integral,

C(M) =

∫
Ω

√
det(M (x)) dx. (3)

The complexity can be interpreted as the continuous counterpart of the number of vertices in the discrete mesh. The

relationship between C and the number of vertices and elements in the adapted mesh is shown theoretically by [12]

and experimentally by [7, 15]. A mesh conforming toMLp provides optimal control of the scalar field interpolation

error in the Lp-norm. A lower value of p targets weaker variations of the scalar field and a larger value of p targets

rapid variations of the scalar field [13]. Mesh adaptations using the multiscale metric have been performed for various

problems of increasing complexity, and have proven its viability [16, 17]. The various implementations of the multiscale

metric have also been verified for turbulent RANS benchmark problems [10]. For the numerical simulations presented

in this paper, Mach number is chosen as the scalar field.

Mesh adaptation is an inherently nonlinear process. The robustness of the adaptive procedure is enhanced by

optimizing the mesh at a fixed-complexity, which allows for control of Degrees of Freedom (DOF). An adaptive series

of meshes is created by optimizing the metric at a fixed complexity and then increasing the target complexity in a series

of steps. This is done by evaluating Eq. 1 on each mesh after the flow solve to get the next mesh for a fixed complexity.

Typically, 5 to 10 fixed-complexity adaptation iterations are performed before increasing the complexity to the next

target.

III. Flow Solvers, Metric Formulations and Mesh Mechanics

The description of the solution-based mesh adaptation process begins with the flow solver component. Multiple

flow solvers are employed to compute the flow field. The details of the discretization and nonlinear solution scheme

can impact the performance of the flow solver component on the integrated mesh adaptation process, in particular, on

highly anisotropic meshes. The nonlinear update scheme can positively impact the overall robustness of the process
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and a low-diffusion discretization can approximate numerical solutions on coarser meshes better than higher-diffusion

schemes. The various flow solvers used in the verification effort are described below, along with the details of the

corresponding metric field implementation and mesh mechanics packages used.

A. FUN3D-FV

FUN3D-FV (Fully-Unstructured Navier-Stokes 3D) [18, 19] is a finite-volume Navier-Stokes solver in which the

flow variables are stored at the vertices of the mesh. FUN3D-FV can solve the equations on mixed-element meshes,

including tetrahedra, pyramids, prisms and hexahedra. The adaptive meshes in this study contain only tetrahedra. At

interfaces between neighboring control volumes, the inviscid fluxes are computed using the Roe [20] approximate

Riemann solver based on the values on either side of the interface. For 2nd-order accuracy, interface values are

extrapolated from the gradients computed at the mesh vertices. These gradients are reconstructed with an unweighted

least-squares technique [18].

For the discretization of the full viscous fluxes, the required velocity gradients on the dual faces are computed

using the Green-Gauss theorem. On tetrahedral meshes this is equivalent to a Galerkin-type approximation. The

solution at each time step is updated with a backward Euler time-integration scheme. At each time step, the linear

system of equations is approximately solved with a multicolor point-implicit procedure [21]. Local time-step scaling is

employed to accelerate convergence to steady state. The negative Spalart-Allmaras (SA-neg) turbulence model [22]

is loosely-coupled to the meanflow equations, where the meanflow and turbulence model equations are relaxed in an

alternating sequence.

The SA-neg turbulence model requires the distance from every vertex to the nearest no-slip boundary condition. The

standard wall distance calculation in FUN3D-FV finds the nearest surface vertex and then searches adjacent triangles to

see if they are closer than the closest surface vertex. The standard wall distance method overestimates the distance to

the no-slip boundary if the closest triangle is not adjacent to the closest surface vertex, which is a common case for

adapted meshes. An accurate wall distance on adapted meshes is computed by enclosing multiple surface triangles in a

bounding box that is stored in an octree that allows rapid identification but that is then exhaustively searched.

To form the metric, a Hessian of the scalar field is reconstructed by recursive application of L2-projection [23]. The

gradient is computed in each element and a volume-weighted average is collected at each vertex [23]. The 2nd-derivative

Hessian terms are formed by computing the reconstructed gradients using the gradients formed in the first pass. The

mixed derivative terms of the Hessian are averaged. A special boundary treatment is employed. The reconstructed

Hessian on the boundary is replaced with an extrapolation from neighboring interior vertices, which have a well-formed

stencil.

