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The Rapid Aero Modeling (RAM) approach is a method to efficiently and automatically 

obtain aerodynamic models during testing, significantly saving time and resources. Motivation 

for this technology results from demand for experimental efficiency and model fidelity that 

has increased with growing aircraft complexity and aerodynamic nonlinearities. These issues 

are typical in the responses presented by a class of vehicles categorized as Urban Air Mobility 

aircraft where many features from both airplane and rotorcraft are present. For UAM 

configurations, with typically many more factors than conventional aircraft, traditional test 

methods can lead to increased costs and missed interactions. RAM guides the test to obtain 

high-fidelity, statistically rigorous aircraft models, and the approach is applicable to 

computational, ground, or flight-test experiments. It combines concepts from Design of 

Experiment theory and Aircraft System Identification theory that allow the user the freedom 

to choose, in advance of the test, a specific level of fidelity typically, in terms of prediction 

error. RAM only collects data required to meet the user-specified fidelity and fidelity is only 

limited by the facility and test article capabilities. An initial wind tunnel test to support 

development of RAM was conducted to assess potential metrics, algorithms, and procedures. 

This paper presents results from initial tests for the development of RAM technology and 

highlights some of the unique features of RAM applied to a conventional configuration during 

a ground-based, static, wind-tunnel test. 

I. Nomenclature 

 

                                                           
1 Senior Research Engineer, Dynamic Systems and Control Branch, MS 308, Associate Fellow. 
2 Research Engineer, Flight Dynamics Branch, MS 308, non-member. 
3 Assistant Branch Head, Flight Dynamics Branch, MS 308, Associate Fellow. 
4 Pathways Student, Flight Dynamics Branch, MS 308, Student Member. 
5 Senior Research Engineer, Dynamic Systems and Control Branch, MS 308, Member. 

Bi  =  regression coefficients 

CN = normal force coefficient 

Cm =  pitching-moment coefficient 

 = mean aerodynamic chord, ft 

R2  =  coefficient of determination 

xi = regressors 

y = response variable in regression equation 

 = angle-of-attack, deg 

 = sideslip angle, deg 

 =  error in regression model 

 = standard error 
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II. Introduction 

Aerodynamic modeling is a key part of the aircraft development process, particularly for new vehicle designs. 

Under the Transformational Tools and Technologies Project, NASA is recognizing the need for development of state-

of-the-art computational and experimental tools and technologies required for development and prediction of future 

aircraft performance. Areas where future aircraft are being advanced with increasing interest are in Urban Air Mobility 

(UAM), distributed electric propulsion, and electric vertical take-off and landing configurations. Market studies 

supported by NASA highlight the opportunities and difficulties for these areas both in terms of economics and 

technology [1-2].  

While the new design space offers significant opportunities, it also creates vehicles with substantially more 

complex and nonlinear aerodynamic responses, as well as increased complex interactions among propulsion and 

aerodynamic control systems [3]. Depending on the design stage being considered, varying levels of fidelity, and in 

turn, varying levels of resources are required. Even in early design stages for UAM vehicles where lower fidelity may 

be sufficient, the presence of rotors, props, wings, and fuselage results in a greater number of factors to consider, thus, 

contributing to significant design complexity. This can limit the ease of design changes while advancing through 

various design stages. Although advances in computer technology have facilitated more effective tools to tackle these 

issues, obtaining greater model fidelity still requires a significant investment of engineering time and resources both 

analytically and experimentally. A number of research efforts to improve fidelity and efficiency have been made in 

ground-based testing [4-12], flight testing [13-17], and in computational methods [18-25]. The authors are also 

supporting current research by NASA in the UAM area [26-30].  

A unique approach to improving the modeling process by reducing the adverse impacts described above is through 

development of a testing process called Rapid Aero Modeling (RAM). RAM capitalizes on fundamentals from design 

of experiment (DOE) and aircraft system identification (SID) theory. In addition to automating the modeling process, 

it offers an opportunity for significant savings in time and resources. This study highlights the initial development of 

the RAM process that provides statistically rigorous results and limits the amount of data collected to that needed to 

achieve user-defined levels of fidelity. For this study, fidelity levels are defined by model prediction errors. It is 

important to note that maximum fidelity is always limited by the accuracy and measurement capabilities of the test 

apparatus and physical model under test. RAM is under development for application to wind tunnel environments 

(RAM-T) and application to computational environments (RAM-C).   

In this paper, preliminary results for RAM-T are presented. Consideration is given to potential metrics, algorithms, 

and procedures that can allow the RAM process to be implemented. Two experiments were performed on a 

conventional, off-the-shelf, radio-controlled model aircraft. The model, referred to as the “Mini-E,” is shown in Fig. 

1.  

 

 
The first experiment was a conventional static test designed to obtain basic aerodynamic characteristics over a large 

flight envelope. The objectives were two-fold: (1) obtain sufficient data to support a simulation suitable for flight 

dynamics and controls studies, and (2) provide conventional data for comparison with the second experiment. The 

second experiment was designed to evaluate candidate procedures and metrics that might support a RAM-T process 

in a static-test application. In the latter case, the focus was primarily on the longitudinal axis with sweeps in sideslip 

Figure 1. Conventional aircraft configuration (Mini-E) in LaRC 12-Foot Low Speed Tunnel. 
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limited to +/- 5 degrees. One aspect of RAM-T to be tested was whether the sequential process envisioned would be 

able to produce models with prediction errors less than 3%. This paper highlights results and lessons learned from 

application of two different approaches to aerodynamic modeling based on static testing in a wind-tunnel facility: (1) 

a conventional approach providing a traditional basis for comparison and (2) assessment of a non-conventional 

approach using components of RAM-T technology.  

