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Human-Automation Allocations for 
Current Robotic Space Operations: 

Space Station Remote Manipulator System 
 

Mai Lee Chang1 and Jessica J. Marquez2 
 
 
 
 

1. Introduction 
NASA’s Human Research Program’s Risk of Inadequate Design of Human and 
Automation/Robotic Integration (HARI) delineates the uncertainty surrounding crew work with 
automation and robotics in spaceflight. HARI is concerned with detrimental effects of ineffective 
user interfaces, system designs and/or functional task allocation on crew performance, potentially 
compromising mission success and safety. This risk arises because of limited experience with 
complex automation and robotics in spaceflight. One key knowledge gap within the HARI risk is 
related to function allocation.  
 
Functional allocation is the method of assigning function (e.g., tasks, activities) to work agents, be 
they human, automation, or robotic. In complex aerospace systems, function allocation is a major 
factor in determining human-system performance. Assignment of tasks to automation or robots 
results in specific performance requirements by the system, which in turn decides what work and 
level of performance the human operator is expected to have. Allocations must take into account 
each of the human, automation, and robotic systems’ capabilities and limitations. In human 
spaceflight, however, cost pressures and system limitations (such as launch capabilities) often limit 
the astronaut team size. In order to reduce crew workload, increase precision and reduce risk, 
mission design must assign an integral role to robots (Fong & Nourbakhsh, 2005). While some 
functions may be intuitively assigned to the human rather than the robot, optimization of efficiency 
and effectiveness requires purposeful role assignments.   
 
The focus of this report is to describe the functional allocation of a current operational robotic 
system, the Space Station Remote Manipulator System (SSRMS). This functional allocation only 
covers SSRMS operations when astronauts act as primary operators. Astronauts use the SSRMS 
from within the International Space Station (ISS), which we denote as crew conducting 
intravehicular activity (IVA)—as opposed to astronauts outside the spacecraft conducting an 
extravehicular activity (EVA). This report excludes operations conducted solely by flight controllers 
on the ground as well as robotic operations planning and training periods. The authors of this report 
are not SSRMS operators, designers, or engineers. We conducted this review from a space human 
factors engineering perspective, qualitatively describing existing allocations based on observations 
of operations in Mission Control Center (MCC), interviews with SSRMS operators, and publicly 
available documentation. Our aim is to benchmark existing allocations that have worked 
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successfully for spaceflight operations so that these may be referenced in future evaluations of 
robotic function allocation methods. 
 
 
2. Methodology 
In order to systematically document robotic function allocation, we leveraged an existing work 
allocation model to describe SSRMS function allocations. We selected Prichett, Kim and Feigh’s 
(2013, 2014) human-automation function allocation modeling strategy as it has been previously used 
for the complex, safety-critical domain of the commercial flight deck. Since our objective was to 
document but not computationally model the existing SSRMS allocations, we did not adapt or 
change the model for robotic function allocation. This model is currently being extended to robotic 
allocation (IJtsma, Prichett, Ma, & Feigh, 2017).  
 
Capturing the work domain as an abstraction hierarchy (Vicente, 1999) is the first recommended 
step for this modeling approach. In addition, a new level of abstraction is required. Table 1 lists the 
abstraction hierarchy levels used in this report. Pritchett et al. (2013, 2014) recommend breaking 
down the temporal functions into six components: actions, resources, functions, strategies, decision 
actions, and configuration variables. These components are used to computationally model 
allocations and are dependent on the work domain. Since the configuration variables are intended 
specifically for use in Work Models that Compute (WMC), we did not use that variable in this 
report. In its stead, we added Time Scale as an additional descriptor that expounds on the expected 
tempo of the task. The action component includes the descriptor for assignment (i.e., identifies who 
is taking the action). All of these components are further summarized in Table 2. 
 