The reconstructed Hessian is then diagonalized into eigenvalues and eigenvectors. The absolute value of the Hessian

is formed by recombining the absolute value of the eigenvalues with eigenvectors to ensure the Hessian is symmetric
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positive definite. The Hessian at each vertex is scaled to control the Lp norm [23] with Eq. (1). The complexity

is computed, and the metric is globally scaled to set its complexity to a specified value. The complexity Eq. (3) is

evaluated discretely by assuming it is piecewise constant in each median dual. The mesh is adapted by refine to

conform to the metric.

The refine open source mesh adaptation mechanics package fulfills the error estimation and mesh mechanics

components. It is available via https://github.com/NASA/refine under the Apache License, Version 2.0. The

current version under development uses the combination of split, collapse, and element swap operations [24]. Some

of these classic operators are undergoing replacement with cavity operators [25]. Vertex relocation is performed to

improve adjacent element shape with a convex combination of ideal vertex locations [26] or nonsmooth optimization

based on Freitag and Ollivier-Gooch [27]. refine requires the domain to be a manifold, and have a one-to-one

correspondence of discrete vertex, segment elements, and triangle elements to geometry node, geometry edge, and

geometry face entities, i.e., virtual topology, chains, and quilts are not supported. Geometry is accessed through the

EGADS application program interface, and parallel execution is facilitated by EGADSlite [28].

B. FUN3D-SFE

FUN3D-SFE is a continuous Stabilized Finite-Element discretization within FUN3D [29] that uses the Streamlined

Upwind Petrov-Galerkin (SUPG) scheme [30, 31].

In the current implementation, the SA-neg turbulence model is tightly coupled with the flow equations, yielding

a nonlinear algebraic system of equations with six variables at each vertex. The alternative wall distance calculation

method, described in the previous FUN3D-FV section, is used with FUN3D-SFE. A linear nodal basis is used in this

study, which is designed to be 2nd-order accurate in space. The current implementation includes the capability for

computing on tetrahedra, hexahedra, pyramids, and prisms, although all the results shown in the present paper are for

purely-tetrahedral meshes.

To advance the solution toward a steady state, the density, velocities, temperature, and the turbulence working

variable are updated in a tightly-coupled Newton-type solver described by Anderson, Newman, and Karman [29]. Here,

an initial update to the flow variables is computed using a locally varying time-step parameter that is later multiplied by

the current CFL number, which is adjusted during the iterative process as described in the next paragraph. At each

iteration, a linearized residual matrix is formed and solved using the GMRES algorithm with a preconditioner based on

an ILU decomposition with two levels of fill [32] and a Krylov subspace dimension of 300.

Using the full update of the variables, the L2 norm of the unsteady residual is compared to its value at the beginning

of the iteration. If the L2 norm after the update is less than one half of the original value, the CFL number is doubled

and the iterative process continues to the next iterative cycle. If the initial L2 reduction target for the residual is not met,

a line search is conducted to determine an appropriate relaxation factor. Here, the L2 norm of the residual is determined
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at four locations along the search direction and the optimal relaxation factor is determined by locating the minimum of

a cubic polynomial curve fit through the samples. After the line search, the solution is updated using the relaxation

factor and the CFL number is neither increased nor decreased.

For the numerical results of the ONERA M6 test case, strong, noslip boundary conditions are used and the finite-

element solution variables are transferred to the FUN3D-FV driver, which subsequently computes the forces by using

previously developed routines. The metric field is calculated using the same method described in Section A. The mesh

is adapted by refine to conform to the metric.

C. GGNS

GGNS (General Geometry Navier-Stokes) is a Boeing-developed flow solver built upon the SUPG finite-element

discretization. The code uses piecewise linear finite elements resulting in a 2nd-order accurate discretization. Additional

1st-order artificial viscosity built upon the DG discretization is added for shock capturing. The indicator triggering

this additional stabilization is based on the oscillation of the Mach number across a cell. The solver uses unstructured

meshes of mixed-element type (tetrahedrons, prisms, and pyramids) as well as purely-tetrahedral meshes. The number

of DOF for the 2nd-order SUPG scheme is equal to the number of vertices in the computational mesh. The discretization

is vertex-based in the sense that it is conservative over the dual volumes of an unstructured mesh. More details on

discretization used in the GGNS solver, including the particular choices of discretization variables and special treatment

of the essential boundary conditions via the Lagrange-multiplier based technique [33], can be found in Kamenetskiy et

al. [34].

