
NASA/TM–2020–220585

Multi Model Monte Carlo with
Python (MXMCPy)

Geoffrey F. Bomarito
Langley Research Center, Hampton, Virginia

James E. Warner
Langley Research Center, Hampton, Virginia

Patrick E. Leser
Langley Research Center, Hampton, Virginia

William P. Leser
Langley Research Center, Hampton, Virginia

Luke Morrill
Langley Research Center, Hampton, Virginia

April 2020

NASA STI Program. . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to
help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM–2020–220585

Multi Model Monte Carlo with
Python (MXMCPy)

Geoffrey F. Bomarito
Langley Research Center, Hampton, Virginia

James E. Warner
Langley Research Center, Hampton, Virginia

Patrick E. Leser
Langley Research Center, Hampton, Virginia

William P. Leser
Langley Research Center, Hampton, Virginia

Luke Morrill
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

April 2020

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

Abstract

Multi Model Monte Carlo with Python (MXMCPy) is a software package developed
as a general capability for computing the statistics of outputs from an expensive,
high-fidelity model by leveraging faster, low-fidelity models for speedup. Motivated
by uncertainty propagation problems where classical Monte Carlo (MC) simulation
is computationally intractable, various multi-model MC approaches have recently
emerged that yield unbiased estimators with significantly reduced variance relative
to MC for the same cost. These existing methods include multi-level Monte Carlo
(MLMC), multi-fidelity Monte Carlo (MFMC), and approximate control variates
(ACV). Given a fixed computational budget and a collection of models with varying
cost/accuracy, each method seeks a sample allocation strategy across the models
that results in an estimator with optimal variance reduction.

MXMCPy is a versatile tool that enables convenient access to many existing multi-
model MC approaches within one modular and extensible package. With MXMCPy,
users can easily compare existing methods to determine the best choice for their
particular problem, while developers have a basis for implementing and sharing
new variance reduction approaches. This report introduces the MXMCPy software,
providing a summary of the problem solving workflow for users as well as a brief
overview of the code layout for developers.

1 Motivation

Uncertainty quantification (UQ) is one of the fastest growing paradigms within the
field of computational science and engineering. In many practical applications, UQ
is performed in conjunction with high-fidelity simulations arising from the numerical
solution of partial differential equations governing the problem. One of the key topics
within UQ is the propagation of uncertainties through these potentially expensive
computational models from random input parameters to quantities of interest. This
report introduces software that offers an efficient approach for solving this class of
UQ problems.

Within the context of uncertainty propagation, one is often interested in com-
puting estimators for the statistics of the model outputs. Arguably the most well
known and general purpose approach for calculating these estimators is Monte Carlo
(MC) simulation. MC estimators are robust, unbiased, and have a rate of conver-
gence that is independent of the dimensionality (number of random input variables)
of the problem. However, the convergence rate is still relatively slow, often requiring
thousands or millions of samples (and model evaluations), and hence MC estima-
tors are impractical for expensive models. To reduce this computational expense,
lower fidelity surrogate models are commonly constructed to replace the high-fidelity
model for MC simulation, but will generally yield biased and potentially inaccurate
estimators.

Multi-model MC methods have recently emerged to bridge this gap, combining
information from two or more models of varying fidelity and computational cost to
produce efficient, accurate predictions. By retaining the high-fidelity model, un-

1

biased estimators of a quantity of interest can be constructed, while introducing
an ensemble of low-fidelity models provides computational speedup. Given a fixed
computational budget, the crux of multi-model approaches is the determination of
a sample allocation strategy across the available models that results in an estimator
with the minimum variance. This is posed as an optimization problem where the
estimator variance is the objective function and the resulting optimal sample allo-
cation is dependent on the relative costs of, and correlations between, the models.
Similar to traditional MC simulation, multi model methods have convergence rates
independent of the number of input parameters, avoiding the curse of dimensionality
as an advantage over many alternative approaches.

