
NASA/TM–2020–220480

Dynamic Controllability of Partially
Observable Temporal Plans

Arthur Bit-Monnot
University of Sassari, Sassari, Italy

Paul H. Morris
NASA Ames Research Center

May 2020



NASA STI Program. . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to
help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199



NASA/TM–2020–220480

Dynamic Controllability of Partially
Observable Temporal Plans

Arthur Bit-Monnot
University of Sassari, Sassari, Italy

Paul H. Morris
NASA Ames Research Center

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

May 2020



Acknowledgments

Thanks to Jeremy Frank for encouraging this study in connection with temporal reasoning methods
for Planning and Scheduling. Also thanks to Dave Smith for facilitating the collaboration.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500



Dynamic Controllability of Partially Observable
Temporal Plans

Arthur Bit-Monnot
University of Sassari

Sassari, Italy

Paul Morris
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

NASA/TM-2020-220480

Abstract

The formalism of Simple Temporal Networks provides methods for evaluating
the feasibility of temporal plans. The basic formalism deals with the consistency of
quantitative temporal requirements on scheduled events. Over time, the formalism
has been extended to handle exogenous events with varying degrees of observ-
ability. A major problem that has only been partially solved before now involves
a combination of observable and unobservable events. In this paper, we present a
sound and complete solution to this problem.

1 Introduction
Many applications (for example, the Remote Agent Experiment (Muscettola et al.,
1998), as an early one) have drawn attention to the importance of quantitative reasoning
about time in practical planning systems. In particular, a need has been felt for tempo-
ral representations to specify scheduling requirements that an agent needs to satisfy. In
general, these requirements could involve exogenous events, as well as the agent’s own
actions, and these events might or might not be observable. A number of formalisms
have been established in response to the need to model these kinds of problems, and
algorithms have been developed to solve them. The formalism of Simple Temporal
Networks and its extensions has been particularly useful in this regard. Nevertheless,
there remain many unsolved problems and under-developed theory in this area. This
paper provides a a greater understanding and solution for one such class of problems.

1.1 STNs and Extensions
A Simple Temporal Network (STN) (Dechter, Meiri, and Pearl, 1991) is a graph in
which the edges are annotated with upper and lower numerical bounds. The nodes
in the graph represent temporal events or timepoints, while the edges correspond to
constraints on the durations between the events. Each STN is associated with a distance
graph derived from the upper and lower bound constraints. An STN is consistent if and
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only if the distance graph does not contain a negative cycle. To avoid confusion with
the distance graph, we will refer to edges in the STN as links while the term edges will
be reserved for edges in the distance graph.

A Simple Temporal Network With Uncertainty (STNU), introduced by Vidal and
Fargier (Vidal and Fargier, 1999; Vidal, 2000), is similar to an STN except the links
are divided into two classes, requirement links and contingent links. Requirement links
are temporal constraints that the agent must satisfy, like the links in an ordinary STN.
Contingent links may be thought of as representing causal processes of uncertain du-
ration, or periods from a reference time to exogenous events. Their finish timepoints,
called here contingent timepoints, are controlled by Nature, subject to the limits im-
posed by the bounds on the contingent links. We will refer to the start timepoint of a
contingent link as its activation timepoint. This may itself be a contingent timepoint
if it is the finish point of some other contingent link. All other timepoints, called exe-
cutable timepoints, are controlled by the agent, whose goal is to satisfy the bounds on
the requirement links. Each contingent link is required to have finite positive upper and
lower bounds. An STNU may be thought of as determining a family of STNs where
the contingent links take on each of their possible durations; the individual STNs in
the family are called projections. An STNU is said to be Weakly Controllable if ev-
ery projection is consistent. Weak Controllability was shown to be in co-NP, and later
proved to be co-NP Hard (Morris and Muscettola, 1999). However, this property does
not support a generally useful execution strategy.

The uncontrolled timepoints in STNUs are generally assumed to be either all unob-
servable, or all observable when they occur, giving rise to different execution strategies.
An STNU is Strongly Controllable if there is a single schedule that satisfies the require-
ments in all of the projections, and thus does not depend on observations. An STNU
is said to be Dynamically Controllable (Vidal and Fargier, 1999; Morris, Muscettola,
and Vidal, 2001; Hunsberger, 2009; Morris, 2014) if there is a strategy for scheduling
each executable timepoint that depends only on observations that are available in the
past or present at the time it is scheduled.1 Whether an STNU is Dynamically Control-
lable or not can be determined by an algorithm that runs in cubic time (Morris, 2014).
The algorithm tightens some constraints in a way that makes explicit limitations on the
execution strategies due to the presence of contingent links

As, mentioned, an STN has an alternative representation as a distance graph (Dechter,
Meiri, and Pearl, 1991). Similarly, there is a representation for an STNU called the la-
beled distance graph (Morris and Muscettola, 2005) that is exploited in the Dynamic
Controllability algorithm.

A Partially Observable STNU (POSTNU) (Moffitt, 2007) is an STNU in which the
contingent timepoints are further subdivided into observable and unobservable (hidden)
timepoints. Thus, the controllability problem for a POSTNU may be regarded as a
combination of Strong and Dynamic Controllability. In the general POSTNU problem,
a contingent link may be activated by a hidden timepoint. In that case, if the endpoint
is observable, the POSTNU semantics specifies that when it is observed, we learn only
the time of the endpoint, not the duration of the link that was activated by the hidden

1The literature varies on whether observations can be reacted to instantaneously, or must be strictly in
the past. The instantaneous variant was the original concept and has some technical advantages, including
allowing an executable timepoint to be simultaneous with an observation.
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timepoint. Of course we do learn (or can easily calculate) the time difference between
the observed endpoint and any previous known time.

Moffitt’s algorithm (Moffitt, 2007) for checking the controllability of a POSTNU is
complete but not sound in that it might incorrectly label a POSTNU as controllable. An-
other algorithm, also relying on the compilation to STNUs is provided by (Bit-Monnot,
Ghallab, and Ingrand, 2016) that is sound but only complete for a subclass of POST-
NUs. A polynomial sound and complete algorithm for assessing the controllability of
the general POSTNU problem has not previously been known. We present one here.

2 Formal Preliminaries
Formally, an STN may be described as a 4-tuple 〈N,E, l, u〉 where N is a set of nodes
called timepoints, E is a set of edges called links, and l and u are functions mapping
each edge into the lower and upper bounds of the interval of possible durations.

An STNU is a 5-tuple 〈N,E, l, u, C〉, where N,E, l, u are as in a STN, and C is a
subset of the links: the contingent links, the others being called requirement links. Each
contingent link e is required to satisfy 0 < l(e) ≤ u(e) <∞.2

The durations of contingent links are assumed to vary independently; thus every
combination that satisfies the upper and lower bounds of the contingent links gives rise
to an STN called a projection. Contingent links are not allowed to share finish points.
However, their finish points may be the start timepoints of other contingent links (thus
potentially forming a branching tree structure). The finish timepoints of contingent
links are called contingent timepoints. A contingent timepoint that does not start a new
contingent link is called a terminal contingent timepoint.

A schedule is an assignment of times to all the timepoints. The pre-history of a
specific time t with respect to a schedule T , denoted by T{� t}, specifies the durations
of all contingent links that have finished up to and including time t.

An execution strategy S is a mapping

S : P → T

where P is the set of projections and T is the set of schedules. An execution strategy S
is viable if S(p), henceforth written Sp, is consistent with p for each projection p. An
execution strategy S is dynamic if for projections p1 and p2, and executable timepoint
x where Sp1(x) = t, the strategy satisfies 3

Sp1{� t} = Sp2{� t} ⇒ Sp1(x) = Sp2(x)

An STNU is Dynamically Controllable if there is a viable dynamic execution strat-
egy.

A POSTNU is a 6-tuple 〈N,E, l, u, C,O〉 where N,E, l, u, C are as in a STNU.
Here O is a subset of the contingent timepoints, called observable timepoints. For a

2We allow a contingent link with l(e) = u(e) although for STNUs it essentially behaves the same as a
requirement link with the same bounds. However, the behavior can be different in the POSTNU context.

3This incorporates the flaw correction of Hunsberger (2013) but also provides for an instantaneous reac-
tion.
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POSTNU, we will use the terminology micro-projection to describe each STN deter-
mined by the possible combinations of contingent links, which again are assumed to
vary independently within their bounds. We will use the term combo-link to describe
the result of composing a chain of contingent links. We may often refer to the origi-
nal contingent links as micro-links to emphasize the distinction from combo-links. In
general, the durations of separate combo-links may be correlated, unlike the case for
micro-links. However, separate combo-links will still be independent if they do not
share micro-links.