III. Aerodynamic Modeling Methods 

Conventional testing in wind tunnels has a long history and well-established practices that have been demonstrated 

and corroborated through comparisons with flight test and computational methods. This approach typically involves 

a fairly controlled environment where one-factor-at-a-time (OFAT) methods are used to sweep over one of the states 

or controls for the vehicle under test while all other factors are held constant. Statisticians will disagree with the OFAT 

approach due to the possibility of unknown systematic errors being confounded with the data; however, practitioners 

go to great lengths to ensure that at least known systematic errors minimized or eliminated. Conventional techniques 

also seem to work well for cases where the number of factors are limited to just traditional control surfaces and 

propulsion systems. For modern UAM designs, the number of factors can be anywhere from three to five times the 

number of traditional factors. This quickly degrades a conventional experiment design from capturing all possible 

factor interactions as well as higher-order nonlinearities in any practical manner or time frame. This is especially true 

when time and resources are limited. RAM-T, rooted in SID and DOE best practices, offers a solution that can 

significantly ameliorate these problems. The underlying theory in SID and DOE is well established in academia, 

industry, and government for a variety of applications. SID has roots progressing from Gauss (1809), Fisher (1912), 

to Kalman (1965), while credit for the initial development of DOE is often given to Fisher [31]. DOE has since 

expanded and modernized from Fisher’s agricultural applications to all fields of modern science and engineering. 

Application of RAM-T and RAM-C to new UAM designs with combined airplane and rotorcraft features is a current 

area of research.  

A. Model Identification 

Aerodynamic modeling can be accomplished in a number of ways depending on the specific goals of the 

investigator. A commonly used process for obtaining aircraft aerodynamic models using aircraft SID is shown in Fig. 

2. This process is well documented in Ref. [32]. Several methods can be applied for each block in this flow chart;   

 
however, for the RAM-T process, two key blocks are accomplished differently from common practice. The first 

difference is in the top block, labeled Experiment Design, and the second is in the bottom block, labeled Model 

Figure 2. Aircraft system identification process. 
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Validation. In general the top block captures many key aspects of the experiment, including test conditions, motions 

or maneuvers, instrumentation, and specification of required measurements. In this study DOE methods will be applied 

to achieve these same goals. Closely tied to this step is the Model Postulation block, where decisions on the allowable 

model structures and any a priori knowledge about the system dynamics can influence where in the flight envelope 

testing is performed as well as the type of maneuvers required for the test. After measurements are collected, an 

important step is to ensure data compatibility. This analysis is done, particularly for flight experiments, using 

kinematic relationships to remove any systematic errors (usually in the form of bias and scale factors) that might be 

present in the measurements. The next step is Model Structure Determination where the model form is estimated from 

within the previously postulated class of model structures. For this study, polynomials are used as the basic 

mathematical form for all aerodynamic models. Given a set of input-output measurements containing sufficient 

information content and a representative model structure, a number of parameter estimation techniques are adequate 

to determine the unknown parameters in the model with acceptable accuracy. For this study, stepwise regression is 

used where the model structure and parameter estimation steps are combined. Stepwise regression facilitates a very 

efficient adjustment of the model as data are obtained. A practical concern, as part of the parameter estimation process, 

is assessing the degree to which model terms may be correlated. Although some degree of correlation is often present, 

proper experiment design and model structure can limit this issue. Experiment designs based on DOE techniques can 

be expressly designed for this purpose. The last major step in SID is Model Validation, which is a test of the model 

performance against data not used for estimation. This step provides verification that the estimated model is a good 

predictor of the dynamic system responses within acceptable error bounds. 

B. DOE Application for RAM Development 

In advance of performing any experiment, DOE theory provides guidance on setting up an efficient and statistically 

rigorous test plan. Experiment design based on DOE is well documented in Ref. [33]. In this study DOE is applied to 

wind-tunnel testing to obtain a static aerodynamic model; however the aerodynamic model is a test case to allow 

development of the RAM process. The primary objective is to develop techniques suitable for an automated RAM-T 

process that capitalizes on the benefits of DOE principles. This was done by manually exercising prototype RAM 

logic and assessing the possible metrics and procedures that might be best suited for an automated RAM-T. In 

particular, key principles of blocking and the sequential nature of DOE testing facilitates an automated process. Five 

basic principles commonly used in DOE design are: 

 

1. Orthogonal regressors – uncorrelated regressors to improve estimation calculations. 

2.  Replication – independent and repeated measurements to assess system noise and uncertainty. 

3. Randomization – randomized input matrix to average out extraneous factors and unknown systematic errors. 

4. Blocking – technique to improve precision and reduce variability due to known nuisance factors.  

5.  Sequential testing – a knowledge building process that allows each step to benefit from the previous one. 

 

Ideal test facilities are automated and allow replication and randomization to support DOE-based experiments. 

The ability to command any position of the model, test rig, and model actuators from a pre-defined user test matrix, 

followed by recording of input commands, achieved set points (verified by measurements), and aerodynamic 

responses is ideal. Feedback control that ensures accurate set points is important for repeatability and ensuring 

regressors achieve their orthogonal design characteristics. Blocking must be incorporated by design to remove the 

effects of known sources of error (nuisance variables) and easily applied in an ideal test facility.   

Experimentation is an iterative process that, depending on a priori knowledge, may require a series of initial tests 

such as screening experiments to determine important factors or, more commonly in aerospace applications, 

exploratory experiments to determine the location or presence of certain aerodynamic features. Other reasons such as 

envelope expansion or limited test times can lead to a planned series of tests. Sequential testing simply reflects 

application of the scientific method, and fortunately, DOE designs are sequential in nature and seamlessly promote 

the scientific method.  

The foundation for DOE classical designs is the factorial experiment [31]. A factorial design is one which varies 

all factors simultaneously for all possible combinations. Using two levels for each factor represents a run-efficient 

method for developing a first order plus interaction model. A full-factorial design in two factor space is shown below 

in Fig. 3 with the addition of a center point. 
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Replicated centers afford a test for possible augmentation to support quadratic model terms. This type of 

information allows the investigator to sequentially build models and only incorporate increasing amounts of data as 

required. The supported regression model is shown with up to two-factor interactions (2FI) by 

 0 ...      1,2,...,i i ij i j
i i j

y B B x B x x i k


         (1) 

The Bi, Bij, are the fitted regression coefficients and the xi are the factors (independent variables or regressors). A 

refinement (augmentation) to the factorial design is the central composite design (CCD) [34] which adds design points 

along the axes through the origin of the design space as shown by the square symbols of Fig. 4. 
 