The discrete nonlinear solver in the GGNS code implements a variant of the Newton-Krylov-Schwarz algorithm. On

the code level, this is accomplished using PETSc. Time stepping is employed to drive to the steady state solution. On

each time step, an exact Jacobian matrix for the discretization is formed by an automatic differentiation technique. The

linear system arising from the Newton’s method is approximately solved using GMRES with a drop-tolerance-based

block-ILU preconditioner (locally on subdomains) implemented in the context of the additive Schwarz method with

minimal overlap [32]. Right preconditioning is employed to maintain consistency between the nonlinear and linear

residuals. The compact stencil property of the SUPG scheme helps to reduce the fill-in levels in the approximate

factorization, thereby reducing the memory footprint.

A line search is applied along the direction provided by the approximate solution of the linear system. Residual

decrease and physical realizability of the updated state are tracked during the line search. A heuristic feedback algorithm

is implemented to communicate failure of the line search back to the time-stepping algorithm, so that the CFL number

can be increased or decreased as necessary. There is no upper preset limit for the CFL number in the time-marching

algorithm; so Newton-type quadratic convergence (or, at least, superlinear, due to inexact linear solves) is routinely

achieved at steady state.
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The Mach Hessian for each element is evaluated from the flow solution by using a least-squares approach on an

extended stencil in GGNS. GGNS then passes the Hessian at each element to EPIC, which converts it to adaptation

metrics via an element-centered modification of Alauzet and Loseille [23], which minimizes the Lp norm of interpolation

error of the scalar field for a given mesh complexity. In this modification, each elemental Hessian is scaled to control

the Lp norm with Eq. (1). The global scaling factor, DLP , is initialized as Eq. (2). When enabled, the metric gradation

is limited as detailed in the EPIC description. The complexity, Eq. (3), of the resulting elemental adaptive metric is

computed and the global scale factor, DLP , is modified to better match the requested value. The metric is then iteratively

recomputed until the computed complexity is within a specified tolerance of the requested value. A continuous metric

field is generated by Log-Euclidean [35] interpolation of the elemental metrics to the mesh vertices. The metric field

and the mesh are passed to EPIC to adapt the mesh to conform to the metric.

The EPIC anisotropic mesh adaptation package developed at Boeing provides a modular framework for anisotropic

mesh adaptation that can be linked with external flow solvers [36]. EPIC relies on repeated application of edge break,

edge collapse, element reconnection and vertex movement operations to modify a mesh such that element edge lengths

match a given anisotropic metric tensor field. The EPIC includes edge insertion, edge collapse, element swaps, and

vertex movement. The metric field on the adapted mesh is continuously interpolated from the initial metric field.

Several methods are available to preprocess the metric so as to limit minimum and maximum local metric sizes, control

stretching rates of metric size and/or anisotropy, and ensure smoothness of the resulting distribution. In addition, the

metric distribution can be limited relative to the initial mesh and/or to the local geometry surface curvature. The surface

mesh is maintained on an IGES geometry definition with geometric projections and a local remeshing procedure.

D. Wolf

Wolf is a vertex-centered (flow variables are stored at vertices of the mesh), hybrid finite-volume and finite-element

Navier-Stokes solver on unstructured meshes composed of triangles in 2D and tetrahedra in 3D. The convective terms

are formed by the finite-volume method on the dual mesh composed of median cells. The HLLC approximate Riemann

solver [37] computes the flux at the cell interface. Piecewise linear interpolation is based on the Monotonic Upwind

Scheme for Conservation Law (MUSCL) procedure, which uses a particular edge-based formulation with upwind

elements to achieve 2nd-order accuracy in space. A low dissipation scheme uses the combination of centered (edge) and

upwind (element) gradients. A dedicated slope limiter is employed to dampen or eliminate spurious oscillations that

may occur in the vicinity of discontinuities. The viscous terms are formed by the Continuous Galerkin (CG) method,

which also provides 2nd-order accuracy.

The implicit temporal discretization considers the backward Euler time-integration scheme. At each time step, the

linear system of equations is approximately solved using a Symmetric Gauss-Seidel (SGS) implicit solver and local

time stepping to accelerate the convergence to steady state. A Newton method based on the SGS relaxation is very
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attractive, because it uses an edge-based data structure that can be efficiently parallelized.