Table 1. Abstract Hierarchy Levels 

Component Description 

Mission goals High-level objectives (e.g., robot self-maintenance, obtain 
science data) 

Priorities and 
values 

Specific flight rules or regulations (e.g., velocity, proximity, 
power restrictions) 

Generalized 
function 

Higher level behavioral function, likely at the level of a 
procedure (e.g., “berth capsule”) 

Temporal 
function 

Specific behavior, at the most detailed level of action (e.g., 
“grasp capsule”, “power laser”). Defined by processes 
creating specific time-varying dynamics acting on similar 
resources and with timing parameters dependent on the 
same underlying temporal properties 
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Table 2. Descriptive Components to Temporal Functions 

Component Description 

Actions 

• Actions of ground to support temporal function (Ground 
Actions) 

• Actions of EVA crew to support temporal function (EVA 
Crew Actions) 

• Actions of IVA crew to support temporal function (IVA Crew 
Actions) 

• Actions of automation to support temporal function 
(Automation Actions) 

Strategy The method used to achieve temporal function 

Resources Physical capabilities necessary to perform task for each 
actor (e.g., joystick, video feed, torque sensor, memory) 

Decision action The motivation for choosing one strategy vs. another (e.g., 
vehicle configuration) 

Time Scale Approximate duration for temporal function to complete 
 
 
To describe all further temporal actions, we used Hierarchical Task Analysis (HTA) for the robotic 
allocation components mentioned above. HTA has been used to understand the tasks needed to 
achieve specific goals and how tasks can go wrong (Annett, 1996). Traditionally, HTA has been 
described in a diagram structure and a tabular format. In a tabular format, analysts describe the task 
relevant information, extend the analysis beyond the system description and enable investigation of 
function allocation (Stanton, 2006). HTA describes sub-goals of what is being done during 
operations (Duncan, 1972; Marsden & Kirby, 2005). In this report, we decomposed task work into 
temporal actions, modeled through an HTA.  
 
 
3. System Summary 
The ISS currently has three robotic arms: the SSRMS, also referred to as the Canadarm2; the Special 
Purpose Dexterous Manipulator (SPDM), also referred to as Dextre; and the Japanese Remote 
Manipulator System (JEMRMS). The SSRMS and the JEMRMS use similar grapple fixtures that are 
compatible with most of the ISS, except the Russian segment. This report only covers human-robotic 
allocation for the SSRMS. 
 
3.1 Space Station Remote Manipulator 
The SSRMS, shown in Figure 1, was launched on the Space Shuttle in April 2001. The SSRMS is 
17.6 m in length when fully extended and is composed of two booms and has seven joints, each with 
a range of ± 270º. It has two latching end effectors that allow it to self-relocate. The SSRMS is used 
to handle large exterior payloads including docking visiting spacecraft to ISS and also serves as a 
work platform during EVA for astronauts. 
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Figure 1. The SSRMS on orbit. (Credit: NASA.) 
 
 
Both the ground operators and astronauts onboard the ISS can monitor and control the SSRMS. 
Astronauts use the robotics workstation (RWS) to control and monitor SSRMS, as shown in Figure 
2. The ISS has two identical RWSs, one located in the Cupola and the other in the U.S. Lab. Each 
workstation includes three video monitors, a display and control panel (DCP), a Portable Computer 
System (PCS), a cursor control device, and two 3-degree-of-freedom (3-DOF) hand controllers. 
Most of the tasks require two qualified onboard operators, designated as either M1 or M2. M1 is the 
operator controlling the SSRMS and M2 assists with tasks such as navigating through procedures, 
configuring and operating cameras and other sensors, and communicating with ground control (Fong 
et al., 2013; Canadian Space Agency, 2015). Due to the time lag to ground, the hand controllers are 
only used by astronauts onboard the ISS while ground operators send script commands (i.e., one 
script with several arm commands). Commands sent from the ISS computers (i.e., PCS) can be done 
from ISS or the ground. 
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Figure 2. The SSRMS robotic workstation on orbit. (Credit: NASA.) 
 
 
The robotics ground control team consists of three flight controller positions: ROBO (Robotics 
Officer), Systems, and Task. ROBO is the ISS Mission Control robotics position, which is in charge 
of all SSRMS and SPDM activities. Task and Systems support ROBO from the Multi-Purpose 
Support Room (MPSR), which are located at NASA Johnson Space Center and the Canadian Space 
Agency. The Systems flight controller monitors the telemetry data and is primarily responsible for 
the state of the system and the Task flight controller monitors the mission and task timelines 
including procedures to maintain the team’s situational awareness.  
 
The SSRMS has three main types of modes: 

1. Non-Motion modes 
• Safe: arm motion is halted and all further commands are rejected unless operator 

disables safing function. 
• Brakes: mechanical joint brakes are applied to keep arm in a fixed configuration. 
• Limp: arm joints are passively compliant. 
• Standby: joint motors are used to maintain arm in its current configuration. 