Recall that an STNU, hence also a POSTNU, does not allow two contingent links to
have the same finish timepoint. Thus, every contingent timepoint is the finish timepoint
of exactly one contingent link. Note that if we proceed from any contingent timepoint
Y backwards through its chain of contingent links, we must eventually come to a
non-hidden timepoint (i.e., a timepoint that is either observable or executable). We
will refer to the unique first such timepoint X as the closest non-hidden ancestor of
Y. Now suppose Y is observable. Consider the combo-link formed by composing the
micro-links in the chain from X to Y. Since Y is observable and X is non-hidden the
duration of the combo-link will be known when Y is observed. We will call the combo-
links formed in this way from the observable timepoints Y and their closest non-hidden
ancestors X the macro-links of the POSTNU.

X E

Y

W

[1, 2]
[1, 2]

[1, 2
]

Figure 1: Example POSTNU where W and Y are observable contingent timepoints, E
is a hidden contingent timepoint and X is an executable timepoint.

Consider the POSTNU of Figure 1 with two observables W and Y and a hidden
timepoint E. The network has three micro-links XE, EW, EY and 8 micro projections
where each A [1,2]===⇒ B micro-link is replaced by either A [1,1]−−−→ B or A [2,2]−−−→ B. Note
that X is the closest non-hidden ancestor of both W and Y. Observing the occurrence
time of W and Y, respectively provide us with the duration of the macro-links XW and
XY respectively. However, E being hidden means that the duration of XE cannot be
directly observed. Finally, note that the durations of the macro-links XW and XY are
correlated since they share the hidden contingent link XE. As a consequence, observing
the duration of XW to be 4 (meaning XE = EY = 2), means that the possible values of
XY are 3 and 4, depending on the value taken by EY.

Definition 1 Two micro-projections p1 and p2 are observationally equivalent if the
durations of all the macro-links are the same in p1 and p2.

Clearly this relation is symmetric, reflexive, and transitive: thus, an equivalence rela-
tion. Its equivalence classes will be called macro-projections. Note that the macro-links

4



have fixed durations in a macro-projection.
For example, in the POSTNU (where only E is hidden)

X [1,10]===⇒ E [1,10]===⇒ Y

the set of micro-projections where XE and EY sum to 15, such as 6 + 9, 10 + 5,
etc., constitute a macro-projection where XY = 15. Observe that the “extremal” macro-
projections where XY = 2 and 20 each contain only one micro-projection.

For a POSTNU, an execution strategy S is viable if Sp is consistent with p for each
micro-projection p. In order to define Dynamic Controllability for POSTNUs, we can
now simply modify the definition of pre-history.

Definition 2 .The observational pre-history of a specific time t with respect to a sched-
ule T , denoted by T{� t}, specifies the durations of all macro-links that have finished
up to and including time t.

A dynamic strategy S for a POSTNU is defined similarly as for an STNU except we
require it to satisfy

Sp1{� t} = Sp2{� t} ⇒ Sp1(x) = Sp2(x)

instead, i.e., we replace � with � in the definition. Then, as for an STNU, a POSTNU
is Dynamically Controllable if there is a viable dynamic execution strategy.

3 Analysis and General Approach
In a POSTNU, the contingent links (the micro-links) may be partitioned into separate
groups, called hidden groups, whose elements are connected to each other by hidden
timepoints. (Requirement links are ignored in determining the hidden groups.) For ex-
ample, A =⇒ E and E =⇒ B will be in the same hidden group if E is a hidden timepoint.4

If A is also hidden, the group will extend further in the backward direction. If B is hid-
den and starts one or more contingent links, the group will extend further in the forward
direction and may branch. (Note however, that if A is not hidden, then A =⇒ E1 and
A =⇒ E2 will not be in the same hidden group.) The boundaries of the group will be
determined by timepoints that are terminal (i.e., not themselves the start of a contingent
link), or non-hidden, or both.

Since the POSTNU definition does not permit two contingent links to have the
same endpoint, the links in a hidden group G will form the edges of a tree rooted at
some non-hidden timepoint A, which will be the closest non-hidden ancestor for all the
timepoint nodes in the tree. The leaves of the tree will be either observable timepoints,
or terminal hidden timepoints.

Each observable leaf will be called an eye of the hidden group. Notice that if a
combo-link connects a hidden timepoint E to an eye, the observation of the eye pro-
vides information limiting the possible occurrence time of E to within the bounds of

4Formally, A =⇒ E and E =⇒ B are hidden-related in this case. The symmetric reflexive transitive closure
of this relation is an equivalence relation, and the equivalence classes are the hudden groups.
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the combo-link. Moreover, if another combo-link connects some other hidden time-
point E′ to E, any limitation on E′ may propagate to a limitation on E. This may be
the case even if E is a terminal hidden timepoint.

Our approach for checking the Dynamic Controllability of a POSTNU essentially
factors the problem into two parts: (1) solving a separate Strong Controllability prob-
lem for each of the macro-projections; and (2) feeding those solutions into an overall
STNU-like Dynamic Controllability algorithm.

For part (1), the occurrences of hidden timepoints will be restricted to values con-
sistent with the observations of the eyes. In that case, satisfying the requirement links is
tantamount to solving special cases of the temporal decoupling problem (Hunsberger,
2002) where the observations are treated as additional constraints on Nature, which is
viewed as the second agent. Given a fixed macro-projection P , the relative time of a
hidden timepoint E within its hidden group G may vary over the micro-projections of
P . However, the earliest and latest occurrences of E relative to G will be fixed in P ,
and determined by the observations. We will see that the requirement links on E can
be effectively transferred to a new pair of timepoints related to the earliest and latest
occurrences of E.

For part (2), the Strong Controllability solutions for the macro-projections can be
expressed in terms of formulas with parameters that depend on the observations. These
formulas can be interpreted as generalized versions of the labels used in the labeled
distance graph of a standard STNU. We introduce corresponding generalizations of
the STNU reduction rules. These are shown to be sound and complete for determining
Dynamic Controllability.

We will prove the transformation steps and generalized reduction rules are sound
by showing they leave the set of viable dynamic strategies unchanged. (This set may
be empty if the POSTNU is not Dynamically Controllable.) Completeness will be a
consequence of the fact that successful completion of the reduction process will make
the projections dispatchable, and this implies Dynamic Controllability (Morris, 2014,
2016).

Many of the transformation steps involve replacing requirement constraints by
equivalent ones. The following lemmas will be generally useful for showing the sound-
ness of such steps, and we will apply them throughout without explicit mention.

Lemma 1 Given a POSTNU, replacing a requirement constraint by an equivalent one
leaves the set of viable dynamic strategies unchanged.

Proof: The schedule chosen by a dynamic strategy depends only on the durations
of the macro-links. Thus, replacing one requirement constraint by another will not
change the schedule, and hence the dynamic nature of the strategy. In general, it might
change the viability property, but this will not be the case if the replacement constraint
is equivalent to the original. 2

Lemma 2 Given a POSTNU, adding a requirement constraint that is logically implied
by the other constraints leaves the set of viable dynamic strategies unchanged.

Proof: The proof is similar to that of the previous lemma. 2
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4 Transferring Requirement Constraints
The task of transferring requirement links away from hidden timepoints may be thought
of as a type of multi-agent temporal decoupling problem (Hunsberger, 2002). Accord-
ingly, we adopt a viewpoint where Nature is regarded as an agent scheduling the hidden
groups subject to the observations, which are regarded as additional constraints on what
Nature could have done. This leads to the following concept of a Nature STN.

Definition 3 The Nature STN for a hidden group G with root timepoint X is an STN
schema that contains an STN link for each micro-link in G, with the same bounds. In
addition, for each eye Y of G, the network contains a rigid link from X to Y of length
Ẏ , where Ẏ is a variable representing the observed duration of the macro-link from X
to Y .

The links in the Nature STN that correspond to the micro-links will be called concrete
links, while those corresponding to the observations will be called observation links.

X E

Y

W

[1, 2]
[1, 2]

[1, 2
]

[Ẏ , Ẏ ]

[Ẇ , Ẇ ]

Figure 2: Nature STN schema of the hidden group depicted in Figure 1.

Note that the Nature STN schema instantiates to a specific STN for each macro-
projection (where the observed durations have definite values). We assume the resulting
STNs are all consistent; otherwise the model would be faulty, which is outside the scope
of this paper. Thus, we can assume the existence of shortest paths that are well-defined
and non-cyclic. We can also assume that the observed durations are non-negative since
they result from the combination of contingent links that are non-negative by definition.