Empirically, the following crucial choices to solve the compressible Navier-Stokes equations have been made. The

residual of the linear system is reduced by two orders of magnitude by SGS relaxation. Breadth-first search renumbering

improves the convergence rate of the implicit method and increases overall efficiency. Fully differentiating the HLLC

approximate Riemann solver and the CG viscous terms is very advantageous. Automatically adjusting the time step

is required to achieve high efficiency, automation, and robustness in the solution of the nonlinear system of algebraic

equations to steady-state. The SA-neg turbulence model is loosely-coupled to the mean-flow equations, where the

mean-flow and turbulence model equations are relaxed in an alternating sequence. Complete details of the Wolf flow

solver are provided in [23, 38].

Recursive L2-projection [23] is used for Hessian reconstruction. This recursive L2-projection method is preferred

over other reconstruction methods for improved robustness, efficiency, and accuracy. On the boundary, the reconstructed

Hessian is replaced with an extrapolation from neighboring interior vertices, which have a well-formed stencil. In the

presented results, the local Mach number is the scalar field and the multiscale metric [23] controls the interpolation

error in the L2- and L4-norms. A metric gradation process is applied to smooth the metric field following the “mixed-

space-gradation” approach of [39]. Then, the local remesher FEFLO.A is considered to adapt the mesh in order to

conform to the final metric field.

FEFLO.A uses a combination of generalized standard operators (e.g., insertion, collapse, swap of edges and faces).

The generalized operators are based on recasting the standard operators in a cavity framework [25, 40]. The cavity

operator allows a simultaneous application of multiple standard operator combinations. Quality improvements are

attained with the cavity operator that are not possible through a sequential application of standard operators. To

increase robustness, the surface and volume mesh are modified simultaneously and each local modification is checked

to verify that a valid mesh is maintained. For the volume, validity consists of checking that each newly created element

has a strictly positive volume. For the surface, validity is checked by ensuring that the deviation of the geometric

approximation with respect to a reference surface mesh remains within a given tolerance. During surface remeshing,

new vertex locations are either evaluated with a cubic surface representation or an EGADS geometry query.

IV. Numerical results: Viscous Transonic flow around the ONERA M6 wing

The ONERA M6 wing experiment was originally described in an AGARD report by Schmitt et al. [41]. The

experimental data set consists of surface pressure coefficients at 7 spanwise locations. The experimental data set has

been widely used for CFD validation studies due to the simple geometry of the M6 wing with complex flow features

such as shock boundary layer interaction and flow separation. Recently, Mayeur et al. [42, 43] have created a new CAD

geometry for the wing by modifying the geometry from the original description that has a moderately thick trailing

edge to have a sharp trailing edge and a well-defined wingtip shape for RANS simulations.
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For the present numerical study, the test case considered (case number 2308 in [41]) has a free stream Mach number

of 0.84, angle-of-attack of 3.06◦ and a Reynolds number of 14.6 × 106 based on the root chord. This corresponds

to an attached transonic flow case with double shocks merging to form a “lambda” shock on the upper surface of

the wing. The initial coarse mesh, that has around 1500 vertices, is shown in Fig. 2. The farfield boundary is in the

shape of a hemisphere located at 100 unit chords. The root chord is unity, the reference area is 1.1531508, and the

reference pitching moment length is 0.80163742 with pitching moment computed about the leading edge of the root

chord. Adiabatic no-slip bounday condition is imposed on the wing surface. A symmetry boundary condition is used on

the plane extending from the wing root.

(a) Computational domain (b) Wing and the symmetry plane

Fig. 2 ONERA M6 wing: Initial mesh.

Diskin et al. [11] have performed mesh convergence studies for this test case with various flow solvers on a family

of uniformly refined, fixed meshes. The details about the fixed meshes are described by Nishikawa and Diskin [44].

These fixed meshes have well-resolved leading edge, trailing edge, wing tip and boundary layer. The finest fixed mesh

consists of around 61 Million vertices. We plot the pressure and skin friction coefficients obtained on our adapted

meshes along with those obtained on the finest fixed mesh. Drag, lift and pitching moment convergence are also shown

along with those obtained on fixed meshes.