Existing multi-model methods are distinguished by both the types of models
that are used and the approach for solving the variance minimization optimization
problem. Multilevel MC (MLMC) [1, 2] restricted low-fidelity models to those aris-
ing from coarsened discretizations of the same governing equations in space/time,
while multifidelity MC (MFMC) [3] generalized the types of models permitted to
have different forms (e.g., data-driven, reduced-order, analytical, etc.). Both MLMC
and MFMC introduce assumptions (on model dependency structure) that simplify
the variance minimization problem to yield analytical expressions for optimal sam-
ple allocation. More recently, a generalized approximate control variates (ACV) [4]
approach was proposed that unified and improved upon MLMC-based and MFMC
methods. It was shown that by considering a general model dependency struc-
ture, orders of magnitude improvement in variance reduction was possible with a
newly proposed set of estimators whose sample allocations are optimized numeri-
cally. However, only a preliminary sketch of possible numerical optimization schemes
was offered, leaving the door open for more robust sample allocation strategies to be
developed. Additionally, the best multi-model estimator (including MLMC/MFMC)
for a given problem was shown to be highly dependent on the types, relative costs,
and correlations of the available models.

Motivated by the breakthroughs and findings of the work of Gorodetsky et al. [4],
Multi Model Monte Carlo with Python (MXMCPy)1 is a software package being de-
veloped as a general capability for computing statistics of expensive, high-fidelity
models. To the developers’ knowledge, it is the first publicly available library to
offer convenient access to many of the existing multi-model MC approaches, includ-
ing MLMC, MFMC, and ACV estimators. MXMCPy users can easily compare these
existing methods to determine the best choice for their particular problem given
the nature of their available models. The software also includes utilities to assist a
non-expert user in completing an end-to-end uncertainty propagation analysis with
a particular algorithm. For researchers in the field, MXMCPy provides an open-source
basis to develop and share new variance reduction methods by exploring improved
sample allocation optimization schemes and easily testing against the current state-
of-the-art.

This report introduces the MXMCPy software, providing a summary of the problem
solving workflow for users as well as a brief overview of the code layout for developers.
While the functionality of MXMCPy is summarized within, this report is not meant to

1Available open source at https://github.com/nasa/MXMCPy

2

serve as the package’s user documentation, which can be found with the source code
itself. The user documentation will contain more detailed descriptions of MXMCPy

classes and methods as well as getting started instructions that include information
on installation and dependencies. The following section provides an overview of how
a user could leverage MXMCPy for an end-to-end uncertainty propagation analysis,
including code snippets demonstrating a handful of key MXMCPy classes and methods.
Then, a brief introduction to the software layout of MXMCPy is provided for potential
developers, highlighting the particular sections of code that require modification
to implement new multi-model optimization strategies. A brief verification study
is then covered. Finally, the key points of the report are summarized in the last
section.

2 Introduction for Users

This section provides a high-level overview of how an MXMCPy user could leverage the
software for an end-to-end uncertainty propagation analysis. As a starting point,
the MXMCPy workflow assumes a user has access to a high-fidelity model that predicts
a certain quantity of interest (output) for a given realization of random inputs, along
with an ensemble of (one or more) lower cost/fidelity models that approximate the
same output. Furthermore, the user must have a mechanism for producing an arbi-
trary number of random input samples to their models (e.g., via a random number
generator or more advanced sampling method [5]). With these prerequisites, MXMCPy
can be leveraged to compute an accurate (low variance) and efficient estimator for
the user’s quantity of interest.

Figure 1 shows a diagram of the MXMCPy workflow for the case of three com-
putational models (one high fidelity and two lower fidelity). For example, in an
application such as additive manufacturing (AM) via selective laser melting (SLM),
the quantity of interest might be the expected value of melt pool width resulting
from a specific set of processing parameters (e.g., laser power and velocity). Here,
there is uncertainty in these parameters and others, such as the absorptivity of the
powderbed, and a researcher is interested in constructing an estimator for the ex-
pected melt pool width. The high fidelity model (model 1) is a thermomechanical
model implemented with the finite element method that is accurate but expensive.
The user also has access to faster, but cruder, data-driven (model 2) and analytical
(model 3) models.

Within the overall workflow, MXMCPy was developed primarily to address the
problem of determining the optimal sample allocation across available models to
minimize estimator variance, as it is the key technical challenge in multi-model MC
approaches. Other tasks such as the generation of random input parameters and
the execution of the computational models themselves are highly problem-specific
and are thus the responsibility of the user. For completeness, an overview of both
the MXMCPy- and user-focused steps is provided.

3

Figure 1: Example MXMCPy workflow

4

Step 1: Compute model outputs for pilot samples (User)

In order to determine optimal sample allocations, MXMCPy needs information regard-
ing the computational cost of the available models as well as the relationship between
the predicted outputs of each model. The former is simply a list of estimated aver-
age run times for each model while the latter is quantified via the covariance matrix
of the outputs from each model. Unless a user has an a priori estimate of the co-
variance between each of the available models, the covariance matrix can be readily
calculated based on an initial set of outputs (“pilot outputs”, Figure 1). Here, each
model is executed for the same set of pilot inputs2 and the resulting outputs are
collected for use in the next step below. Model costs can also be measured during
the execution of the pilot samples.