 
This approach supports a full second order model given in Eq. (2). 

 2
0      1,2,...,i i ii i ij i j

i i i j

y B B x B x B x x i k


          (2) 

The location of the axial points defines this CCD as a face-centered design (FCD). The nested face-centered design 

allows the nesting of two FCD designs to support the addition of pure cubic terms to the empirical model. The two 

FCD’s may be tuned by fractionating the factorial designs as presented by Landman et al. in Ref. [7]. The design in 

two-factor space is shown in Fig. 5  

 
where the supported model is given by Eq. (3). 

 

 2 3
0      1,2,...,i i ii i ij i j iii i

i i i j i

y B B x B x B x x B x i k


            (3) 

Sets of DOE designs in this study were developed as sequences of five blocks. After the nested face-centered 

design, a series of I-optimal blocks are used. Examples are shown in section IV-C. Blocking served two purposes: 

first, the sequence of smaller data collection blocks reduced miscellaneous nuisance bias errors, such as from different 

X1

X2

Figure 3. A full-factorial design in two-factor space. 

Figure 4. A face-centered central composite design in two-factor space. 

X1

X2

Figure 5. A nested face-centered design in two-factor space. 
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tunnel operators, different days of operations, and tunnel overheating during long runs; second, the sequence allowed 

model analysis to be performed and evaluated against validation data to either confirm testing was complete or to 

indicate additional data were required. When a validation failure occurs, indicating additional data are required, it is 

an indication that either the progression to higher-order models is needed or specific regions must be further 

investigated. Validation tests assessing prediction-error residuals readily highlight when and where the prediction 

error is failing to meet user benchmarks.  

C. Validation Tests for RAM Development 

Validation tests are part of the SID process, shown at the bottom block in Fig. 2. To avoid confusion with related 

terms used by different disciplines, the term validation will be used to identify tests performed on data not used for 

model identification. These tests provide confirmation that the estimated models represent the aerodynamic model 

under test to within some pre-defined acceptable fidelity. For this study, acceptable fidelity is quantified by prediction 

error applied to validation data. Acceptable fidelity and accuracy for non-dimensional aerodynamic coefficients can 

depend on a number of factors, including the purpose the aerodynamic models will serve. A tradeoff is always made 

between model fidelity, precision, speed, and cost limitations. 

A practical method for assessing validation is to observe the residuals between measured and predicted responses. 

For well-designed experiments that result in adequate models, the residuals appear as white noise with magnitudes 

generally within the specified acceptable levels. Not every residual test point will meet the acceptable error boundary 

limit. As described in Ref. [35], success or failure of a given test point residual to meet the requirement can be judged 

as a binomial experiment. For example, theoretically, the expectation for a coin toss is that out of 100 tosses of a fair 

coin, 50 heads and 50 tails will occur. However, in a practical experiment that exact ratio of ½ tails or heads is 

extremely unlikely to occur. The number of successes and failures relative to the expected value can be modeled as a 

binomial distribution and therefore the number of allowed failures can be defined based on the number of trials in the 

validation experiment. For a 100 coin toss experiment, the critical binomial number is 42, given a 50% probability of 

success that the residual was within tolerance, at a 95% confidence level. After running a coin toss experiment, if less 

than 42 heads (or 42 tails) occurred then one could infer that the coin did not have a 50% probability of landing on 

heads with no more than 5% inference error. For RAM development, the number of residuals considered is typically 

75, and consequently the critical binomial number is typically 66 given a 95% probability of success that the residual 

is within tolerance. This is computed at a 99% confidence level, implying up to a 1% inference error.  

The validation step is possibly the most important step in the SID process. Typically experimentalists collect more 

data than needed in an effort to drive down model fitting statistics, such as standard deviation or correlation 

coefficients, but this is misleading since the estimation process (often regression) is by definition minimizing the error 

at test points. This approach does not directly improve prediction error tested on non-regression points. However, a 

number of useful metrics can be used to aid in that process. Predicted Residual Error Sum of Squares (PRESS) and 

Predictive Squared Error (PSE) are commonly used metrics and are presented herein with Bayesian Information 

Criteria (BIC) as candidate metrics. BIC is a penalized likelihood function that assesses the likelihood of the fitted 

model being correct while penalizing over-parametrization. PRESS is determined by computing the prediction error 

sum of squares where each residual error is computed without that particular data point included in the model. PSE 

provides a penalty to PRESS when terms are added to the model.  

Three objectives need to be satisfied in order to collect the correct amount of data: (1) minimize standard error to 

get an adequate model fit, (2) minimize prediction error to get a useful model, and (3) only collect enough data to 

meet the precision, prediction, and validation requirements. These objectives will reflect a balance among the precision 

demanded by the experimentalist, the capabilities or precision levels possible by the test apparatus, and the time and 

cost required to meet those demands. The basic goal is to expand data collection only enough to meet the model 

complexity requirements. 

In the experiment design phase, the investigator must define the confidence level required, signal/noise ratio for 

the test apparatus, and the minimum level of response detection required. However, in the execution phase, the 

investigator must also pre-define a level of acceptable prediction error for validation tests in order to confirm an 

adequate model and to prevent over-collecting data. Data and model complexity are inherently connected. Collecting 

more data or adding more terms to a model are not necessarily steps to a better model. Designs in section IV will show 

that simply doubling the amount of data can degrade the variance inflation factor (VIF), indicating the regressors can 

suffer reduced orthogonality. Experimental results in section V demonstrate potential model degradation with 

increasing number of model terms or model complexity. 
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IV. Test Plans for Modeling Experiments 

Designing experiments for this study covered two distinct purposes. The first was to develop a test plan that would 

provide sufficient aerodynamic data to support simulation development for flight dynamics studies and experimental 

control law development. The second purpose was to develop a plan that would provide preliminary results to guide 

RAM-T development. The intent of running these two tests in sequence was to provide some corroborating evidence 

that RAM-T provided comparable results.  