We wish to transfer requirement constraints from hidden timepoints to equivalent
constraints on observable timepoints. The following lemma supports an intermediate
step in that direction. Suppose E is a hidden timepoint in some hidden group G rooted
at X .

Lemma 3 Consider some fixed macro-projection P where [e−, e+] are the inferred
tightest bounds of the XE temporal distance in the Nature STN. Let Elo = X + e−

and Ehi = X + e+. Suppose [z−, z+] are the bounds on a requirement link Z that has
E as the source timepoint and some other timepoint Z (with few restrictions5) as the
target timepoint. Then Z can be replaced by the constraint Ehi +z− ≤ Z ≤ Elo +z+.

5We exclude from this analysis requirements between hidden timepoints in the same group. Their viability
is independent of observation, and must be a logical consequence of the microlinks in the group.
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X E

Y

W

2

-1

2

-1

2

-1Ẏ

−Ẏ

Ẇ

−Ẇ

Figure 3: Distance graph of the Nature STN schema of Figure 2.

Proof: Observe that the micro-projections within the P macro-projection will contain
all the possible values for E in the solutions of the Nature STN relative to P , i.e., all E
in the range [Elo, Ehi]. Note that:

(∀E ∈ [Elo, Ehi] : E + z− ≤ Z) ≡ Ehi + z− ≤ Z

(∀E ∈ [Elo, Ehi] : Z ≤ E + z+) ≡ Z ≤ Elo + z+.

Thus, Z can be replaced by the equivalent Ehi + z− ≤ Z ≤ Elo + z+. 2

It is useful to think of Elo and Ehi as virtual timepoints that have fixed offsets from
X in each macro-projection (but the offsets may vary between macro-projections).

Motivated by the lemma, we are interested in lower/upper bounds on the distance
from X to E in the Nature STN. This is not the same in general as the raw bounds
on the combo-link from X to E because of the additional constraints imposed by the
observations. We now develop symbolic formulas that express the bounds for each
macro-projection in terms of the raw bounds and the observed durations.

Recall that upper bounds in an STN may be calculated as shortest path distances.
Observe that there must exist a shortest path from X to E that contains at most one
of the observation edges. (Otherwise the path would be cyclic since all the observation
links have X as their start timepoint.) However, which observation, if any, is in the
shortest path may depend on the relative values of the observation variables. Thus, we
may write

SD(X, E) = min(CSD(X, E), OSD(X, E))

where SD is the shortest-path distance, CSD is the shortest-path distance over concrete
edges only, and OSD is the shortest distance over paths that traverse a single observa-
tion edge, defined by

OSD(X, E) = min{Ẏ + CSD(Y, E) | Y ∈ eyes(G)}
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where eyes(G) denotes the set of eyes of G (and recall Ẏ = Y −X). We can summarize
this as

UB(X, E) = min(CUB(X, E), OUB(X, E))

OUB(X, E) = min{Ẏ + CUB(Y, E) | Y ∈ eyes(G)}

where we have rewritten SD, OSD, and CSD using analogous upper bound notation.
Looking at this, it is convenient to regard the root timepoint X as an additional special
eye called the root eye such that Ẋ = 0 always. (The other eyes will then be called
leaf eyes to distinguish them.) Then we can rewrite the formula (where the notation
Eyes(G) includes the root eye) as

UB(X, E) = min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E)).

Analogously, for the shortest path distance from E to X , we have

SD(E,X) = min
Y ∈Eyes(G)

(CSD(E, Y )− Ẏ )

where Ẏ is subtracted because we are now traversing the observation link in the oppo-
site direction. Recalling that LB(X, E) = −SD(E,X), we can rewrite this in terms of
the lower bound as

LB(X, E) = max
Y ∈Eyes(G)

(CLB(Y, E) + Ẏ )

where LB, CLB, and OLB are lower bound notation analogous to that used for the
upper bounds. Notice that min changes to max and the rigid link value Ẏ ends up as an
added term in the lower bound representation. Writing these together, we have

UB(X, E) = min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E))

LB(X, E) = max
Y ∈Eyes(G)

(Ẏ + CLB(Y, E))

as concise formulas.
Since Ehi = X + UB(X, E) and Elo = X + LB(X, E), we could now apply

Lemma 3 to transfer any requirements on E to requirements on Ehi and Elo, whose
fixed bounds with respect to X can be expressed in terms of formulas involving the
observations. However, we will see that the formulas may involve negative offsets to
the observations, which means they are not immediately observable. We postpone this
issue to the next section, and close this section with an example.

Example 1 Consider the following POSTNU where X and Z are executable time-
points, E is hidden, and Y is observable.

X E Y

Z

[0, 5]

[0, 10]

[5, 10]
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Even though E is not observable, the occurrence time of both X and Y provide indirect
information on E. We are thus interested in reformulating the E [0,10]−−−→ Z requirement
link in terms of symbolic expressions involving the occurrence times of X and Y .

E is part of a hidden group composed of the micro-links XE and EY , for which
the corresponding Nature STN distance graph is the following (note that Z is not part
of the hidden group of E and hence not represented in the Nature STN).

X E Y
5

0

10

-5

Ẏ

−Ẏ

It is easy to see that the shortest distances XE and EX depend on Ẏ , the duration of the
macro-link XY, resulting in the following shortest distance expressions:

SD(X, E) = min{5, Ẏ − 5}
SD(E,X) = min{0, 10− Ẏ }

Interpreting these expression as the virtual timepoints Elo and Ehi, we obtain the fol-
lowing definitions and corresponding bounds on Z.

Elo = X + max{0, Ẏ − 10} Z ≤ Elo + 10

Ehi = X + min{5, Ẏ − 5} Z ≥ Ehi

Let us give an intuitive interpretation of this result. We know that E occurs after X .
Additionally, we know that E occurs at most 10 time units before Y . This is reflected
in the definition of the virtual timepoint Elo which should be interpreted as: it is not
possible for E to occur before Elo. The requirement of scheduling Z at most 10 time
units after Elo thus ensures that Z is scheduled at most 10 time units after E, which
was our original constraint.

Similarly, we know that E occurs at most 5 time units after X and at least 5 time
units before Y . This is reflected in the definition of the virtual timepoint Ehi which
should be interpreted as: it is not possible for E to occur after Ehi. The requirement
of scheduling Z after Ehi ensure that Z is scheduled after E which was our original
constraint.

5 Compound Observables
Lemma 3 permits us to transfer requirements on hidden timepoints to virtual timepoints
Ehi and Elo that are fixed within each macro-projection, and depend only on the obser-
vation durations. One drawback, however, is that Ehi and Elo may not be themselves
observable.
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For example, given an eye Y , the CUB(Y, E) value could be either negative or
non-negative. (The E timepoint could be an ancestor or cousin of Y with respect to the
tree structure of the hidden group.) If it is negative, then the value of Ẏ + CUB(Y, E)
will not be known until later, when Y is observed. Consequently, we may not be able
to tell whether

Ehi = X + min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E))

has occurred or not, at the time it occurs.
Note, however, that we can always choose some minimal fixed value δhi(E) ≥ 0

such that CUB(Y, E)+δhi(E) ≥ 0 for every Y ∈ Eyes(G). The δhi(E) value depends
only on the weights of the concrete links and does not vary with the observations. In
contrast to the Ehi value, Ehi + δhi(E) will be observable. This suggests introducing
a new virtual timepoint Ehi+ = Ehi + δhi(E). Similarly, we can introduce a virtual
timepoint Elo+ = Elo + δlo(E) so that the offsets in the LB(X, E) + δlo(E) formula
will be non-negative.

The following lemmas justify the transfer of requirement constraints from Ehi and
Elo to Ehi+ and Elo+, respectively, and establish their observability. The lemmas are
stated for completeness. We omit the proofs, which are immediate.

Lemma 4 If Ehi+ = Ehi + δhi(E), then Ehi + z− ≤ Z is equivalent to Ehi+ +
(z− − δhi(E)) ≤ Z. If Elo+ = Elo + δlo(E) then Z ≤ Elo + z+ is equivalent to
Z ≤ Elo+ + (z+ − δlo(E)).

Lemma 5 If an event Ẏ is observable, then the event Ẏ +p, where p ≥ 0 is some fixed
value, is also observable. If every event in some set S is observable, then miny∈S(y)
and maxy∈S(y) are also observable.