Note that the number of pilot input samples used is a balance of cost versus
accuracy; the more samples used results in a more accurate covariance estimate but
at the expense of longer computation time to execute the models. At the end of
this step, it is assumed that two Python lists, model costs and pilot outputs are
available in the workflow to follow:

model_costs = [cost_m1 , cost_m2 , cost_m3]

pilot_outputs = [pilot_outputs_m1 , pilot_outputs_m2 , pilot_outputs_m3]

with the costs (estimated run times) and arrays of pilot outputs for each model,
respectively. Costs are represented by floating point values, which can be either
absolute measures or normalized in some fashion. Outputs are represented as arrays
of floating point values.

Step 2: Perform sample allocation optimization

With estimated costs and pilot outputs from all available models, MXMCPy can now
calculate the optimal sample allocation that minimizes estimator variance for a given
computational budget. Furthermore, a range of multi-model MC methods can be
tested on the solution to this optimization problem and compared to determine the
best one (i.e. , the one that yields the smallest variance) for the available models.
This functionality is available through the Optimizer class in MXMCPy, which encap-
sulates all the details of the sample allocation optimization and provides access to
all available allocation strategies.

For example, a multi-model MC algorithm comparison could be performed using
MXMCPy as follows

from mxmc import Optimizer

from mxmc import OutputProcessor

covariance_matrix = OutputProcessor.compute_covariance_matrix(

pilot_outputs)

mxmc_optimizer = Optimizer(model_costs , covariance_matrix)

min_variance = 1e9

for algorithm in ["mfmc", "mlmc", "acvkl"]:

2This is not strictly necessary using MXMCPy functionality, but there must be at least two over-
lapping samples between each model pair to calculate covariance.

5

opt_result = mxmc_optimizer.optimize(algorithm , target_cost)

if opt_result.variance < min_variance:

min_variance = opt_result.variance

sample_allocation = opt_result.allocation

yielding the sample allocation across available models that minimizes estimator vari-
ance for the computational budget (target cost). Here, the OutputProcessor

utility in MXMCPy is used to compute the covariance matrix for the models based
on the pilot outputs generated in the previous step. After the Optimizer class is
initialized using model costs and covariance matrix, the optimize function is used
to find the optimal sample allocation and minimized estimator variance for a given
algorithm and target cost. Here, three common multi-model methods are tested
for illustration. For more information about MXMCPy functionality and all available
algorithms, see the user documentation that accompanies the source code.

Step 3: Generate input samples for models

Once the optimal sample allocation problem has been solved with MXMCPy, a user will
need to use the results to generate input samples to evaluate each of their models. All
information regarding sample allocation is encapsulated in the SampleAllocation

class in MXMCPy, an object of which is returned following optimization with the
Optimizer class (e.g., the sample allocation in the previous step).

One straightforward approach for generating input samples for each model using
the SampleAllocation object is outlined in the code snippet below:

num_total_samples = sample_allocation.num_total_samples

all_samples = ... #user -defined random sample generation

model_input_samples = sample_allocation.allocation_samples_to_models(

all_samples)

Here, a user first determines the total number of samples (across all models) that
will be required for their problem. Then, the user will use an external, problem-
specific code to generate an array of random samples (with size num total samples).
Finally, sample allocation is used to partition the input samples into subsets to
be run with each model. Note that model input samples is a list containing input
sample arrays for each model (three arrays in this case):

model_input_samples = [inputs_m1 , inputs_m2 , inputs_m3]

Step 4: Compute model outputs for prescribed inputs

With input samples randomly generated and allocated to the available models, out-
puts must be computed for each model. Similar to generating pilot model outputs
(Step 1), this step is the responsibility of the user and does not require MXMCPy

functionality. The user will need to produce a list containing arrays of outputs for
each model, e.g.,

model_outputs = [outputs_m1 , outputs_m2 , outputs_m3]

6

. Here, the sizes of the output arrays must match those of the input arrays in
model input samples from the previous step and the ordering between inputs and
outputs should be consistent.