Figure 3 shows the mesh convergence of lift, total drag, pressure drag, viscous drag and the pitching moment on

both the adapted meshes and the fixed meshes. The characteristic mesh spacing h is defined as N−1/3, where N is the

number of vertices in the mesh. In the legend, L2 Adapted (red lines) and L4 Adapted (blue lines) correspond to mesh

adaptation based on L2-norm and L4-norm multiscale metrics, respectively. The last mesh at each fixed-complexity step

is shown. All the forces and the pitching moment trajectories appear to be converging toward the fine fixed mesh values.

10



All forces and pitching moment from SUPG finite-element discretizations (FUN3D-SFE and GGNS) converge faster

than those from finite-volume (FUN3D-FV) discretization for both L2-norm and L4-norm metrics. For the L4-norm

metric, the mixed finite-volume and finite-element (Wolf) discretization results are comparable to the FUN3D-SFE

results. FUN3D-FV and Wolf solvers with L2-norm adapted meshes are the slowest to converge for lift and pitching

moment coefficients. In the case of lift, viscous drag and pitching moment, L4-norm adapted meshes converge faster

than both the L2-norm adapted meshes and the fixed meshes for all the solvers. An exception is the pressure drag,

where L2-norm adapted meshes have a slightly better convergence than L4-norm adapted ones for FUN3D-FV and

FUN3D-SFE solvers. GGNS and Wolf show clear superiority of L4-norm over L2-norm adaptation for the convergence

of all the forces and pitching moment coefficients. For all solvers, the most prominent difference between L2- and

L4-norm adaptation is in the case of viscous drag convergence. This can be explained due to the fact that a higher norm

in the multiscale metric targets regions with higher variation in the solution [13]. The viscous layer, with high gradients,

get refined more with the L4-norm metric resulting in faster viscous drag convergence. Fig. 4 shows meshes, having

almost the same number of nodes (122k), from adaptations using the L2-norm (left) and L4-norm (right) metric. With

the L4-norm, there is a more aggresive refinement near and on the wing surface. In other words, at similar complexity

levels, more mesh resolution is available to support the solution near the wing if it is not being used to resolve the wake

multiple chord lengths downstream of the wing as in the case of L2-norm adapted meshes.

For each solver, three adapted meshes of increasing resolution are chosen to plot surface pressure and skin friction

coefficients. Table 1 shows the number of vertices for each mesh for each solver. G1 is the finest and G3 is the coarsest

among the chosen meshes. Fig. 5 shows the surface mesh on the wing and symmetry plane, and the pressure contours

on these meshes for the FUN3D-SFE solver. With adaptation, all the critical regions including the wing surface, wake

and the shock region are refined.

Table 1 Mesh statistics for plotting pressure and skin friction. Values shown are the number of vertices in the
meshes.

Mesh FUN3D-FV FUN3D-SFE GGNS WOLF
G1 1,667,340 1,607,681 1,820,907 1,328,707
G2 473,629 462,074 574,179 659,005
G3 141,725 135,073 156,313 169,826
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Table 2 Meaurement locations for plotting coefficients of pressure and skin friction. Wingspan, b =

1.47601797621980.

η = y/b y
0.20 0.295203595243960
0.44 0.649447909536712
0.65 0.959411684542870
0.80 1.18081438097584
0.90 1.32841617859782
0.96 1.41697725717101
0.99 1.46125779645760
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Fig. 3 ONERA M6 wing: Mesh convergence of aerodynamic force coefficients and pitching moment. Dashed
lines: Adapted Meshes, Solid Lines: Fixed Meshes.
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(a) L2-norm adapted mesh (b) L4-norm adapted mesh

Fig. 4 ONERA M6 wing: Comparison of L2-norm and L4-norm multiscale metric adapted meshes. Both
meshes have almost same number of nodes (122k), and FUN3D-SFE is used as solver.
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(a) Wing and the symmetry plane on the G3 mesh (b) Pressure contours on the G3 mesh

(c) Wing and the symmetry plane on the G2 mesh (d) Pressure contours on the G2 mesh

(e) Wing and the symmetry plane on the G1 mesh (f) Pressure contours on the G1 mesh

Fig. 5 ONERA M6 wing: Surface meshes and pressure contours using FUN3D-SFE on G3 (coarse), G2
(medium) and G1 (fine) adapted meshes.
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Figure 6 shows the surface pressure coefficients, obtained using the various solvers on their respective G1 meshes at

various spanwise locations that are specified in Table 2 . The values are remarkably close between different solvers

for most of the spanwise locations. A slight variation can be seen at the merged shock region on the upper wing at