We can paraphrase miny∈S(y) as “whichever is earliest of the events in S, and
maxy∈S(y) as “whichever is latest of the events in S.” Applying this interpretation to
the

Ehi+ −X = min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E) + δhi(E))

Elo+ −X = max
Y ∈Eyes(G)

(Ẏ + CLB(Y, E) + δlo(E))

expressions, we can regard Ehi+ and Elo+ as compound observables, derived from
the eyes, with non-negative offsets calculated from the bounds of the contingent links.
Repeated applications of the two lemmas have the effect of transferring the requirement
constraints from hidden timepoints to equivalent constraints on compound observables.

Example 2 Following on from Example 1, where we had

Elo = X + max{0, Ẏ − 10} Z ≤ Elo + 10

Ehi = X + min{5, Ẏ − 5} Z ≥ Ehi

This could be interpreted as the following distance graph.
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X

Ehi

Elo

Z
−min{5, Ẏ − 5}

0

10
max{0,

Ẏ − 10}

Consider the macro-projection where Ẏ = 12. Further assume that X is scheduled
at the temporal origin (X = 0). In this macro-projection, Elo would occur at time
2 while Ehi would occur at time 5. However this information is unknown until the
duration Ẏ is observed at time 12 (when the observable Y is observed).

We can now define the compound observables Ehi+ = Ehi + δhi(E) and Elo+ =
Elo + δlo(E) by choosing the appropriate δhi(E) and δlo(E) terms such that all terms
in the min/max expressions are non-negative. Choosing δhi(E) = 5 and δlo(E) = 10,
we obtain the following expressions and corresponding distance graph.

Elo+ = X + max{10, Ẏ } Z ≤ Elo+
Ehi+ = X + min{10, Ẏ } Z ≥ Ehi+ − 5

X

Ehi+

Elo+

Z
−min{10, Ẏ }

5

0
max{10

, Ẏ }

6 Generalized Distance Graph

6.1 Generalized labels
In this section, we interpret the max/min bound expressions for the compound ob-
servables as generalized labels analogous to those in the labeled distance graph of a
conventional STNU. (See for example (Morris, 2014)). Pursuing this analogy, we will
introduce Reduction Rules for the max/min expressions and prove their soundness.

Since the requirements have been transferred to observables, our further reasoning
is in terms of the macro-projections. Thus, in the following, we may use the unqualified
term “projection” to mean macro-projection, provided we remain mindful that their
independence is limited by possibly shared micro-links.

Recall that a compound observable of the form Ehi+ provides a lower-bound

min
Y ∈Eyes(G)

{ Ẏ + CUB(Y, E) + δhi(E) }

12



on the X to Ehi+ distance that could potentially combine with a Ehi+ to Z lower bound
of some requirement. In our generalized distance graph, this will be represented as an
edge with weight

`hi+(E) = − min
Y ∈Eyes(G)

{ Ẏ + CUB(Y, E) + δhi(E) } (1)

from Ehi+ to X . Notice that all the Ẏ + CUB(Y, E) + δhi(E) terms evaluate to non-
negative numbers. Moreover, Ẏ for the leaf eyes is always positive. Thus, the negated
expression will evaluate to a negative number. The edge is analogous to an Upper-Case
edge in an STNU distance graph, and for convenience we will sometimes call it an
Upper-Case edge here.

Similarly, for a compound observable of the form Elo+, there will be an edge with
weight

`lo+(E) = max
Y ∈Eyes(G)

{ Ẏ + CLB(Y, E) + δlo(E) } (2)

from X to Elo+. The Ẏ + CLB(Y, E) + δlo(E) terms all evaluate to non-negative
numbers in each macro-projection. The edge is analogous to a Lower-Case edge in an
STNU distance graph, and we will sometimes use that terminology here also.

When there are multiple leaf eyes, it is also possible for observations of one eye to
provide information that restricts the possible time of occurrence of another eye before
it has occurred, and this may be useful for an early determination that a requirement
has been satisfied. This may happen if the macro-links for the two eyes share micro-
links. The generalized labels for each eye Y must therefore reflect inferences from
observations of the other eyes. As it turns out, the appropriate labels for Y are the same
as if Y were also a hidden timepoint. The Ẏ coming from the direct observation of Y
is simply included as another term in the min/max formulas. Note, however, that the
CLB(Y, Y ) and CUB(Y, Y ) terms will be 0.

Relationship with STNU It is instructive to regard an ordinary STNU as a special
case of a POSTNU where there are no hidden timepoints. If we were to treat each

contingent link X [y−,y+]=====⇒ Y as a degenerate “hidden group” with a single micro-link
and a single leaf eye, the above analysis could still be applied, resulting in an upper-
case label of the form−min(Ẏ , y+) and a lower-case label of max(Ẏ , y−). These may
be compared to the conventional Y :−y+ and y : y− labels of an STNU, and suggests
a semantic interpretation of those labels. It is helpful to bear this comparison in mind
when we consider reduction rules, in the next section.

6.2 Construction of the labeled distance graph
Given a POSTNU Π, we now give the complete procedure for the construction of the
labeled distance graph (V,Edges). The set of vertices V will be composed of the con-
trollable and observable timepoints of Π as well as the two compound observables
of each hidden timepoint of Π. The set of edges Edges is obtained by (i) convert-
ing macro-links to upper and lower case edges, and (ii) transferring requirement links
involving hidden timepoints to the corresponding compound observables.

13



The algorithm is detailed in Algorithm 1. Lines 8-14 add the compound observable
timepoints and their edges to the network. Then lines 16-26 transfer the requirement
constraints from the hidden timepoints to the new observables.

Algorithm 1 Construction of the labeled distance graph of a POSTNU Π
1: procedure DISTANCEGRAPH(Π)
2: V ← CONTROLLABLES(Π)
3: Edges← ∅
4: { G1, . . . , Gn } ← ORDEREDHIDDENGROUPS(Π) . Topologically ordered
5: for all Gi do
6: X ← root(Gi) . Split between lo/hi
7: Construct nature STN of Gi

8: for all non-root timepoint Y ∈ Gi do
9: V ← V ∪ { Ylo+, Yhi+ }

10: Edges← Edges ∪ { X `lo+(Y)−−−−−→ Ylo+, Yhi+
`hi+(Y)−−−−−→ X }

11: end for
12: for all Y ∈ eyes(Gi) do
13: Edges← Edges ∪ { X `lo+(Y)−−−−−→ Y,Y `hi+(Y)−−−−−→ X }
14: end for
15: end for
16: for all A `−→ B ∈ REQUIREMENTS(Π) do
17: if A is contingent then
18: A← Alo+
19: `← `− δlo(A)
20: end if
21: if B is hidden then
22: B ← Bhi+
23: `← ` + δhi(B)
24: end if
25: Edges← Edges ∪ { A `−→ B }
26: end for
27: return (V,Edges)
28: end procedure

Complexity Observe that in a nature STN with m vertices, the number of edges e
is bounded above by 4 × (m − 1). In the worst case, computing the labels of the
generalized distance graph require us to know the shortest distance between any two
timepoints in a nature STN. This can be done in a single pass of Johnson’s algorithm
with a complexity of O(m2 × log(m) + m × e). Given that e ∈ O(m) this further
reduces to O(m2 × log(m)). This process must be repeated for each of the n nature
STN.

Further observe that the nature STNs are built by partitioning the set of contingent
edges and that there is exactly 1 contingent link per contingent timepoint. The total
number of nodes across all nature STNs is thus bounded above by 2 × |C| where |C|
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is the number of contingent timepoints. The complexity of computing the generalized
labeled in Algorithm 1 is thus O(|C|2 × log|C|).

For completeness we must also incorporate the cost of transforming the require-
ment edges, each of which is treated exactly once in constant time. The overall com-
plexity of Algorithm 1 is thus O(|C|2 × log|C| + |E|), where |E| is the number of
requirement links in the original POSTNU. As we will see, this is superseded by the
overall complexity of checking the Dynamic Controllability of the resulting network
whose best known bound is cubic in the number of timepoints.

6.3 Generalized Label Properties
In this section, we note some properties of the generalized labels in the constructed
labeled distance graph. These will be useful later when we introduce derived labels, and
establish invariants that are preserved by the derivations. Here, we show the properties
hold for the labels on the initial edges between root timepoints and observables. Recall
the formulas

UB(X, E) = min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E))

LB(X, E) = max
Y ∈Eyes(G)

(Ẏ + CLB(Y, E)).

We have the following lemmas that will be important for the derivations.

Lemma 6 The following inequalities hold in general.