A. Facility and Model Details 

The Langley 12ft Low-Speed Tunnel (12-ft LST) facilitated preliminary development of the RAM testing method. 

The 12-ft LST is an atmospheric pressure, open circuit tunnel enclosed in a 60-foot diameter sphere. The test section 

is octagonal with a width and height of 12 feet and a length of 15 feet with each octagonal side measuring 5 feet.  The 

maximum operating pressure is q = 7 psf (V = 77 ft/sec at standard sea level conditions), which corresponds to a 

Reynolds number of approximately 492,000 per foot. The longitudinal center-line-flow in the test section has a 

turbulence level of about 0.6 percent.  Test section airflow is produced by a 15.8-ft. diameter, 6-blade drive fan 

powered by a 280 HP, 600 volts, 600 RPM DC motor which is controlled by a 500 HP AC motor that drives a field 

controlled generator. The 12-ft LST is operated from its control room positioned behind the test section and the drive 

fan. The model can be observed through the large viewing windows or the multiple controllable video cameras. 

The model was mounted on a 6-axis balance and connected to the tunnel’s C strut via a belly-mounted sting.  The 

C Strut allows the attitude of the model to be controlled by the data acquisition system. This system was connected to 

an Arduino mega via a UDP connection. The Arduino was mounted in the model and commanded one servo on each 

of the 7 control surfaces. The Arduino sent a pulse width modulation (PWM) command to each servo. It also recorded 

the actual angular position of the surfaces via 7 encoders, which was then reported back to the data acquisition system. 

This system removed the need to manually change the position of a control surface between runs. The commanded 

PWM signals for each servo and encoder output were calibrated from measurements taken at a minimum of 5 different 

angular positions. With this system, a run file of the desired model attitude and surface deflection at each data point 

was able to be loaded into the data acquisition system. The data acquisition system would then command all the needed 

changes during the run and capture all of the data recorded for the run and report it in a single file. The types of data 

recorded include, the 6 forces and moments on the model, the commanded and actual positions of the surfaces, the 

angle of attack and sideslip of the model, and the flow conditions of the tunnel. 

The model aircraft used in these tests was a radio controlled (RC) hobbyist kit consisting primarily of aircraft 

plywood and balsa structure overlaid with a MonoKote film. Researchers recognize that RC hobbyist hardware used 

for wind tunnel testing commonly needs to be strengthened to handle the higher loading produced by the wind tunnel. 

RC hobbyist airframes are designed to handle the loads they will see in flight, where the stresses through the structure 

are typically limited by the reaction forces produced by the vehicle inertia. An airframe mounted on a wind tunnel 

sting or post will often produce stresses through the structure that are much higher. 

To help ameliorate this problem, the hobbyist kit was modified by adding aluminum structure (4 parallel rails with 

intermittent cross members) extending from the motor mounts back through the aft fuselage, and graphite rods 

extending from the mid fuselage back to the area where the horizontal and vertical stabilizers attach. In addition to 

stiffening the fuselage/empennage structure, the aluminum rails also provided attachment points for the balance block 

and sting post required to mount the model in the tunnel. The wings, horizontal and vertical tails, and all the individual 

control surfaces were deemed strong enough that they would not break during wind tunnel testing. However, it was 

clear they would undergo significant deflection under load. Eliminating the deflection issue would require remaking 

all these main vehicle components and control surfaces from stiffer materials. This was not an acceptable option due 

to cost and schedule impacts. The effect of surface flexibility on modeling and benefits of the structural modifications 

are discussed in section V-A. 

B. Conventional Test Plan 

The conventional wind tunnel test plan was developed to meet the two objectives highlighted previously – to build 

an aerodynamic database and to guide RAM-T development. The test occurred in the 12-Ft LST at a dynamic pressure 

of 2 psf while varying angle of attack, angle of sideslip, and control surface deflections. The test space is summarized 

in Table 1. The difference in factor ranges considered between two approaches to testing are noted.  

                                                           
 https://researchdirectorate.larc.nasa.gov/12-foot-low-speed-tunnel-12-ft-lst/ 
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The test outline included a model and system shake-down to ensure that all equipment was working properly and 

that the data was adequate. In order to identify interesting non-linear regions in the aerodynamics, a fine α-schedule 

sweep was performed. Nominal α- and β-schedule sweeps were also conducted at select α’s and β’s. The effect of the 

flaps, elevator, rudder, and ailerons were also observed, as well as the interactions of control surfaces. The system was 

unpowered for the duration of the test. Power effects will be captured in a future test. The test matrix, showing baseline 

runs, control surface sweeps, DOE baselines with a reduced angle-of-attack range, and control surface interactions, is 

shown in Fig. 6.  

 

Table 1. Factor ranges for conventional and DOE tests 

No. Label Description Low High Units Notes 

   Range Range   

1  Angle of attack -6 

-5 

36 

35 

deg 

deg 

Conventional test 

DOE test 

2  Sideslip -30 

-5 

30 

5 

deg 

deg 

Conventional test 

DOE test 

3 LA Left aileron -30 30 deg Both tests 

4 LF Left flap -30 30 deg Both tests 

5 RF Right flap -30 30 deg Both tests 

6 RA Right aileron -30 30 deg Both tests 

7 LE Left elevator -30 30 deg Both tests 

8 RE Right elevator -30 30 deg Both tests 

9 RUD Rudder -30 30 deg Both tests 

 

Figure 6. Conventional wind tunnel test matrix. 
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C. RAM Development Test Plan 

In the RAM development test plan, a series test blocks were designed to reflect a sequence of obtaining data as 

needed to model progressively more complex models. In a RAM progression the test only moves forward if more 

complex models are required to meet prediction-error requirements and, consequently, more data are required to 

support higher-order polynomial modeling. For this study only 5 DOE blocks were designed in advance, however, the 

number and size of blocks needed can change with different applications. The size of each block can be adjusted for 

a number of reasons, for example, experience indicates that tunnel overheating can occur for blocks that are too large 

and run too long. 