2. Frame of Resolution (FOR) modes 
• Pitch Plane: operator commands rotations of the pitch plane while maintaining the 

arm’s tip and base position and orientation constant. 
• Manual: operator controls robotic arm via hand controllers. 
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• FOR Operator Commanded Auto Sequence (OCAS): operator uses the ISS computers 
to directly enter the desired coordinates (in 6 DOF). 

• FOR Auto: operator uses the ISS computer to command the arm via a scripted file.  
3. Joint modes 

• Single: operator controls a single joint using hand controller. 
• Joint OCAS: operator uses the ISS computers to directly enter the desired joint angles. 
• Joint Auto: operator uses the ISS computer to command the arm via a scripted file. 

 
 
4. Allocations for Heavy Lift Robotic Arms 
This section describes the two main tasks that the astronaut crew performs with the SSRMS: EVA 
Operations and Free-Flyer Operations. This report does not cover operations of SSRMS carried 
out solely by flight controllers. EVA Operations employ the U.S. Lab RWS (Figure 2) to translate 
an astronaut on a platform attached to the SSRMS’s end-effector, enabling EVA crewmembers to 
reach particular external areas of ISS (Figure 3) or helping EVA crew translate large pieces of 
equipment. Free-Flyer Operations entail capturing a visiting vehicle such as SpaceX Dragon or H-
II Transfer Vehicle (HTV), as shown in Figure 4, and berthing it to on one of the ISS ports. This 
capturing and berthing task is completed using the Cupola’s RWS (Figure 5) and is shared 
between MCC and crew. 
 

 
 

Figure 3. Astronaut on SSRMS end-effector next to ISS solar arrays. (Credit: NASA.) 
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Figure 4. SSRMS capturing HTV before berthing. (Credit: NASA.) 
 
 

 
 

Figure 5. RWS in ISS Cupola with out-of-window views. (Credit: NASA.)  
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4.1 Abstraction Hierarchy and Hierarchical Task Analysis 
Hierarchical task analyses are included below for both of the main SSRMS operations conducted by 
crew. The abstraction hierarchy for SSMRS EVA Operations is identified in the first diagram 
(Figure 6), while the temporal actions breakdowns with corresponding allocations are described in 
Table 3. Correspondingly, SSRMS Free-Flyer Operations are captured in Figure 7 and Table 4. 
 

 
 

Figure 6: SSRMS EVA Ops, Abstraction Hierarchy. 
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Table 3. SSRMS EVA Ops for Crew, Hierarchical Task Analysis 
(Assignment coloring: Crew is green, dark green for EVA astronaut; 

ROBO Flight Controller is blue; automation is yellow). 

Temporal Actions Detailed Tasks Steps 

Prepare for 
robotic arm EVA 
operations 

[ROBO] Setup flight controller 
station 

Configure displays 
Configure voice loops 

[Crew] Review EVA procedures  

[Crew] Setup Robotic Work 
Station (RWS) 

Configure RWS: 
 • Verify configuration of RWS using DCP 
• Verify loaded & unloaded payload 

parameters 
• Configure camera views 

Configure ISS computers (PCS) 
Calibrate hand controllers: 

• Set Rate Scale as desired 
• Use Vernier rates if within 1.5 m of structure 

Setup robotic arm 
with EVA 
astronaut 

[Crew] Perform pre-motion 
check of robotic arm 

Check cameras to confirm readiness for task 
Check frames to ensure motion will be as 
expected 
Check rates are as expected 
Check mode is as expected/desired 

[Crew] Manipulate arm to setup 
Articulating Portable Foot 
Restraint (APFR)  

Enter Joint Operator Commanded Auto Sequence 
(OCAS) Mode: set joint angles 
Input joint angles to reach foot restraint 
Verify joint angles and errors are correct on 
overlay 
[Automation] Arm moves to joint angle 
destination 

[Crew] Install APFR on robotic 
arm 

Enter Manual Mode 
Maneuver arm with hand controllers 

• Move to foot restraint install location per 
direction of EVA astronaut (termed Ground 
Control Assistance/GCA) 

• If necessary, maneuver to help EVA 
astronaut ingress foot restraint 

Engage brakes when desired location is reached 
EVA astronaut installs foot restraint 

EVA astronaut ingresses APFR 
Wait for EVA Astronaut to maneuver themselves 
into foot restraint 
[Crew] Remove brakes 

continued on next page 
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Table 3. SSRMS EVA Ops for Crew, Hierarchical Task Analysis (continued) 
Temporal Actions Detailed Tasks Steps 