Step 5: Form estimator

The final step in the end-to-end MXMCPy workflow is to calculate the final estimator
for a user’s quantity of interest. This is easily done using the Estimator class in
MXMCPy, e.g.,

from mxmc import Estimator

estimator = Estimator(sample_allocation , covariance_matrix)

estimate = estimator.get_estimate(model_outputs)

Here, the optimal SampleAllocation object found previously and the covariance
matrix among outputs are used to initialize the Estimator class. Then, the model
outputs computed in the previous step are used to calculate the estimator. The
estimated variance associated with this estimator is available in the min variance

from Step 2 above.

3 Introduction for Developers

MXMCPy was designed with the intent of being modular and easily extensible. This
extensibility offers two benefits: when researchers implement new extensions they
are (1) easily accessible to the broader research community and (2) easier to com-
pare to existing methods. This section provides a more in depth look at the code
within the MXMCPy package in order to orient future developers and encourage future
contributions.

3.1 Code Organization

The MXMCPy package is organized – see Figure 2 – with the purpose of making the
code most relevant to users up front while storing the code which is more relevant
to developers. The code with which users interact is located in the mxmc directory.
For instance, all the classes and functions used in Section 2 are all present here. The
optimizers subdirectory contains the code that performs the various sample alloca-
tion optimizations (the bulk of the code associated with MXMCPy). The optimizers
directory is organized with analytical optimizers (i.e. MFMC and MLMC) directly
within this directory and numerically based optimizers (e.g.ACVMF and ACVIS)
within the approximate control variates sub directory. The util directory con-
tains utility classes and functions that may be useful in development and testing of
MXMCPy code.

3.2 The Sample Allocation Optimization

Before describing what is likely to be the most common extension of MXMCPy, the
definition of custom optimizers, it is first necessary to more formally define the sam-
ple allocation optimization. Without loss of generality, a multi-model MC estimator

7

mxmc

optimizer.py

sample allocation.py

...

optimizers

optimization result.py

optimizer base.py

...

approximate control variates

...

util

...

Figure 2: Directory structure of MXMCPy

with approximate control means can be written:

Q̃(ααα, z) = Q̂0(z0) +
M�

i=1

αi

�
Q̂i(zi+)− Q̂i(zi−)

�
,

whereM is the number of lower fidelity models, ααα is the set of control variate weights
{αi}Mi=1, and z is the sample allocation associated with the potentially overlapping
sets of samples {z0, z1+, z1−, ..., zM+, zM−} [4]. Q̂i(z) is an MC estimator based on
samples z: i.e. Q̂i(z) is the mean of the outputs of model i given inputs z.

Because Q̃ is an unbiased estimator of E[Q0], error of the estimate is associated
solely with the variance of the estimator: Var[Q̃]. Thus, an optimal estimator is for
which the variance is minimized:

Q̃opt = min
ααα,z

Var[Q̃(ααα, z)].

The optimal values of ααα can be calculated for arbitrary z (see [4]), i.e.

αααopt(z) = argmin
ααα

Var[Q̃(ααα, z)].

This reduces the estimator optimization problem to one based solely on the sample
allocation,

Q̃opt = min
z

Var[Q̃(αααopt(z), z)].

Thus the primary result of a sample allocation optimization is a SampleAllocation

object, which is written formally as

zopt = argmin
z

Var[Q̃(αααopt(z), z)].

Note that typically this optimization is constrained by the total cost a user is willing
to invest in getting the estimate.

8

3.3 Defining a Custom Optimizer

The implementation of a custom optimizer in MXMCPy contains two steps: (1) imple-
ment the optimizer and (2) connect the optimizer to the front end.

3.3.1 Implementing an Optimizer

An implementation of the abstract base class OptimizerBase (optimizer base.py)
is needed. The only requirement of the implementation is the definition of the
function:

def optimize(self , target_cost)

perform the optimization

return optimization_result

The return value of the optimize function is expected to be an OptimizationResult
(optimization result.py) object. It contains the actual cost of the estimator,
the variance of the estimator, and a SampleAllocation (sample allocation.py)
object. The creation of the SampleAllocation object is handled by the construc-
tor of the OptimizationResult class. The inputs to the constructor are straight
forward and described in the code’s documentation; however, the format of the
sample_array parameter requires special attention.

The sample_array is a two dimensional numpy array of integers which fully
characterizes a sample allocation z. Table 1 illustrates the format for a case of 4
models (1 high fidelity model and M=3 lower fidelity models) using an MFMC-
type sampling strategy. The rows of the array are each associated with a group
of samples, the union of which includes all the samples in the allocation. The
first column indicates the number of samples in the sample group. The remaining
columns indicate whether the sample group is included (1) or excluded (0) in each
zi. An illustration and further explanation of this format can be found in Figure
2.1 of reference [4].