Table 2 shows several design metrics used for each block. The first is the variance inflation factor (VIF) that 

reflects the degree of orthogonality for the regressors. Values of VIF are equal to one if regressors are perfectly 

orthogonal. Values over 10 reflect a degradation of orthogonality in certain regressors and may require further design 

evaluations. Fraction of Design Space (FDS) is a graphic tool for evaluating the standard error profile. The number 

reflects the fraction of the design space within the expected variance parameters. For the design process, an assumption 

is made that standard deviation is 1 to allow relative predictive error to be computed. For this evaluation a very 

conservative assumption is made that the signal-to-noise ratio is only 2. The last metric indicates the experimental 

power (to avoid type 2 errors) for which values over 80% are commonly seen as acceptable.  

Maximum values of the design metrics shown in Table 2 were selected from a survey of all model terms to show 

how each block design was progressing and improving the overall design as blocks of additional design points were 

added. The first three of five blocks present a sequence of designs: FCD, nested FCD, and I-optimal that define the 

primary test sequence. I-optimal designs are based on minimizing the integrated prediction variance over the design 

space. Each block was designed assuming a full quadratic model and each step provided more degrees of freedom for 

a more complex model, if needed.  

The VIF values in block 2 show the cost of adding a nested FCD in order to capture potential nonlinearities as 

expressed in Eq. (3). The nested FCD is particularly useful in aerospace applications to handle nonlinear responses 

due to control surface deflections, and it ensures the full range of each surface is covered. The third block is an I-

optimal design that minimizes prediction error. This block strategically added 222 runs and brought all the design 

metrics to excellent levels. The first three blocks were expected to be sufficient for modeling the aerodynamic 

coefficients, especially in the lower angle-of-attack region below stall, where models were expected to be almost linear 

or mildly quadratic. Blocks 4 and 5 provided either validation data or additional modeling data if model complexity 

demanded even higher order terms and in turn required a larger amount of data. The optimal blocks are useful for 

validation data since the optimizer avoids using existing design points. Block 4 is also shown applied to both quadratic 

models and cubic models. The degradation to the experiment design of adding block 4 to the cubic case is relatively 

small since the FDS metric, the preferred metric for response surface modeling, is still satisfactory. Although in an 

automated RAM process not all blocks may be needed, in this case, all the blocks were run to provide additional 

insights into the entire modeling process.  

 

 
 

Figure 7 presents the nine-factor, full angle-of-attack range, three-block design, viewed as a function of angle of 

attack and sideslip. The graphic shows the basic FCD (red squares, partially hidden), the nested FCD (green squares), 

and the I-optimal points (blue squares). Similar plots of design points are obtained by plotting any two of the nine 

factors.   

Table 2. Maximum (worst case) values of design metrics (9 Factors) 

Block Type Blocks Runs Design Terms VIF FDS % Power 

 (inclusive)     2, s/n=2 

Minimum 

Resolution V FCD 

1 70 Quadratic 6.72 0.81 80.0 

Nested FCD 1, 2 140 Quadratic 10.60 0.95 86.3 

I-optimal 1, 2, 3 362 Quadratic 1.53 1.0 99.9 

*Mixed (I-opt) 1, …, 4 437 Quadratic 1.46 1.0 99.9 

*Mixed (I-opt) 1, …, 4 437 Cubic 25.19 1.0 85.4 

Validation (I-opt) 1, …, 5 512 Cubic 24.85 1.0 91.7 

*Block 4 can be used for validation or, if needed, provide data for more complex models.  
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At the start of the test, full ranges for all the factors were defined. During the test, if all 5 blocks of data are still 

insufficient to meet the pre-defined fidelity levels, then the test ranges can be adjusted to smaller regions. The selection 

of smaller regions is a current area of research [28]; however, in the RAM process the selection of regions would 

depend on where the offending prediction-error results occur. For this preliminary study without the automated RAM 

system in operation, a selection had to be made in advance. The choice for this study was to simply split the regions 

in terms of angle of attack until a satisfactory prediction error was obtained. The choice of angle of attack to determine 

regions reflects the dominant role it plays in aerodynamic response. Figure 8 shows the sequence used in this study. 

The widest region with the largest factor ranges is labeled as R1. The split of R1 results in R2 and R3, and so on.  

 
Additional efficiencies occur in an automated RAM process by virtue of the splitting process. Once data is 

collected for a region to be split, the sub-regions already have a substantial amount of data required for that new 

region. There is no need to repeat the full data collection process for each new sub-region.  

After development of the progressive DOE blocks and splitting test regions, the overall operation of an automated 

RAM process is more tractable. The general RAM concept is presented in Fig. 9 as a simplified flow chart. On the 

Figure 7. DOE design for three blocks: FCD (red), Nested FCD (green), and I-optimal (blue). 

 (deg) 



 (deg) 

Figure 8. RAM test-region splits. 
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left is the user-desired level of model fidelity and a set of designed experiments appropriate for the vehicle under test. 

As the test facility processes each block to produce measurements for model identification, the resulting Analysis of 

Variance (ANOVA) tables characterize the relative significance of model terms and other sources of variation. 

Effectively, the RAM process provides a control loop around the vehicle under test that guides the test through a series 

of data blocks that are used to estimate models and evaluate their performance. The series of data blocks takes 

advantage of the sequential nature of designed experiments and only requests more data if it is needed for either 

estimating a higher-order model or for more detailed investigation in a region where model performance is inadequate. 