Conduct EVA 
tasks 

[Crew] Manipulate arm to 
worksite/s 

Maneuver arm to worksite, either per GCA, FOR, 
or Joint OCAS 
Enter Joint OCAS Mode as needed  
Enter Manual Mode as needed (fine alignment) 
[Automation] Arm moves to joint angle 
destination if in Joint OCAS 

[Crew] Use hand controllers 
Maintain smooth & steady inputs 
Minimize arm oscillations 

[Crew] Monitor camera views 
 

Monitor clearances with ISS structure 
Adjust camera settings as needed (e.g., 
compensate for adverse lighting conditions, 
panning/tilting camera to follow motion) 

[Crew] Monitor expected robotic 
arm parameters 

Scan monitors for expected motion, clearance, 
and overlay feedback 

[Crew] Follow communication & 
voice protocol 

Verbalize clearances 
Verbalize motion description 
Verbalize hand controller inputs 
Verbalize procedure steps and completions 

• Second IVA crew verifies step completion 
Verify with MCC appropriate ISS configuration 
(before EVA or during EVA, if necessary) 
Verify with EVA astronaut confirmation of 
directions and motion required 

[Crew] Continue executing EVA 
procedures 

Monitor time of procedure execution 

EVA astronaut performs tasks Wait for EVA Astronaut to complete worksite/s 
tasks 

Support EVA 
robotic arm 
operations 

[ROBO] Monitor procedure 
execution 

Verify procedure execution in Integrated 
Procedure Viewer (IPV) 
Monitor time of procedure execution 
Identify work ahead in procedures 
Document operations 

[ROBO] Monitor system status 
Verify robotic arm clearances 
Monitor camera views 
Monitor robotic arm telemetry 

[ROBO] Follow communication 
& voice protocol 

Verbalize crew and robotic arm actions based on 
robotic arm telemetry to MCC and MPSR 
Verbalize next expected crew and robotic arm 
actions 
Communicate with MCC Flight Director as 
necessary 

continued on next page 
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Table 3. SSRMS EVA Ops for Crew, Hierarchical Task Analysis (continued) 

Temporal Actions Detailed Tasks Steps 

Complete close-
out EVA robotic 
arm operations 

[Crew] Manipulate arm to final 
worksite 

Maneuver arm to final worksite per GCA 
Enter Joint OCAS Mode as needed  
Enter Manual Mode as needed (fine alignment) 
[Automation] Arm moves to joint angle 
destination if in Joint OCAS 
Stop maneuvering and brake per GCA 

EVA astronaut stows APFR  
Wait for EVA Astronaut to egress foot restraint 
Wait for EVA Astronaut to uninstall foot 
restraint 

[Crew] Manipulate arm to park 
configuration 

Enter Joint OCAS Mode as needed  
Enter Manual Mode as needed (fine alignment) 
[Automation] Arm moves to joint angle 
destination if in Joint OCAS 
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Figure 7. SSRMS Free-Flyer Operations, abstract hierarchy. 
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Table 4. SSRMS Free-Flyer Operations, Hierarchical Task Analysis 

(Assignment coloring: Crew is green; ROBO Flight Controller is blue; 
automation is yellow.) 

Temporal Actions Detailed Tasks Steps 

Prepare for robotic 
arm EVA 
operations 

[ROBO] Setup flight 
controller station 

Configure displays 
Configure voice loops 

[Crew] Review EVA 
procedures 

 

[Crew] Setup Robotic Work 
Station (RWS) 

Configure RWS 
• Verify configuration of RWS using DCP 
• Verify Free Flyer parameters 
• Configure camera views 

Configure ISS computers (PCS) 
Calibrate hand controllers 

• Set Rate Scale as desired 
• Use Vernier rates if within 1.5 m of structure 

Setup robotic arm 
to capture free flyer 

[ROBO] Coordinate with 
MCC and Astronaut operator  

Wait for MCC “Go for capture” 
Wait for MCC to give go-ahead 

[Crew] Configure robotic arm 
for capture 

Enter Manual Mode 
Command latching end effector mechanism to 
Auto Capture mode 

[Crew] Perform pre-motion 
check of robotic arm 

Check cameras to confirm readiness for task 
Check frames to ensure motion will be as 
expected 
Check rates are as expected 
Check mode is as expected/desired 