η = 0.96. At η = 0.99, the solution from FUN3D-FV shows a slight variation from other solvers, especially at the

trailing edge. All four solutions have the same shock locations and pressure minima on the lower and upper wing

surfaces. The plateau region between the shocks on the upper surface at η = 0.88 is well resolved, indicating sufficient

mesh resolution at the region.
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(g) η = 0.99

Fig. 6 ONERA M6 wing: Surface pressure distribution at various stations on the wing obtained by various
solvers on their respective G1 (fine) adapted meshes.
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Figure 7 shows the pressure coefficients on the upper wing surface at η = 0.20 for all the four solvers on their

respective G1, G2 and G3 meshes. The pressure coefficients near the location of the minimum pressure, and near the

trailing edge, are shown in Fig. 8 and Fig. 9, respectively. Solutions from a fine fixed mesh (61 million vertices) using

FUN3D-FV are also shown for comparison. In the global view, the solutions from all four solvers appear to converge to

the fine fixed mesh solution. Solutions on G1 meshes for all the solvers are in close agreement with that on the fixed

mesh. Solutions on G3, the coarsest meshes, give diffused shocks on the trailing edge side; however, overall they follow

the pressure curve well. Near the minimum pressure location, solutions from both G1 and G2 meshes are very close to

the fine fixed mesh results (Fig. 8). On G3 meshes, the solution from GGNS solver is the closest to the fine fixed mesh

values. Near the trailing edge (see Fig. 9), the solutions from all solvers seem to be converging to the fine fixed mesh

solution. On both G2 and G3 meshes, the solutions from SUPG finite-element solvers (FUN3D-SFE and GGNS) are

closer to the fine values compared to those from other two solvers (FUN3D-FV and Wolf).
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Fig. 7 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.20 obtained by various solvers on
their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 8 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.20, near minimum pressure loca-
tion, obtained by various solvers on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 9 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.20, near trailing edge, obtained
by various solvers on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Figure 10 shows the pressure coefficients on the upper wing surface at η = 0.80 for all four solvers on their

respective G1, G2 and G3 meshes. A closer view of the pressure coefficients near the shock intersection region is shown

in Fig. 11. In the global view, all the solvers on both G1 and G2 meshes give solutions that match reasonably well with

the fine fixed mesh values. They could capture the double shock structure and the plateau region between the shocks.

The solutions on G3 meshes, however, completely miss the double shock and the plateau region for all the solvers (see

Fig. 11). On G1 and G2 meshes, both Wolf and GGNS results look similar and follow the fine mesh values closely. On

G3 meshes, Wolf results are the closest to the fine mesh values.
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Fig. 10 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.80 obtained by various solvers
on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 11 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.80, near shock intersection,
obtained by various solvers on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Figure 12 shows the pressure coefficients on the upper wing surface at η = 0.99 for all the four solvers on their

respective G1, G2 and G3 meshes. The pressure coefficients near the location of the minimum pressure, and near the

trailing edge, are shown in Fig. 13 and Fig. 14, respectively. The solutions for all the solvers appear to be converging to

the fine fixed mesh values with adaptation from G3 to G1 meshes. The resolution of the G1 mesh still does not seem to

be sufficient to capture the dip in the curve around x/c ≈ 0.23. Near the minimum pressure location, increased mesh

resolution is required to get closer to the fine fixed mesh values. Upstream of the minimum pressure location, Wolf

results seem to be matching the most with the fixed mesh. Near the trailing edge, the values are seen to be converging

toward the fixed mesh values. On G1 meshes, compared to the fixed mesh values, Wolf is the closest and FUN3D-FV

is the farthest.
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Fig. 12 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.99 obtained by various solvers
on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 13 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.99, near minimum pressure lo-
cation, obtained by various solvers on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 14 ONERA M6 wing: Surface pressure distribution on the wing at η = 0.99, near trailing edge, obtained
by various solvers on their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes
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Figure 15 shows the skin friction coefficients, obtained using the various solvers on their respective G1 meshes at

various spanwise locations. The coefficients are seen to be highly oscillatory for all the solvers. At all seven spanwise

locations, all the solutions place the maximas and minimas almost at the same locations. At η = 0.44, FUN3D-SFE has

a very high oscillation downstream of the leading edge that is not seen in other solutions. Solution variation between

the solvers become more pronounced at the outboard locations compared to that of inboard locations. At η = 0.99, the

variation is highest slightly downstream of the leading edge at around x/c ≈ 0.1, and also near the trailing edge.