The test is completed when model validation tests are passed, indicating the requested level of fidelity is achieved, or 

the test may conclude when the limits of the test apparatus measurement capabilities are reached. The choice of 

identification methods, prediction error metrics, or how the test regions are split is not restricted by the RAM-T 

process. As mentioned in the introduction, this process can also be applied to a computational “facility” as well.  

 
Since this study was not an automated closed-loop RAM-T test, an approximation of the process is reflected in the 

test plan to allow evaluation of the methodology. To focus the discussion, only longitudinal-force coefficients are 

considered for the detailed progress evaluations of RAM-T. However, the final models for all 6 coefficients are 

presented in section V-C.  

From previous testing in the 12-ft LST with physical models meeting tunnel standards, the general expectation is 

to achieve 3% - 5% prediction error for aerodynamic models of the normal force coefficient. Errors less than 3% 

define the desired level of fidelity but 5% is acceptable and still represents an adequate model. In this study the purpose 

was to test experiment design approaches using an inexpensive radio-controlled class model and actuators in a 

relatively short test program. Some of the issues associated with testing lower-precision aircraft test articles are 

discussed in the next section. However, testing a higher fidelity model was not necessary to achieve the RAM 

development objectives. Consequently for this study, acceptable prediction errors could be relaxed.  

V. Experimental Results 

In this study, results from two approaches to aerodynamic modeling are considered. The first set of results, for the 

conventional approach, produce basic aerodynamic characteristics and comparison data for the second approach. As 

mentioned previously, the second approach was investigated primarily to assess potential testing procedures, metrics, 

and algorithms for development of the RAM-T approach.   

A. Conventional Test Results 

Aerodynamic models from conventional tests are often used to produce data look-up tables (in the form of 

increments) for simulation software and to display trends against key states that reveal important stability and control 

characteristics. Sample aerodynamic characteristics of the Mini-E are highlighted in this section, and the appendix 

presents a more complete set of results. At the design center-of-gravity location, the aircraft is both longitudinally and 

lateral-directionally stable. The longitudinal aerodynamics and static stability are shown in Fig. 10. The pitching 

moment curve shows that the airplane is longitudinally stable for the aircraft’s flight center-of-gravity location. The 

lift curve is approximately linear below stall and shows that the aircraft exhibits a very gentle stall beginning about α 

= 12 degrees. 
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Figure 9. RAM process. 
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The effects of model flexibility, described in section IV-A were monitored during testing. As anticipated, the 

control surfaces exhibited significant flexing under aerodynamic loads, in particular at high angles of attack and at 

large magnitude commands. As a result, set-point error existed between the commanded and measured control surface 

signals. The additional stiffening structure added to the servo mounts for each elevator at the beginning of testing 

improved these errors substantially but not completely. Standard deviations for the set-point errors varied among the 

surfaces. As an example, standard deviations for the left and right elevators are shown in Table 3. The right elevator 

standard deviation was reduced by 80% while the left elevator improved by 20% based on block 1 models of the 

surfaces commanded and measured performance.  

 

Table 3. Standard Deviations, , for elevator set-point errors 

 LE RE 

Before stiffening 1.41 2.29 

After stiffening 1.17 0.48 

 

Comparing the commanded control surface values with the encoder measurements for each surface during the tests 

revealed the remaining systematic error present in the tests. For example, Fig. 11 illustrates this phenomenon for the 

LE with commands of 10° and 30° during two angle-of-attack sweeps at zero sideslip. Several options exist for 

reducing this source of error:  

 

1. More extensive rebuild of model structures to achieve desired level of stiffness.  

2. Add feedback control to ensure commanded positions are achieved.  

3. Develop and apply new calibration functions to reflect dependency on angle of attack.  

4. Use measured surface values instead of commanded values. 

5. Accept the error as an additional source of systematic error during testing.  

 

For this study, the level of fidelity required was relatively low, so less time and resources were considered for options 

1 and 2. Feedback control was used, however, for moving the test rig and setting angle-of-attack and sideslip angles. 

Consequently, standard deviations for alpha set-point errors were on the order of 6.0 x10-05 deg, with similar values 

resulting for sideslip. Options 3 and 4 are easily incorporated into the modeling process but option 3 would require a 

redesign of the experiment using the new calibration information. Option 4 is the easiest to apply and the preferred 

choice for cases where options 1-3 are not possible; however, this choice reflects some degradation in the optimized 

experiment. Option 5 was chosen for this study with the realization that although randomization can help to ameliorate 

many sources of systematic error, the resulting models will still reflect greater prediction error due to the mismatch 

between commanded and achieved surface positions. Set-point error is an issue for any modeling option since the 

range for the affected factor is not fully realized in the experiment.  

 

Figure 10. Longitudinal aerodynamics. 
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B. RAM-T Development Results 

In this study the objective was to manually process the steps that an automated RAM-T process might follow, 

determine best procedures, and note any issues that might present obstacles for this approach. Metrics that can support 

modeling decisions during data processing are shown in Table 4. The table shows an example of a variety of statistical 

metrics for the CN coefficient models estimated during a sequential test described in Table 2. Progression through 

blocks 1-4 using data from region R1 is accomplished using stepwise regression. Block 5 is retained strictly for 

validation tests. Polynomial models were identified for each of the six cases shown in Table 4, and reflect increasing 

model complexity going from case 1 to case 6. The “Design model,” “Model form,” and “No. of terms” rows show 

the type of DOE design, type of polynomial, and corresponding number of polynomial terms, respectively. Model 

terms were selected using stepwise regression where the confidence level for parameter entry and exit into and out of 

the polynomials varied in order to consider cases with varying numbers of terms. However, confidence levels for the 

final models are estimated at 95%.  