CUB(X, E) ≥ CUB(Y, E) for all Y ∈ eyes(G)
CLB(X, E) ≥ CLB(Y, E) for all Y ∈ eyes(G)

Proof: Recall that CLB(P,Q) = −CUB(Q,P ) for any P and Q.
Consider any Y ∈ eyes(G). Then

CUB(Y, E) ≤ CUB(Y, X) + CUB(X, E) ≤ CUB(X, E)

by the triamgle inequality and CUB(Y, X) = −CLB(X, Y ) ≤ 0. Also, by the triangle
inequality, we have

CUB(E,X) ≤ CUB(E, Y ) + CUB(Y, X)

and so
CLB(Y, E) + CLB(X, Y ) ≤ CLB(X, E).

Then
CLB(Y, E) ≤ CLB(Y, E) + CLB(X, Y ) ≤ CLB(X, E).

2

The following concepts will be useful. With respect to the above formulas, we will
say an eye W ∈ Eyes(G) is UB active for E if

Ẇ + CUB(W,E) = min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E)).

15



We will also say a subsetW of Eyes(G) is UB active for E if it contains an eye that is
UB active for E. Note that this implies

min
Y ∈W

(Ẏ + CUB(Y, E)) = min
Y ∈Eyes(G)

(Ẏ + CUB(Y, E)).

Analogously, W ∈ Eyes(G) is LB active for E if

Ẇ + CLB(W,E) = max
Y ∈Eyes(G)

(Ẏ + CLB(Y, E))

and we similarly extend this concept to subsets of Eyes(G).
The following lemma identifies special macro-projections Psup, where the root eye

is UB active, and Pinf, where the root eye is LB active.

Lemma 7 There is a macro-projection Psup where UB(X, E) = CUB(X, E), and a
macro-projection Pinf where LB(X, E) = CLB(X, E) .

Proof: The All-Max and All-Min projections, where the micro-links take on their
maximum and minimum bounds, respectively, satisfy the conditions. 2

Recall that macro-link observations have only limited independence from each
other—their durations may be correlated if they involve shared micro-links. Never-
theless, the following lemma establishes some flexibility with respect to which obser-
vations dominate the max/min computations.

Lemma 8 Suppose: E is a subset of Eyes(G) that includes the root eye; E is a hidden
timepoint of G; and P is any macro-projection. Then there exists macro-projections P ′

and P ′′, in which Ẏ is unchanged for Y ∈ E , such that (a) E is UB active for E in P ′,
and (b) E is LB active for E in P ′′.

Proof: Consider the Nature STN instance Γ corresponding to P . Delete the rigid
constraints corresponding to the W observations for W not in E . This forms a new
STN Γ′.

For part (a), by (Dechter, Meiri, and Pearl, 1991), there is a solution of Γ′ where
Ẇ = UB(X, W ) for W not in E . Consequently, we can add to Γ′ rigid constraints of
the form Ẇ = UB(X, W ), for W not in E , without creating an inconsistency, and we
form P ′ accordingly.

Note that in Γ′, for W not in E ,

UB(X, E) ≤ UB(X, W ) + UB(W,E) ≤ UB(X, W ) + CUB(W,E)

using the triangle inequality. It follows that, in P ′,

min
Y ∈E

(Ẏ + CUB(Y, E)) ≤ Ẇ + CUB(W,E)

for W not in E . Thus, E is UB active for E in P ′.
For part (b), we analogously use the (Dechter, Meiri, and Pearl, 1991) solution

where Ẇ = LB(X, W ) to form P ′′. In Γ′ we have

LB(X, E) ≥ LB(X, W ) + LB(W,E) ≥ LB(X, W ) + CLB(W,E)
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so in P ′′ we have

max
Y ∈E

(Ẏ + CLB(Y, E)) ≥ Ẇ + CLB(W,E)

and thus E is LB active for E in P ′′. 2

6.3.1 Label Notation

For the rest of the paper, it is convenient to introduce a more compact notation for
generalized labels, as follows. Suppose I is an index set for eyes(G). We can rewrite
the initial labels as

`hi+(E) = −min(v0,min
i∈I

(Ẏi + vi))

where v0 = CUB(X, E) + δhi(E) and vi = CUB(Yi, E) + δhi(E). Similarly, we can
rewrite

`lo+(E) = max(u0,max
j∈I

(Ẏj + uj))

where u0 = CLB(X, E) + δlo(E) and ui = CLB(Yi, E) + δlo(E).
This form of notation will be useful for derived labels as well as the initial labels

originating from the Algorithm 1 construction (figure 1). It also makes it easier to treat
the contribution from the root eye specially.

6.3.2 Observability Tightening for Initial Edges

The following are important results that exploit the sensitivity of dynamic strategies
to observability. They emphasize the asymetry of dynamic controllability with respect
to the directionality of time (in contrast to weak and strong controllability). Here we
establish the results for the initial labels (before applying any reduction rules).

Suppose q ≥ 0. Intuitively, a dynamic strategy cannot directly know a condition of
the form (≥ Ẏ −q) is satisfied until Y is observed. Consequently, (≥ Ẏ −q) should be
dynamically tightened to (≥ Ẏ ). On the other hand, a condition of the form (≤ Ẏ − q)
is already false by the time Y is observed; thus, it should be regarded as not (directly)
dynamically satisfiable.

The following lemmas make this precise. As context, we suppose Z is an executable
timepoint and X is the root of some hidden group for which {Yi} is the indexed set of
leaf eyes.

Lemma 9 Suppose

(−`hi+(E)) = min(v0,min
j

(Ẏj + vj))

and a viable dynamic strategy satisfies Z −X ≥ (−`hi+(E)) − q for all projections,
where 0 ≤ q < v0, Then the strategy must also satisfy

Z −X ≥ min(v0 − q, min
j

(Ẏj + max(0, vj − q)))
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Proof: We are assuming Z − X ≥ (−`hi+(E)) − q, that is, Z − X ≥ min(v0 −
q, maxi(Ẏi + vi − q)), for all projections.

To simplify notation, we set qi = vi−q. Then q0 ≥ 0, and Z−X ≥ min(q0,mini(Ẏi+
qi)) for all projections. We need to show this implies

Z −X ≥ min(q0,min
i

(Ẏi + q+
i ))

for all projections, where q+
i = max(0, qi).

Our approach will be to show that if there is a projection that does not satisfy the
condition, then there is a dynamically indistinguishable projection with a contradictory
property. This establishes that the condition is satisfied for all projections.

Suppose P is a projection that does not satisfy the condition. Then

min(q0,min
i

(Ẏi + qi)) ≤ ZP −X < min(q0,min
i

(Ẏi + q+
i ))

in P , where ZP is the time assigned to Z in P by the viable dynamic strategy. It follows
that ZP −X < min(q0,minqi≥0(Ẏi + qi)) and ZP −X < minqi<0(Ẏi).

Let E be the subset of Eyes(G) defined by E = {Yi : ZP − X < Ẏi + qi in P}.
Thus, E includes the root eye X = Y0 and is a superset of {Yi : qi ≥ 0} by our
assumption. Since ZP −X < minqi<0(Ẏi), the ZP value is assigned before the Yi not
in E have been observed.

By lemma 8 part (a), there is another projection P ′ where Ẏi is unchanged for
Yi ∈ E and E is UB active. Let M = minYi∈E(Ẏi + qi). (Note that the value of M is
the same in P ′ and P .) Thus, ZP − X < M ≤ Ẏi + qi in P ′ for all i, including the
Yi not in E (since E is UB active). However,Ẏi + qi ≤ ZP −X in P for the Yi not in
E . Thus, Ẏi is increased in the transition from P to P ′ for Yi /∈ E (and is unchanged
otherwise). Consequently, at time ZP , the observables that are in the future in P are
also in the furure in P ′, and those in the past are unchanged.

It follows that the pre-history at time ZP is the same in P ′ as it is in P . Since the
strategy is dynamic, therefore ZP ′

= ZP . Thus, ZP ′ −X < Ẏi + qi in P ′ for all i, but
that violates the constraint that Z − X ≥ min(q0,mini(Ẏi + qi)) for all projections.
This contradiction establishes the result. 2

Lemma 10 Suppose

`lo+(E)) = max(u0,max
i

(Ẏi + ui))

and a viable dynamic strategy satisfies Z−X ≤ `lo+(E)−q for all projections, where
0 ≤ q ≤ u0. Then it must also satisfy

Z −X ≤ max(u0 − q, max
ui≥q

(Ẏi + ui − q))

(i.e., the terms where (ui − q) is negative may be dropped).