Capture free flyer 
with robotic arm 

[Crew] Manipulate arm to free 
flyer 

Maneuver arm to free flyer 
Confirm motion in camera view and overlays 

[Crew] Capture free flyer 

Monitor free flyer motion 
Initiate free flyer capture 
[Automation] Attach free flyer to arm with 
latching end effector mechanisms 

[Crew] Use hand controllers 
Maintain smooth & steady inputs 
Minimize arm oscillations 

[Crew] Monitor camera views 

Monitor arm to free flyer clearance 
Monitor arm & free flyer to ISS clearance 
Monitor end effector latching mechanism 
interface for possible separation from free flyer 
Adjust camera settings as needed to compensate 
for adverse lighting conditions or pan/tilt to 
follow motion 

continued on next page 
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Table 4. SSRMS Free-Flyer Operations, Hierarchical Task Analysis (continued) 

Temporal Actions Detailed Tasks Steps 

Capture free flyer 
with robotic arm 
(continued) 

[Crew] Use view out of 
window 

Scan view during arm motion 
Check for expected motion and clearances 

[Crew] Monitor systems states 

Scan monitors for robotic arm’s expected motion, 
clearance, and overlay feedback 
Verify appropriate ISS configuration (based on 
procedure) on PCS (before or during operations) 

[Crew] Follow communication 
& voice protocol 

Verbalize clearances 
Verbalize motion description 
Verbalize hand controller inputs 
Verbalize procedure steps and completions 

• Second IVA crew verifies step completion 
[Crew] Continue procedures Monitor time of procedure execution 

Support robotic arm 
operations 

[ROBO] Monitor procedure 
execution 

Verify procedure execution in Integrated 
Procedure Viewer (IPV) 
Monitor time of procedure execution 
Identify work ahead in procedures 
Document operations 

[ROBO] Monitor system 
status 

Verify robotic arm clearances 
Monitor camera views 
Monitor robotic arm telemetry 

[ROBO] Follow 
communication & voice 
protocol 

Verbalize crew and robotic arm actions based on 
robotic arm telemetry to MCC and MPSR 
Verbalize next expected crew and robotic arm 
actions 
Communicate with MCC Flight Director as 
necessary 

 
 
Following astronaut’s free-flyer capture, the crew hands off operations to the ROBO team to 
perform the installation to the ISS using Joint OCAS and FOR OCAS, coordinating with MCC 
through berthing of free-flyer.  
 
4.2 Descriptive Allocations 
4.2.1 Higher Level Behavioral Functions 
Mission Goals: For SSRMS, the mission goals are to safely conduct robotic operations, be they 
EVA operations or free-flyer capture. 
 
Priorities and Values: The SSRMS priorities and values consist of keeping the crew and ISS safe 
by avoiding injury to crew and hardware damage to the arm and/or ISS. During operations, collision 
avoidance is an important priority, and includes stay-out zones for certain hardware and clearance 
between any structure or EVA crewmember. The clearance available also determines how much the 
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robotic arm can move. These priorities are so critical that there is a lot of communication between 
crew and MCC. For instance, a pair of astronauts is required as a check-and-balance for safe 
execution of motion, capture and release of the free-flyer.  
 
Generalized Function: Generalized functions describe the functions needed to complete the 
mission goals. In order to meet the safety criteria, crew and flight controllers (as a team) manage 
procedures and flight rules. Crew must also manage the robot arm motion, which means controlling 
inputs and monitoring outputs of the robotic system based on specified procedures. During SSRMS 
free-flyer operations, there is the additional function of monitoring various systems states. 
 
Temporal Function: Temporal functions for heavy lift robotic arms are the actions undertaken over 
time by the multiple human or automation agents in order to complete a mission. For SSRMS 
operations, this includes commanding the arm, tracking multiple information sources, following 
procedures, and communicating among the team. 
 
4.2.2 Specific Behaviors at the Most Detailed Level of Action 
Ground Actions: For the SSRMS operations during both free-flyer capture and EVA tasks, ground 
actions include monitoring spaceflight operations in order to verify procedure execution is consistent 
with telemetry data (displays); looking ahead in the procedures; documenting operations, 
communicating with other flight controllers, and maintaining situational awareness of the 
operations. While ground can operate the SSRMS, this analysis does not include these types of 
actions. Additionally, the planning phase of robotic operations, which is completely ground-based, is 
not covered in the present analysis.  
 