 

 Table 4. DOE test metrics: modeling progression for blocks 1-4.  

case # 1 2 3 4 5 6 

block # 1 1 1 2 3 4 

Design model FCD FCD FCD Nested FCD I-Optimal I-Optimal 

Model Form Linear + 2FI quadratic + 2FI cubic + 3FI cubic + 3FI cubic + 3FI cubic + 3FI 

No. of terms 8 22 54 41 67 68 

No. of runs 70 70 70 140 362 437 

R2 0.9157 0.9992 1.0000 0.9962 0.9977 0.9976 

Adj R2 0.9062 0.9988 0.9999 0.9947 0.9971 0.9972 

Pred. R2 0.8994 0.9984 0.9993 0.9928 0.9966 0.9967 

Std. Dev. 0.2485 0.0280 0.0097 0.0460 0.0403 0.0408 

Mean 0.5879 0.5879 0.5879 0.5879 0.5879 0.5983 

C.V.% 42.27% 4.76% 1.65% 6.71% 6.69% 6.81% 

PRESS 4.57 0.0750 0.0304 0.3917 0.6973 0.8391 

PSE 0.57 0.0034 0.0006 0.0096 0.0104 0.0123 

BIC 29.23 -235.0 -324.1 -307.5 -968.1 -1202.3 

**ei/CNmax % 14.69% 7.1% 8.6% 6.8% 4.4% 4.4% 

  **residual ei = CN_measured – CN_predicted, CNmax = 1.7538 

 

 

 

Figure 11. Set-point error due to flexible control surfaces. 
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Cases 1-3 only consider the first block of data to allow some features of the metrics to be displayed. It should be 

noted that model statistics characterize the benefits of model improvements from adding terms to the model based on 

a given data set. When new blocks of data are added, the baseline for the evaluation metrics changes making direct 

comparisons difficult and requires some caution. Considering only cases 1-3 for block 1 data shows that increasing 

the model complexity improves all of the metrics except for the prediction error metric at the bottom. Metrics with 

penalties for additional terms will not continue to improve by adding more terms. Consistency across all cases is 

realized for the prediction error metric at the bottom of Table 4, since it is computed based on residuals using only 

block 5 validation data. Residuals (computed as measured-predicted values) are normalized by the largest value of the 

coefficient being modeled to form this prediction error metric. The values shown reflect the smallest errors that satisfy 

a binomial test described in section III-C. Since prediction error is still larger than desired, progress to additional 

blocks of data is indicated.  

The FCD design for block 1 supports Eq. (2), which is a quadratic model with 2-factor interactions. Since results 

from block 1, case 2, do not provide satisfactory prediction error results, it is necessary to progress to a more complex 

model. More model complexity, in this case a cubic expansion of the polynomial, requires more data to support it. 

This highlights the rationale and benefits of a sequential approach to modeling. At this point it is appropriate to add 

block 2 data, a nested FCD, which provides a minimum set of data for a cubic model structure. To highlight the 

rationale of not simply increasing the complexity of the model without adding more data, case 3 is included in Table 

4. Case 3, with a polynomial model including cubic and 3-factor interactions terms, shows improvements in a number 

of metrics except for a slight worsening of prediction error. Figure 12 presents residual plots to demonstrate the 

seeming contradiction in results. This is a common occurrence in modeling and highlights the need for validation data. 

Improvement in fit residuals are a result of the test data being regressed upon and fitting better as the model is made 

more complex with more terms. The validation data, which has not been regressed upon, reflects the true prediction 

capability of the model being tested.  

 

 
 

Case 4 shows the benefit to adding block 2 data and allowing a more complex model but the model still cannot 

meet the desired prediction error benchmark. Case 5 shows the desired predictive model is achieved while the penalty 

metrics are flattening, indicating modeling progress should stop. Case 6 confirms there is no advantage to adding this 

additional data for the prediction error as well as showing some additional degradation in the penalty metrics.  

The last step in the identification process for region R1 is checking the model against validation data. The key 

metric was shown at the bottom of Table 4. Figure 13 shows model and validation residuals for case 6, which is the 

last model for the analysis. Validation points, shown as block 5, are indicated by check mark in the data point symbol. 

For this model, only 9 validation points fail to meet the 4.3% error bound resulting in the claim that the model satisfies 

the acceptable prediction error requirements of 5%. This criterion is based on the critical binomial number for 75 test 

Region 1, Case 1, quadratic + 2FI terms Region 1, Case 1, cubic + 3FI terms 

Figure 12. Impact of regression on test and validation data for two polynomial models.  

Block 1 test data 

Block 5 validation data Block 5 validation data 

Block 1 test data 
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points, where 66 successful points out of 75 are required to claim the residuals are within tolerance, given a 95% 

probability of success and no more than 1% inference error. The residuals show no trends during the experiment and 

present as a white noise process indicating no other variables or processes are confounded with the data. The 

occasional large residual likely reflects the lower-quality physical model used in this study. Included in the graphic 

are the 4.3% of maximum-range error bounds that show the prediction error achieved for this test.  

 

 
 

Although prediction errors with the current model and region R1 data are less than 5% (an adequate level) it is 

likely an investigator would pursue a split region test to assess the possibility of achieving the more desirable 3% 

level. For the RAM development study, a split region test is simply based on breaking the angle-of-attack range into 

low and high alpha regions labeled as R2 and R3, shown in Fig. 8. For this study, the splitting process was arbitrarily 

continued until the seven regions in Fig. 8 were acquired. In an automated RAM progression, the splitting process 

would stop when models achieve the user specified fidelity level in terms of prediction error. Tables 5-6 show the 

resulting progression of prediction error as the regions are split and models are identified for normal force and pitching 

moment, respectively. For these cases, all regions were modeled with polynomials including some cubic and 3-factor 

interactions, and then tested against the target region’s block-5 data to determine the level of prediction error.  