Proof: We are assuming Z − X ≤ `lo+(E) − q, that is, Z − X ≤ max(u0 −
q, maxi(Ẏi + ui − q)), for all projections. The proof has similar steps to lemma 9 but
there is an added complication, as we will see.
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To simplify notation, we set qi = ui−q. Then q0 ≥ 0, and Z−X ≤ max(q0,maxi(Ẏi+
qi)) for all projections. We need to show this implies

Z −X ≤ max(q0,max
qi≥0

(Ẏi + qi))

for all projections.
Our approach will be to show that if there is a projection that does not satisfy the

condition, then there is a dynamically indistinguishable projection with a contradictory
property. This establishes that the condition is satisfied for all projections.

Suppose P is a projection that does not satisfy the condition. Then

max(q0,max
qi≥0

(Ẏi + qi)) < ZP −X ≤ max(q0,max
i

(Ẏi + qi))

in P , where ZP is the time assigned to Z by the viable dynamic strategy.
Let E be the subset of Eyes(G) defined by E = {Yi : Ẏi + qi < ZP − X in P}.

Thus, E includes the root eye X = Y0 and is a superset of {Yi : qi ≥ 0} by our
assumption. Note also that ZP − X ≤ Ẏi + qi < Ẏi in P for any Yi not in E . Thus,
ZP is assigned before these Yi have been observed. Without loss of generality, we
may assume that E has a maximum size among projections P that do not satisfy the
condition.

By lemma 8 part (b), there is another projection P ′ where Ẏi is unchanged for
Yi ∈ E and E is LB active for E. Let M = maxYi∈E(Ẏi + qi). (Note that the value of
M is the same in P ′ and P .) Thus, Ẏi + qi ≤M < ZP −X in P ′ for all Yi, including
the Yi not in E . However, ZP − X ≤ Ẏi + qi in P for the Yi not in E . Thus, Ẏi is
reduced in the transition from P to P ′ for Yi /∈ E (and is unchanged otherwise).

Since the Ẏi are reduced, rather than increased as in the proof of lemma 9, we
require additional work to obtain a suitable projection indistinguishable from P .

Note that the projections of a POSTNU form a convex set. Thus, we can form a
convex linear combination P ′′ = µ ∗ P ′ + (1 − µ) ∗ P for any value µ such that
0 ≤ µ ≤ 1, where any contingent link that has duration d′ in P ′ and duration d in
P would have duration d′′ = µ ∗ d′ + (1 − µ) ∗ d in P ′′. (Note that d′ = d implies
d′′ = d′ = d.)

As µ transitions from 0 to 1, the intermediate projection P ′′ will transition between
the properties of P and those of P ′. Set yq = minYi /∈E(Ẏi + qi) and y = minYi /∈E(Ẏi).
Note that yq < y (since the qi are negative).. Then, as µ increases, both yq and y move
towards ZP − X , and yq eventually just passes it while y is still behind. Thus, we
can choose µ and hence P ′′ such that: (1) ZP − X < Ẏi for all Yi not in E ; and (2)
Ẏi + qi < ZP −X for some Yi not in E .

By (1) it follows that the pre-history at time ZP is the same in P ′′ as it is in P .
Since the strategy is dynamic, therefore ZP ′′

= ZP . With respect to (2), note that
Ẏi + qi < ZP − X cannot be true for all Yi not in E , since that would violate the
constraint that Z−X ≤ max(u0−q, maxi(Ẏi +ui−q)) for all projections. It follows
that P ′′ would provide a counterexample to the lemma where E has a larger size than in
P , which violates the maximum assumption. This contradiction establishes the result.

2
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We may use the terms “max observability tightening” and “min observability tight-
ening,” respectively, for the types of observability tightening sanctioned by lemmas 10
and 9, respectively.

7 Generalized Reduction Rules
The reduction rules that we will introduce can be interpreted as generalizations of the
“classical” STNU reduction rules. However, it is convenient to factor them in a slightly
different way that makes more sense in the generalized context. In particular, the re-
duction rule applications will involve two separate types of transformation: (1) the
addition of a logically implied constraint that leaves the entire set of viable strategies
unchanged; and (2) an observability tightening step that may filter out some viable
strategies, but not any dynamic viable strategies. The second step, which is manda-
tory when applicable, captures the removal of lower-case labels that is inherent in the
classical Lower-Case and Cross-Case Reductions, and is also implicit in the classical
Upper-Case Reduction. Its function is to replace derived constraints that are not ob-
servable by minimally strengthened constraints that are observable.

The overall purpose of STNU reduction rules is to try to make every projection
dispatchable, since this implies Dynamic Controllability (Morris, Muscettola, and Vi-
dal, 2001; Shah et al., 2007; Morris, 2014). In an STN, dispatchability can be achieved
by applying “Plus/Minus” operations that compose non-negative edges with following
negative edges. The aim is to ensure the path constraints are enforced by “vee-paths”
where any non-negative edges follow any negative edges. If this process terminates
without producing a negative cycle, then the resulting network is dispatchable (Morris,
2016). For an STNU, the negative edges include upper-case edges not subject to Label
Removal, and the non-negative edges include lower-case edges. In effect, the reduc-
tions constitute the operations needed to create vee-paths, and their action is global
across all of the projections.

The same approach is applicable to the generalized labels considered here. Thus, we
have analogues of the Upper-Case, Lower-Case, and Cross-Case reductions, together
with accompanying observability tightening steps. Actually, edges with ordinary nu-
meric weights may be regarded as special cases of the generalized labels where the
sets of leaf eyes are empty. Thus, we need only consider the generalized Cross-Case
reduction.

The Cross-Case reduction involves a composition of a negative labeled edge (aka
Upper Case) and a non-negative labeled edge (aka Lower Case), where the timepoints
are either executable or observable, as follows:

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj))

where i and j range over suitable index sets for leaf eyes. The input edges to the re-
duction will be called the parent edges, and the resulting edge is the daughter edge.
The ui and vi values for the initial edges are determined by the construction of the
labeled distance graph. However, the derived edges will have derived values computed
according the Cross-Case reduction rules. Nevertheless, certain properties of the labels
will be maintained, as we see below.
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7.1 Edges and Invariants
There are several invariants that hold in the original graph, and will be preserved by
the reductions: These differ depending on whether the edge is Upper or Lower Case.
Recall that the observables (Ẏi, etc.) are always positive.

7.1.1 Upper Case Edges

The label of an upper case edge A −→ B has the form

−min(v0,min
j

(Ẇj + vj))

with invariants:

1. The label can be expressed as

−min(v′0 − q, min
j

(Ẇj + max(0, v′j − q)))

where −min(v′0,minj(Ẇj + v′j)) is one of the original upper case edges in the
labeled distance graph as constructed by algorithm 1, and v′0 > q ≥ 0.

2. v0 > 0 and ∀j 6= 0 : vj ≥ 0. From previous item. Also implies Ẇj + vj > 0

3. The edge is negative. Implied by the above.

4. v0 ≥ vj . Initially true (lemma 6) and then implied by the above.

5. Given B the target of this edge, then B is also the root observable timepoint for
each Ẇj in the label. Initially true, and follows from details of the reductions.

7.1.2 Lower Case Edges

The label of a lower case edge A −→ B has the form

max(u0,max
i

(Ẏi + ui))

with invariants:

1. The label can be expressed as

max(u′0 − q, max
u′i≥q

(Ẏi + u′i − q))

where max(u′0,maxi(Ẏi + u′i)) is one of the original lower case edges as con-
structed by algorithm 1, and u′0 ≥ q ≥ 0.

2. ∀i : ui ≥ 0 (includes i = 0). From previous item. Also implies Ẏi + ui > 0.

3. The edge is non-negative. Implied by the above invariants.

4. u0 ≥ uj . Initially true (lemma 6) and then implied by the above.

5. Given A the source timepoint of this edge, A is also the root observable timepoint
for each Ẏi in the label. This will follow from the details of the reductions.
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7.2 Observability Tightening for Derived Edges
The intuition behind observability tightening is as follows: if an execution constraint
involves an event that cannot be observed when it is needed, then a dynamic strategy
may instead satisfy a suitably tightened constraint that is observable. For example,
suppose there is a deadline of max(A,B−5) for some timepoint Z. If B could happen
at any time, but its time of occurrence is not known in advance, then it would be unsafe
to wait until after A to execute Z, i.e., the deadline should be tightened to A. Similarly, a
lower bound of min(A,B−5) might need to be tightened to min(A,B), depending on
when B−5 can occur and be known to have occurred. These intuitions formed the basis
for the reductions in the original dynamic controllability work (Morris, Muscettola, and
Vidal, 2001).