Crew Actions: For SSRMS free-flyer capture operations, two crewmembers, M1 and M2, are 
required. The two astronauts communicate constantly about relevant information, such as position of 
the robotic arm. M1 uses the hand controller to manually fly the SSRMS to capture the free-flying 
visiting vehicle while minimizing arm oscillation. M2 monitors the free-flyer motion, robotic arm 
telemetry, and remaining time on task. For EVA operations that involve the SSRMS, two 
crewmember operators are required.  M1 is the crewmember inside the ISS and EV1 is the 
crewmember performing the EVA on the end effector of the SSRMS. M1 maneuvers the SSRMS 
with guidance from the EV1 who provides information about the reference frame, required motion 
direction, and distance. This action is termed Ground Control Assist (GCA) even though ground 
controllers are not part of this operation. M1 commands the SSRMS through one of a few methods: 
1) inputting the desired joint angles, 2) inputting the desired Frame of Resolution (for FOR OCAS), 
or 3) controlling through hand controller.  Due to the nature of these two specific tasks, only the 
crew operates the robotic arm because of the time lag between ground and SSRMS. 
 
Automation Actions: For EVA operations, the SSRMS modes that contain automation actions 
include FOR OCAS and Joint OCAS. For these modes, arm motion may be paused and resumed at 
any time. For free-flyer capture operations, SSRMS automation actions for the involve its Latching 
End Effector mechanisms, which involves snares close, carriage retract and for some visiting 
vehicles, the latches and umbilical will also be deployed.  
 
4.2.3 How Goals are Achieved 
Strategy: For the SSRMS Free Flyer operations, the crew aims to minimize arm oscillation while 
trying to capture the visiting vehicle within the required time limit. To minimize arm oscillation, 
crew needs smooth hand controller inputs and can scale the rates of movement.  For efficiency, the 
ground team stays several steps ahead of the procedure. 
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Resources: For the SSRMS, crew employs the RWS to view telemetry, a number of camera video 
feeds (four cameras on ISS structure, two on the Mobile Remote Servicer Base System, five on the 
SPDM, six on the Japanese Experiment Module, and four on SSRMS, plus the helmet cameras on 
the EVA suits); the DCP; audio between crew-crew and crew-ground; the PCS Graphical User 
Interface (GUI), and procedures. The ground team uses the Robotic Planning Software (RPS), 
telemetry, verbal (i.e., audio) confirmations, and camera feeds. Sufficient Ku-band and S-band 
communication coverage are required for SSRMS operations.  
 
Decision Action: For SSRMS, decision actions are based on a variety of factors: communication 
(Ku-band, S-band) availability, spacesuit resources in the case of EVA operations, timeline 
(cascading effects), flight rules, overall mission success, direction provided by Flight Director and/or 
ISS Commander. 
 
Time Scale: For SSRMS free-flyer capture, task duration lasts from seconds to minutes. Once crew 
is given the “Go” and the SSRMS is in the capture window, it takes 2-3 minutes to capture the 
visiting vehicle. For SSRMS EVA tasks, task duration also ranges from seconds to minutes. Tasks 
such as direct commanding of the SSRMS through PCS may take a few seconds. Manual 
maneuvering of the SSRMS by following the EVA Astronaut’s directions can take a few minutes. 
Depending on the time needed at each worksite, the overall task duration can last for several hours 
and is limited by the EVA suit consumables. 
 
 
5. Concluding Remarks 
We examined the functional allocation for crew SSRMS operations onboard ISS, i.e., assignment of 
tasks between crew, ground flight operators, and SSRMS robotic automation. EVA operations and 
free flyer capture are the two types of robotic arm operations we considered. For these operations, 
most tasks are assigned solely to humans—either the astronaut crew or ground flight operators. 
There are only a couple SSRMS assignments where automation is leveraged: 1) commanding the 
arm to a specified position and 2) latching the end effector onto a free flyer, visiting vehicle.  
 
This report is based on operational observations in MCC, interviews with SSRMS operators, and 
publicly available documentation. It is important to note that this descriptive functional allocation 
only covers the period when crew in space is using the SSRMS. Flight controller operations of 
SSRMS were not considered for this report. Planning and training occupy a considerable amount of 
time, and a more comprehensive functional allocation that includes these specific phases will be 
required to more rigorously understand how future robotic systems design and operation can be 
improved for exploration class missions.  
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