Figure 16 shows the convergence of skin friction coefficient for various solvers at η = 0.20. On the coarse G3

meshes, all solvers except GGNS exhibit very high oscillations. GGNS has solutions that agree to each other well on

G1, G2 and G3 meshes (see Fig. 16 d). Both FUN3D-FV and Wolf solutions show an upward trend in skin friction

from x/c ≈ 0.1 to x/c ≈ 0.6. Figure 17 shows the convergence of skin friction coefficient for various solvers at

η = 0.44. GGNS again has the least oscillations on G3 meshes, and the solutions from G1, G2 and G3 meshes agree

well with each other. Downstream of the leading edge from x/c ≈ 0.02 to x/c ≈ 0.2, compared to the finite-volume

(FUN3D-FV) and mixed finite-volume and finite-element (Wolf) solutions, finite-element solutions match better with

the fixed mesh results. Figure 18 shows the convergence of skin friction coefficient for various solvers at η = 0.99. On

G3 meshes, all the solvers except GGNS fail to follow the fine fixed mesh curve in most part. With adaptations, the

values, however, get closer to the fixed mesh values. The closest agreement with fixed mesh values is for GGNS, and

the largest disagreement is for FUN3D-FV.
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(g) η = 0.99

Fig. 15 ONERA M6: Skin friction, Cf ,x distribution at various stations on the wing obtained by various
solvers on their respective G1 (fine) adapted meshes.
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Fig. 16 ONERA M6: Skin friction, Cf ,x distribution on the wing at η = 0.20 obtained by various solvers on
their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 17 ONERA M6: Skin friction, Cf ,x distribution on the wing at η = 0.80 obtained by various solvers on
their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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Fig. 18 ONERA M6: Skin friction, Cf ,x distribution on the wing at η = 0.99 obtained by various solvers on
their respective G1 (fine), G2 (medium) and G3 (coarse) adapted meshes.
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V. Conclusions

The verification of anisotropic mesh adaptation processes using various solvers and mesh-mechanics packages

on benchmark CFD problems are critical to establish confidence in these procedures. To that end, we performed

anisotropic mesh adaptation for RANS turbulent flow simulations over the ONERA M6 wing, a well-known test case

for verification and validation studies, using various solvers and mesh-mechanics packages. The adaptation aimed at

controlling the interpolation error in Mach number through the use of a multiscale metric field to generate the meshes.

Mesh adaptation automatically establishes appropriate resolution of important smooth features and nonsmooth features

(e.g., shocks, boundary layer). We have used two finite-element solvers (FUN3D-SFE and GGNS), one finite-volume

solver (FUN3D-FV) and a mixed finite-volume and finite-element solver (Wolf). Two sets of adaptations were done;

one that controls the interpolation error in the L2 norm and the other that controls the interpolation error in the L4

norm. The forces and pitching moment convergent studies were performed with adaptation using all four solvers. The

values were compared against those reported on fine fixed meshes (both prism and tetrahedra) using the FUN3D-FV as

the solver. All the forces and pitching moment trajectories appeared to be converging toward the fixed mesh values.

Both forces and pitching moment on adapted meshes were found to be converging to the fine mesh values faster than

those on fixed meshes. The values from finite-element discretizations converged faster than those from finite-volume

and mixed finite-volume and finite-element discretizations. In the case of lift, viscous drag and pitching moment,

L4-norm adapted meshes converge faster than both the L2-norm adapted meshes and the fixed meshes for all the solvers.

For each solver, three adapted meshes (denoted as G1, G2 and G3) of increasing resolution were chosen to study the

convergence of surface pressure and skin friction coefficients with adaptation. With adaptation, the values seemed to be

converging toward the fine fixed mesh values. On G1 meshes, the finest among three meshes, the pressure coefficients

were remarkably close to each other at most of the measurement spanwise location. All four solutions have the same

shock locations and pressure minima on the lower and upper wing surfaces. The skin friction coefficients were seen to

be oscillatory for all the solvers with mean values that approach the fine fixed mesh solution agreeing on the locations

of maximas and the minimas. Future work would aim at the verification of the adaptation process for more complicated

geometries, using metrics that control interpolation errors and output functional errors.
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