Lemma 10 and lemma 9 established an observability tightening property for the
initial generalized labels. We show here that the property continues to hold for the
derived labels. The following notation will be useful. Given max and min labels `1 =
max(u0,maxi(Ẏi + ui)) and `2 = −min(v0,minj(Ẇj + vj)) respectively, define

MAXOT(`1) = max(u0,max
ui≥0

(Ẏi + ui))

MINOT(`2) = −min(v0,min
j

(Ẇj + max(vj , 0))).

The first Upper-Case Edge invariant then says the label can be expressed as MINOT(`1+
q) for a suitable q where `1 is the label of an initial max edge. Similarly the first Lower-
Case Edge invariant says the label can be expressed as MAXOT(`2 − q) for suitable q
and initial label `2,

Notice that

MAXOT[ MAXOT(`− q1)− q2 ] = MAXOT(`− q1− q2)
MINOT[ MINOT(` + q1) + q2 ] = MINOT(` + q1 + q2)

for labels ` of the relevant max/min form. Thus, if the invariants hold, we can extend
the applicability of lemma 10 and lemma 9 to derived labels.

It is convenient to refer to the u0 and v0 values as the scalar terms in the labels.
Notice that observability tightening does not involve any modification of the scalar
terms.. We may regard them as preserving a record of the q offset to the initial label.

We have an extension of lemma 7 to derived labels, assuming the invariants hold.

Lemma 11 The derived label −min(v0,minj(Ẇj + vj)) reduces to −v0 in the Psup
special projection. The derived label max(u0,maxi(Ẏi +ui)) reduces to u0 in the Pinf
special projection.

Proof: First, note that the q modification applied uniformly to all terms does not
disturb the special projections property, which holds for the initial labels. Second, if
v0 = min(v0,minj(Ẇj + vj)) then

v0 ≤ min
j

(Ẇj + vj) ≤ min
j

(Ẇj + max(vj , 0))
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so the MINOT operation does not affect the property. Similarly, if u0 = max(u0,maxi(Ẏi+
ui)) then

u0 ≥ max
i

(Ẏi + ui) ≥ max
ui≥0

(Ẏi + ui)

so the MAXOT operation also preserves the property. 2

7.3 Cross Case Reduction
In general, an expression of the form maxi(pi)−minj(qj) can be rewritten as maxi,j(pi−
qj). Thus, in order for the result to be negative, every one of the (pi − qj) terms must
be negative; otherwise the result is non-negative. If the result is negative, it can be
rewritten as −mini,j(qj − pi).

The cross case reduction requires combining two edges with max and min labels:

A max(u0,maxi(Ẏi+ui))−−−−−−−−−−−−−−→ B −min(v0,minj(Ẇj+vj))−−−−−−−−−−−−−−−→ C (3)

into a single upper case or lower case edge A −→ C whose label should derive from:

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj)) (4)

Same Root Our first task in composing the max and min labels is to deal with the
case where the source timepoint of the edge with the max label coincides with the target
of the edge with the min label (i.e. A = C in Eq. (3)). We will call this the same-root
case, since the root eye is the same for both labels. According to the invariants, this
will also be the root timepoint for each of the Ẏi and Ẇj observables.

In the same-root case, we are only really interested in determining whether the sign
of the combination is negative or non-negative. If negative, then the POSTNU is not
Dynamically Controllable. Otherwise the result derives a non-negative distance from
the root timepoint to itself, which can be discarded as redundant.6

The combination can be conveniently written as

max
i≥0,j≥0

(Ẏi + (ui − vj)− Ẇj) (5)

where Ẏ0 = Ẇ0 = 0. If any of the terms in the maximization is non-negative, then the
combination is also. This sub-problem can be stated negatively as determining whether
there is no macro-projection, which can be limited to the observables in the hidden
group, such that:

∀i, j : Ẏi − Ẇj < vj − ui.

Given that Ẏ is the shorthand for Y −X where X is the root observable for Y and that
all Yi and Wj have the same root observable, the above inequalities can be rewritten
as Yi −Wi < vj − ui which are essentially Simple Temporal constraints except that
the inequalities are strict. The bounds on the micro-links may also be viewed as Simple
Temporal constraints, and the problem reduces to determining whether this partially

6This is actually a generalization of the STNU criterion that the Cross-Case Reduction is not applicable
when the lower and upper case edges involve the same label, since there ui = vj = 0.
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strict STN has a solution. A standard STN algorithm such as Bellman-Ford (Cormen,
Leiserson, and Rivest, 1990) can be used to look for either an explicit negative cycle, or
an implied negative cycle where the bounds sum to zero and the cycle passes through
one or more of the strict edges.7 Note that if this derived STN is consistent, then the
POSTNU is NOT Dynamically Controllable. If it is not consistent, then the same-root
combination is discarded.

Different Root We now turn out attention to the non-same-root case (i.e. A 6= C in
Eq. (3)). This implies that the observables in the max label come from a different hidden
group than those in the min label. Thus, there are no cross-correlations, durations of
micro-links vary independently between the two groups, and we may speak of a local
projection of a hidden group.

The cross-independence simplifies the analysis compared to the same-root case.
In particular, observability tightening can be applied for an observable in one group
provided only that it is applicable in any local projection of the other group.

The result of the

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj))

combination in the non-same-root case is as follows.

NEGATIVE RESULT (Upper Case): If u0 < v0, the result is

−min(v0 − u0,min
j

(Ẇj + max(vj − u0, 0))).

Note the observation variables are all inherited from the negative parent edge. Since
the target of the edge is also inherited from the negative parent, this preserves the
invariant that it coincides with the root timepoint of the observables. Also note the result
may be expressed as MINOT(` + u0) where ` is the negative parent label, preserving
the representation invariant.

NON-NEGATIVE RESULT (Lower Case): If u0 ≥ v0, the result is

max(u0 − v0, max
ui≥v0

(Ẏi + ui − v0))

Note the observation variables are now inherited from the non-negative parent edge.
Since the source of the edge is also inherited from the non-negative parent, this pre-
serves the invariant that it coincides with the root timepoint of the observables. Also
note the result may be expressed as MAXOT(` − v0) where ` is the negative parent
label, preserving the representation invariant.

The non-negative case may be viewed as a generalization of the STNU reduction
cases that reduce away a lower-case edge. Here, the result is a lower-case edge that has
fewer observation variables and/or smaller offsets.

7In practice, one could simply decrement the strict bounds by a tiny amount and use standard STN
methods.
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Theorem 1 The Cross Case reduction rules are sound in both the negative and non-
negative result cases.

Proof:
Recall that we have 0 ≤ ui ≤ u0 and 0 ≤ vj ≤ v0 as invariants. In the follow-

ing, we will use the symbol ’≈’ to indicate a non-equivalent transformation step that
nevertheless preserves the set of viable dynamic strategies because of observability
tightening.

We are composing the max/min labels

max(u0,max
i>0

(Ẏi + ui))−min(v0,min
j>0

(Ẇj + vj))

corresponding to a X1 −→ Z −→ X2 combination.
First suppose u0 < v0. A viable dynamic strategy must satisfy the composed

edge in the Pinf local projection for the Yi group where the max label reduces to u0

(lemma 11). Thus, it must satisfy

X2−X1 ≤ u0 −min(v0,min
j>0

(Ẇj + vj))

= −min(v0 − u0,min
j>0

(Ẇj + vj − u0))

≈ −min(v0 − u0,min
j>0

(Ẇj + max(vj − u0, 0))).

Next suppose u0 ≥ v0. Then a viable dynamic strategy must satisfy the composed
edge in the Psup local projection for the Wj group where the min label reduces to v0

(lemma 11). Thus, it must satisfy

X2−X1 ≤ max(u0,max
i>0

(Ẏi + ui))− v0

= max(u0 − v0,max
i>0

(Ẏi + ui − v0))

≈ max(u0 − v0, max
ui≥v0

(Ẏi + ui − v0))

This establishes the soundness of the reductions in both the negative and non-
negative result cases. 2

8 Completeness
Previous sections established the soundness of the generalized reduction rules. This
section considers the issue of whether they can support a complete procedure for
determining dynamic controllability for POSTNU networks. In this context, the hid-
den timepoints are irrelevant; we confine our attention to the non-hidden timepoints
and their edges, including the labeled edges that have been added either by the pre-
processing step, or by the reductions. The graph formed by these edges will be refered
to as the labeled distance graph. Each macro-projection (hereafter called simply a pro-
jection) instantiates this labeled graph to the distance graph of an STN..
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We have already seen, in the same-root case, that the reductions may lead to a
negative self-loop. In the general case, they may also produce a negative cycle. If the
reductions result in a negative cycle,8 the POSTNU cannot be dynamically controllable.
Since the reductions have been shown to preserve the set of viable dynamic strategies,
derivation of a negative cycle implies that set is empty.