 

 

Table 5. Normal force prediction error progression due to splitting 

Region # Passing Residual Error Maximum Region CN Prediction Error 

1 0.0759 1.7538 4.33% 

2 0.0447 1.3262 3.37% 

3 0.0487 1.7092 2.85% 

4 0.0258 0.9897 2.61% 

5 0.0322 1.3305 2.42% 

6 0.0305 1.4660 2.08% 

7 0.0321 1.6972 1.89% 

 

 

Figure 13. Residuals for CN model case-6, region R1, based on DOE blocks 1-4. 

4.3% error 
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In each table, regions R1-R7 are labeled (as identified in Fig. 8), the largest residual errors that pass the binomial test, 

and the maximum coefficient values are presented, along with the resulting prediction error. Models for normal force 

coefficient quickly achieve the desirable 3% level of prediction fidelity, whereas pitching moment is only within a 4% 

level after the same number of splits. This result may reflect the relatively more favorable signal-to-noise ratios for 

normal force.   

Table 6. Pitching moment prediction error progression due to splitting 

Region # Passing Residual Error Maximum Region Cm Prediction Error 

1 0.0602 1.0120 5.95% 

2 0.0399 0.9137 4.36% 

3 0.0454 1.0114 4.49% 

4 0.0383 0.7520 5.09% 

5 0.0485 0.9299 5.21% 

6 0.0367 0.9612 3.82% 

7 0.0337 1.0039 3.36% 

 

C. Test Comparisons and Evaluations 

Aerodynamic modeling results from conventional experiments, when used in simulation, are typically provided in 

the form of data look-up tables along with limited statistical information. The easiest comparisons to make between 

conventional measurements and the RAM polynomial models are in basic co-plots of the results. This comparison is 

shown in Fig. 14 for normal force and pitching moment with all control surfaces set to zero. The conventional data 

were selected from several repeated runs made under the same conditions as the designed experiments. Noted on the 

charts are the largest variations for the conventional data normalized by the maximum coefficient value under the 

range studied. As noted previously, normal force measurements exhibited greater signal-to-noise ratios compared to 

pitching moment, so a greater spread for repeatability of the pitching moment is expected. The results show the 

variability possible from day-to-day testing and explains the model convergence differences in Tables 5-6 found with 

normal force coefficient reaching the desired fidelity with less data.  

Comparing aerodynamic model coefficients from both approaches was also accomplished by taking all the 

conventional OFAT data and fitting a large neural-net model so that surfaces from the two approaches could be 

compared and calculations of basic statistics could be computed. These results are shown in Table 7 and in Fig. 15. 

Table 7 highlights fit statistics of mean and standard deviation based on residuals corresponding to the CN and Cm 

models. OFAT-based models reflect a larger bias and standard errors compared to RAM-based polynomial models. 

Figure 15 shows a good match between the two model surfaces produced by the two models.  

 
 

 

 

Figure 14. DOE and conventional longitudinal coefficients and largest measurement range. 

ei / max Cm = 7.3% e
i
 / max CN = 3.8% 
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Table 7. Improved statistics using RAM approach 

Coefficient Approach Mean Std. Error 

CN OFAT 0.057 0.114 

“ RAM 0.001 0.051 

Cm OFAT 0.007 0.113 

“ RAM -0.007 0.046 

 

 

VI. Concluding Remarks 

Motivated by UAM vehicle designs that present significant complexity and nonlinearity with possibilities for 

numerous factors and many unconventional factor interactions, a RAM approach is being developed. This study 

presents some preliminary results toward that goal. Designed experiments based on DOE, in an automated RAM 

process can provide statistical information before, during, and after the experiment is completed. This is extremely 

helpful to investigators working to obtain a specific desired level of model fidelity. A variety of statistical measures 

were presented and evaluated in this study. Each offers useful information throughout the entire process, however, 

prediction error evaluated on validation data is a clear primary metric for modeling under an automated RAM process. 

Conventional testing was also performed with a primary purpose of developing aerodynamic models useful for 

flight dynamics simulation, design, and analysis. Comparing coefficient plots between the two approaches, 

conventional and RAM, are encouraging since both approaches represent the aerodynamic functions well. However, 

making comparisons of the two approaches in terms of time-to-test, quantity of data required, and utility of the final 

models is difficult. The two approaches have very different methodologies and in this study different test objectives. 

In general, the two approaches offer corroborating results with the benefit of more statistical control given to the RAM 

approach. The sequential nature of the RAM approach also inherently limits data collection to that required to match 

model complexity and fidelity requirements. In addition, for typical UAM vehicles where the number of factors may 

Figure 15. Comparison plots for OFAT data and resulting models from RAM-T test. 
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be 2-4 times that of a conventional aircraft, an automated RAM approach provides guidance starting with experiment 

design, through test execution, and in final model analysis. Future work will refine and automate the RAM process.  

Appendix 

Additional aerodynamic data developed during the conventional experiment is provided to complete the modeling 

results. Figure A-1 shows the basic lateral-directional characteristics. The rolling moment plot indicates that the 

airplane rolls right at stall. Evident by the positive values of Cnβ, the aircraft is directionally stable, except for some 

very marginal instability after stall. The negative values of Clβ indicate that the aircraft is laterally stable up to α = 36 

degrees.  

 

 
Figure A-2 shows the lateral-directional aerodynamics with respect to sideslip. Different angle-of-attack cases are 

shown. The lateral-directional aerodynamics present as largely conventional responses for this vehicle. There is no 

evidence of hysteresis effects or other nonlinear effects, even around stall, for the lateral-directional characteristics. 

Figure A-1. Lateral-directional aerodynamics. 

  

Figure A-2. Lateral-Directional Aerodynamics with Respect to Sideslip. 
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Plots of control power of the control surfaces are in Fig. A-3. The plots indicate that there is enough control surface 

power to overcome the rolling moments at stall. Lift and drag with respect to angle of attack are shown in Fig. A-4. 

 

 
 

 
 

 

Acknowledgments 

The authors extend their appreciation to the NASA Transformational Tools and Technologies Project. 

 

Figure A-3. Control power as a function of angle of attack. 
  

Figure A-4. Lift and drag with respect to angle of attack. 
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