3.3.2 Registering the Optimizer

In order to make the custom optimizer usable from the main Optimizer interface,
it must be added to the ALGORITHM_MAP in optimizer.py. The ALGORITHM_MAP is
a map from the string name of an optimizer to its optimizer class. For instance, a
new optimizer could be registered using

Table 1: Diagram of a sample_array representing an MFMC-type sample allocation
with 4 models.

number of samples z0 z1+ z1− z2+ z2− z3+ z3−
sample group 1 10 1 1 1 1 1 1 1
sample group 2 50 0 0 1 1 1 1 1
sample group 3 100 0 0 0 0 1 1 1
sample group 4 1000 0 0 0 0 0 0 1

9

from my_code import CustomOptimizerClass

ALGORITHM_MAP[’custom_optimizer ’] = CustomOptimizerClass

The optimizer could then be used in the same manner as others.

from mxmc import Optimizer

mxmc_optimizer = Optimizer(model_costs , covariance_matrix)

opt_result = mxmc_optimizer.optimize(’custom_optimizer ’, target_cost)

4 Verification

In this section, MXMCPy is used in a simple verification problem to illustrate that
the variance of MXMCPy estimators is accurately implemented in sample alloca-
tion optimization. Here, the predicted estimator variance for a given method,
Var[Q̃(αααopt, zopt)] from Section 3.2, is compared to the actual variance of the fi-
nal estimator obtained from the end-to-end procedure described in Section 2. The
code that was used to produce these results is included as an example in the code’s
repository.

4.1 Model definitions

Let [Σ] be an MxM covariance matrix and {X} be an M -dimensional random
input vector with independent and identically distributed components according
to a standard Normal distribution. If L is the lower triangular matrix obtained
by Cholesky decomposition of [Σ] = [L][L]T , then outputs {Y } = [L]{X} have
covariance [Σ].

In this verification example, M = 3 and the covariance matrix was

[Σ] =

1.0 0.9 0.8
0.9 1.0 0.9
8.0 0.9 1.0

 ,

representing a reasonable covariance matrix from a set of models with decreasing
fidelity. The Cholesky decomposition of [Σ] is

[L] =

1.0 0.0 0.0
0.9 0.43588989 0.0
0.8 0.41294832 0.43528575

 .

Given the 3-dimensional random inputs X, three models for high-, med-, and low-
fidelity are defined as

Yhigh =X1

Ymed =0.9X1 + 0.43588989X2

Ylow =0.8X1 + 0.41294832X2 + 0.43528575X3,

which have the desired covariance. To facilitate the use of MXMCPy in this simple
setting, the models are assumed to have costs of 1, 0.1, and 0.01, respectively.

10

4.2 Estimator Variance

Using the exact covariance matrix and the assumed model costs from the previ-
ous section, an MXMCPy sample allocation optimization (Section 2, step 2) was per-
formed for three algorithms with a target cost of 80. The result of the optimization
includes both a SampleAllocation and a prediction of estimator variance. The
SampleAllocation is used to create an Estimator following the remainder of the
workflow in Section 2. The resulting Estimator should make estimates which have
a variance close to the predicted estimator variance. To quantify the actual vari-
ance of the Estimator, steps 3-5 were repeated 10,000 times with the above defined
models resulting in 10,000 independent estimates. The variance of these estimates
is compared to the predicted variance in Table 2.
In all three of the algorithms the relative error is small, illustrating the accuracy of
the predicted estimator variance calculated by MXMCPy.

4.3 Effect of Pilot Samples

The verification problem above used the exact covariance matrix to perform the
sample allocation optimization. In practice, however, pilot samples will generally
need to be used to approximate the covariance matrix. This approximation can lead
to an increased error in predicted estimator variance.

The workflow of the previous section was repeated using differing numbers of
pilot samples to approximate the covariance matrix to illustrate the impact of this
error. For a given number of pilot samples, ten calculations of the covariance matrix
were made (step 1, 2) and ten corresponding evaluations of the estimator variance
were made (again using 10,000 random estimates for each). The mean relative error
is calculated for each algorithm as a function of number of pilot samples. The results
are illustrated in Table 3. The last row of Table 3 uses the exact covariance matrix,
and so defines the approximate error floor for this study. A clear trend is seen where
an increased accuracy in the covariance matrix (increased number of pilot samples)
corresponds to more accurate predictions of estimator variance. It is reiterated that
the magnitude of this approximation error is problem dependent and the number of
pilot samples chosen reflects a balance of accuracy versus computational cost.