The remaining possibilities are that they terminate without producing a negative
cycle, or do not terminate. We first deal with the non-termination possibility. This leads
us to consider what it means to terminate. We will say the labeled distance graph is
quiescent if there are no negative cycles, and either no reductions are applicable or any
further reductions would not produce any new edges.

Lemma 12 If the reductions do not produce a negative cycle, they will eventually result
in quiescence.

Proof: The new edges added by the reductions involve labels that either have fewer
terms or smaller non-negative offsets. Furthermore, there is a lower bound on the size
of the decrements.9 Thus, the network must reach quiescence in a finite number of
steps. 2

Our main result in this section will be to show that reaching quiescence implies
that the POSTNU is dynamically controllable. We will do this by proving the existence
of a viable dynamic strategy. Recall that a strategy is a mapping from projections to
schedules. The following lemmas will be helful for this purpose. We will say an STN
distance-graph is plus/minus closed if composing a non-negative edge with a following
negative edge does not yield a new or tighter edge.

Lemma 13 When quiescence is reached for the POSTNU distance graph, all its pro-
jections are plus/minus closed.

Proof: Consider a non-negative edge with a following negative edge in the distance
graph of a projection. There will be a corresponding edge pair in the POSTNU distance
graph. If the POSTNU distance graph is quiescent, then the cross-case reduction will
have produced a labeled edge. That will correspond to an edge in the projection that is
at least as tight as the composition of the original edges. (It may be tighter because of
observability tightening.) 2

Concepts from Morris (2014, 2016) that relate dynamic controllability of STNUs
to dispatchability of their projections also play an important role for POSTNUs, using
in particular the following definition and lemma.

Definition 4 Given an STN distance graph, a vee-path is a path that consists of zero
or more negative edges followed by zero or more non-negative edges.

Notice that if a vee-path has negative total length, then it must begin with a negative
edge.

Lemma 14 If a consistent STN is plus/minus closed, then every path constraint is en-
forced by a vee-path. In that case the STN is said to be dispatchable.

8To reduce verbosity, we will regard a negative self-loop as a special case of a negative cycle.
9Consider the smallest positive value of the minimal set that contains the magnitudes of all the original

bounds and is closed under subtraction.
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Proof: It is easy to see that repeated application of plus/minus compositions to a path
will eventually result in a vee-path. 2

Notice that if an inconsistent STN is plus/minus closed, then it has a cycle with all
negative edges. (A similar observation was made in Nilsson, Kvarnström, and Doherty
(2015) for STNUs.) Next we consider the concept of an earliest time schedule for a
consistent STN. This has particular significance in the case of STNs that are plus/minus
closed.

Definition 5 Dechter, Meiri, and Pearl (1991) The earliest-time schedule S for an STN
is obtained as follows. An initial node � is added, and for each node X in the original
STN we add an edge from X to � of weight 0. Then S(X) is defined as −D(X) where
D(X) is the shortest-path distance from X to �.

The node � and its edges are merely used for convenience in defining S; they should
not be considered part of the STN (although we may mention them in reasoning about
the properties of S).

Note that since every node has a direct edge to � of length 0, S(X) ≥ 0 for all X .
The following result has independent interest as well as being useful here.

Theorem 2 For a dispatchable STN (i.e., a consistent STN that is plus/minus closed)
and the earliest-time schedule S, every timepoint X either satisfies S(X) = 0 or there
is a shortest path of all negative edges from X to some node Y such that S(Y ) = 0.

Proof: Suppose S(X) > 0. Then D(X) < 0 and there is a shortest path from X to �
that is negative. Since the STN is plus/minus closed, we can assume that the subpath up
to the final edge is a vee-path. Note that the final edge to� has a zero weight. Thus, the
start timepoint Y of the final edge must satisfy S(Y ) = 0. Without loss of generality,
we may assume that Y is the node closest to X such that S(Y ) = 0. Then D(Z) < 0
for every intermediate node Z on the path. Since the path from X to Y is a vee-path, it
follows that every edge on that path has a negative weight. 2

This remarkable result implies that for a dispatchable STN the non-negative edges
are irrelevant as far as the earliest time schedule is concerned. It is only if one deviates
from the earliest time schedule that the non-negative edges (and deadlines) matter.

Returning our attention to the POSTNU problem, we are now in a position to define
our candidate strategy.

Definition 6 Given a quiescent distance graph for a POSTNU, the earliest time execu-
tion strategy S̆ (pronounced “S-breve”) is defined for any projection p by S̆(p) = S̆p

where S̆p is the earliest time schedule for p.

This leads us to our main theorem.

Theorem 3 If the generalized reductions produce a quiescent distance graph, then the
POSTNU is dynamically controllable.

Proof: We will show that the earliest time execution strategy S̆ is both viable and
dynamic. Viability is immediate since the earliest time schedule for an STN is known
to be a solution Dechter, Meiri, and Pearl (1991).
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To establish that S̆ is dynamic consider a projection p and an executable timepoint
X . Suppose S̆p(X) = t. Let p′ be any other projection such that S̆p(� t) = S̆p′(� t).
We must show that S̆p(X) = S̆p′(X).

By theorem 2 the earliest-times schedules for p and p′ (and thus the values of S̆p(X)
and S̆p′(X)) depend only on the negative edges in their distance graphs. Furthermore,
the negative paths emanating from X necessarily lead to timepoints that are in the past
(in any schedule). Since S̆p(� t) = S̆p′(� t), any negative edges in those paths that
arise from macro-links must have the same weights in p and p′. Also, any edges that
arise from negative labeled edges have their weights determined by macro-links that
have already finished by time t. Thus, the negative paths emanating from X in p are
also there in p′.

The only possible confounding issue might be if an outgoing edge from X could be
non-negative in p but negative in p′. Only the labeled edges can vary between projec-
tions, and this cannot be the case for a labeled edge: a label that has received a definite
value by time t will continue to have that value thereafter.

We conclude that S̆p(X) = S̆p′(X). 2

Corollary 3.1 If a POSTNU is not dynamically controllable, then repeated application
of the generalized reductions will lead to a negative cycle.

Proof: Suppose the POSTNU is not dynamically controllable. By lemma 12, the re-
ductions must terminate. If the reductions result in quiescence, the network would be
dynamically controllable by the theorem, which is a contradiction. Thus, the reductions
must lead to a negative cycle as the only other option. 2

It is of interest to consider a possible implementation design for the earliest time
execution strategy.

8.0.1 Earliest Time Execution Design

We assume a separate thread is assigned to an executable timepoint X to manage its
activation. The negative edges emanating from X constitute enabling conditions. The
thread keeps a count of how conditions are still unsatisfied and executes X as soon as
the count becomes zero. From the point of view of X , the target Y of a negative edge
from X is something to be observed, even if Y is itself an executable timepoint. In
general, therefore the edge will involve an enabling condition of the form

min
i∈I

(Yi + ui)

where the Yi may be observable or executable timepoints (and where I may be a sin-
gleton).

The X thread will normally be sleeping. It will wake if any of the Yi events occur. If
that happens, the X thread will initiate a separate “alarm-clock” thread that will “ring”
ui units of time later. At any time there may be several such clocks that are active for
a particular edge. The first one to ring will wake the X thread, at which point it will
deactivate the other clocks for that edge, and will decrement the enablement count.

It is easy to see that the execution need only perform a bounded amount of active
work for each Yi +ui condition. Thus, the execution complexity is linear in the number
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of such conditions. For example, in a class of POSTNUs where the label sizes are
bounded (such as STNUs), the complexity would be linear in the number of edges,
and thus quadratic in the number of timepoints. This is similar to the complexity for
STNUs of the latest time execution approach in Cairo and Rizzi (2017).

9 Closing Remarks
The focus of this paper has been theoretical with the goal of providing a sound and
complete process for determining the Dynamic Controllability of partially observable
STNUs. An obvious next step would be to adapt the STNU cubic algorithm of Morris
(2014) with the goal of efficiently performing the reduction process. A more long-term
objective would be to generalize the setting further, and replace Nature by a second
agent, thus considering two-agent plans with limited communication. In that extended
problem, the second agent might well have a more general STN than the Nature one,
and this could affect many of the assumptions used in the current approach.
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