5 Summary

This report provides an introduction to the MXMCPy Python package that enables ef-
ficient uncertainty propagation using multi-model MC methods. Specifically, multi-
model MC aim to compute statistics of outputs from expensive, high-fidelity models

Table 2: Verification of variance predictions using the true covariance matrix.

Algorithm Predicted Variance Actual Variance Relative Error (%)

MFMC 5.287e-03 5.360e-03 1.38
ACVIS 5.998e-03 6.069e-03 1.18

GRDMR 5.332e-03 5.367e-03 0.66

11

Table 3: The effect of pilot samples on accuracy of variance predictions.

Number of Relative Error (%)
Pilot Samples MFMC ACVIS GRDMR

10 102.1 106.2 107.9
20 27.2 36.2 33.2
40 16.9 18.6 16.4
80 12.4 10.8 13.4
160 7.5 7.7 7.8
320 4.0 3.8 3.8
∞ 1.1 0.8 1.2

by leveraging faster, low-fidelity models for speedup. Several variations of this con-
cept have emerged in recent years (MLMC, MFMC, ACV, etc.), and it remains
an active area of research. MXMCPy is a general tool that provides easy access to
these existing multi-model MC approaches within one modular and extensible pack-
age. With MXMCPy, users can easily compare existing methods to determine the best
choice for their particular problem, while developers have a basis for implement-
ing and sharing new variance reduction approaches. This report provided both an
overview of how MXMCPy can be applied to an end-to-end analysis for users and an in-
troduction to the layout of the software to help facilitate modification and extension
of the code for interested developers and researchers.

References

1. Giles, M. B.: Multi-level Monte Carlo path simulation. Operations Research,
vol. 56, no. 3, 2008, pp. 607–617.

2. Giles, M. B.: Multilevel Monte Carlo Methods. Monte Carlo and Quasi-Monte
Carlo Methods 2012 , J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 83–103.

3. Peherstorfer, B.; Willcox, K.; and Gunzburger, M.: Optimal Model
Management for Multifidelity Monte Carlo Estimation. SIAM Journal on
Scientific Computing , vol. 38, 01 2016, pp. A3163–A3194.

4. Gorodetsky, A.; Geraci, G.; Eldred, M.; and Jakeman, J. D.: A generalized
approximate control variate framework for multifidelity uncertainty
quantification. Journal of Computational Physics , 2020, p. 109257. URL
http://www.sciencedirect.com/science/article/pii/S0021999120300310.

5. Gamerman, D.; and Lopes, H. F.: Markov Chain Monte Carlo: Stochastic
Simulation for Bayesian Inference. Chapman and Hall/CRC, Boca Raton,
Florida, Second ed., 2006.

12

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-04-2020

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Multi Model Monte Carlo with Python (MXMCPy)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
295670.01.20.23.30

6. AUTHOR(S)

Geoffrey F. Bomarito and James E. Warner and Patrick E. Leser and
William P. Leser and Luke Morrill

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–21133

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2020–220585

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 61
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Multi Model Monte Carlo with Python (MXMCPy) is a software package developed as a general capability for computing the statistics of outputs
from an expensive, high-fidelity model by leveraging faster, low-fidelity models for speedup. Motivated by uncertainty propagation problems
where classical Monte Carlo (MC) simulation is computationally intractable, various multi-model MC approaches have recently emerged that
yield unbiased estimators with significantly reduced variance relative to MC for the same cost. These existing methods include multi-level Monte
Carlo (MLMC), multi-fidelity Monte Carlo (MFMC), and approximate control variates (ACV). Given a fixed computational budget and a collection
of models with varying cost/accuracy, each method seeks a sample allocation strategy across the models that results in an estimator with
optimal variance reduction.
MXMCPy is a versatile tool that enables convenient access to many existing multi-model MC approaches within one modular and extensible
package. With MXMCPy, users can easily compare existing methods to determine the best choice for their particular problem, while developers
have a basis for implementing and sharing new variance reduction approaches. This report introduces the MXMCPy software, providing a
summary of the problem solving workflow for users as well as a brief overview of the code layout for developers.

15. SUBJECT TERMS

Uncertainty Quantification, Monte Carlo, Surrogate Modeling, Model Fusion

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

18

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

