
April 2020

NASA/TM-2020-220588

Formal Verification of a Solution to the n-Queens
Problem

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

April 2020

NASA/TM-2020-220588

Formal Verification of a Solution to the n-Queens
Problem

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

i

Abstract

This report describes a formal verification of a concise algorithm that computes a solution to the
n-Queens problem for all natural numbers n, such that n > 3. The formal proof of the algorithm is
completed in the Prototype Verification System (PVS) theorem prover. This report illustrates
that theorem provers are more capable than model checkers when verifying an algorithm with
potentially infinitely many input values using a concise algorithm for a general problem that
produces a solution. The particular algorithm used was chosen as a pedagogical example for
formal proof that does not employ recursion and is computationally less intensive than the
backtracking method.

Keywords: Model Checking, Theorem Proving, PVS, Verification, n-Queens, Formal Proof

ii

Table of Contents

ABSTRACT ... I

TABLE OF CONTENTS ...II

1. INTRODUCTION .. 1

2. THE ALGORITHM .. 3

3. VERIFICATION .. 4

4. SUMMARY AND CONCLUSION ... 7
ACKNOWLEDGEMENT .. 7

REFERENCES .. 7

APPENDIX – PVS SPECIFICATION .. 9

1

1. Introduction

In this report, we introduce formal verification methods and highlight merits of various
verification techniques, namely model checking and theorem proving, over testing. We also
present a candidate algorithm, its formal specification, and analysis of its proof using a theorem
prover.

The eight queens problem is a classic problem using a chessboard. The goal is to place eight
queens on an 8×8 chessboard so that no one queen can take another. For those familiar with the
game of chess, the eight queens problem is as follows: arrange eight queens on a chess board so
that none of them is in check of any other. For those unfamiliar with the game of chess, the
problem may be stated as follows: find the different ways to place eight pieces (queens) on the
chessboard so that no two of them share the same row, column, or diagonal. The eight queens
problem is an example of the more general n-Queens problem of placing n queens on an n×n
chessboard. Solutions exist for the n-Queens problem for all natural numbers n > 3, and there are
no solutions for n ≤ 3 [Spr 1899], [Bal 1960], [Hof 1969].

Although mathematician C.F. Gauss is credited with this problem, the eight queens problem was
originally published by German chess composer Max Bezzel in 1848. Many mathematicians
have since worked on this problem. The first solution was published by Franz Nauck in 1850. He
also extended the eight queens problem to n-Queens [Bal 1960].

Figure 1. A solution to the eight queens problem.

For the eight queens there are 92 distinct solutions, one of which is shown in Figure 1. However,
if solutions that differ only by symmetry operations (rotations and reflections) of the board are
counted as one, the puzzle has 12 unique (or fundamental) solutions.

In [Dah 1972] Dahl et al. mention that Edsger Dijkstra used this problem to illustrate the power
of what he called structured programming and published a highly detailed description of a depth-
first backtracking algorithm. Backtracking is a well-known exhaustive search method that
systematically examines all possible solutions for a queen at a particular position. If a solution is
not possible, then the algorithm backtracks to consider other possible positions. The technique
dates back at least 100 years and has since been successfully applied to a variety of problems,
e.g., Artificial Intelligence (AI) and Sudoku. Some of these algorithms are used to produce a

2

solution for the n-Queens problem for a given n while others are aimed at producing all solutions
for a given n.

There are a number of solutions to the n-Queens problem. It appears that the most commonly
cited solutions that are formally verified are essentially variations of the backtracking algorithm
[Fil 2012], [Kea 2000].

There are also explicit algorithms for placing n queens that require no combinatorial search
whatsoever [Ber 1991], [Hof 1969]. The particular algorithm we chose to verify uses algebraic
operations [Ber 1991]. It does not employ recursion and does not require an exhaustive search.
Thus, this algorithm is computationally less intensive than the backtracking method. We describe
the algorithm in the following section.

The purpose of this report is not to present a new algorithm for finding a solution for a given n.
Nor is the purpose to count all possible solutions for a given n. Rather, the purpose is to formally
verify an existing algorithm that guarantees a solution for any given n; thus, highlighting the
capability of theorem provers in handling arbitrary values. Hoffman et al. [Hof 1969] provided a
paper-and-pencil proof of their proposed solution to this problem in their report. However,
verification of correctness of an algorithm by the composition of a paper-and-pencil proof and/or
manual examination of the proof is error prone [Mal 2006]. Although we believed the given
proof was correct, to our knowledge, its correctness had not been formally verified.

There are two general formal methods approaches for the verification of the correctness of an
algorithm: theorem proving and model checking. Theorem proving requires a deductive proof
of the protocol. Model checking is used for its ease, feasibility, and quick examination of the
problem before a more rigorous attempt at proof is undertaken by a theorem prover. Model
checking is based on specific scenarios and is generally limited to a subset of the problem space,
which helps to highlight a key difference between theorem proving and model checking.
Namely, model checking struggles to verify algorithms that can have a possibly infinite number
of inputs. That is, for some systems, testing or model checking alone cannot possibly give a 100
percent guarantee of correctness. This limitation is not present with interactive theorem provers
like Prototype Verification System (PVS) [Owr 2008], [Sha 1999], [Owr 1992], as is illustrated
by the solution to the n-Queens problem. PVS allows a user to input a proof of a mathematical
statement, which it checks for logical correctness. Thus, the verification of this algorithm in PVS
illustrates that, in more complicated problems when the correctness property is essential, such as
a safety-related condition, there is an advantage to using an interactive theorem prover rather
than testing or model checking. If the system itself has an infinite number of input values, it is
typically impossible to guarantee that, for a given algorithm, a particular property, and for safety
critical systems, a safety property, holds by using testing or model checking, but it is possible
when using an interactive theorem prover.

The number of fundamental solutions for n increases exponentially, for instance, for n = 8 and
27, the number of fundamental solutions are 12 and 29,363,495,934,315,694 (or > 29x1015),
respectively. Thus, as n increases, when using a model checker, the required memory, computing
power, and time it takes to verify all solutions becomes impractical. Verification via a theorem
prover like PVS, however, is independent of the actual value of n.

3

A formal verification of a two-line C program that computes the number of solutions to the n-
Queens problem using a variety of tools, e.g., Why3, Alt-Ergo, CVC3, and Coq, was reported in
[Fil 2012]. The author emphasized that even the shortest program can be a challenge for formal
verification. In [Fil 2012] two kinds of integer overflows are reported, depending on the use of
integers as bit vectors or as counters. The count of solutions for n ≤ 19 would overflow with 32-
bit integers. Similarly, the count of solutions for n ≤ 28 would overflow with 64-bit integers.
These limitations are absent in PVS, which uses unbounded integers.

This report is organized as follows. Description of the algorithm for finding the solution to the n-
Queens problem is presented in Section 2. Section 3 is a description of the verification of the
algorithm in PVS. Section 4 is a summary of the work and concludes the report. The PVS
specification of the solution is presented in the Appendix.

2. The Algorithm

The n-Queens algorithm presented here is attributed to Bo Bernhardsson [Ber 1991] who, in turn,
based his algorithm on an earlier work by Hoffman et al. [Hof 1969]. The solution reported in
[Hof 1969] is given by the three constructions listed below. In 1991, Bernhardsson brought
attention to the solution provided by Hoffman et al. to point out that there is a much faster way to
find a solution to the n-Queens problem [Ber 1991] than a polynomial time algorithm. This
explicit solution in fact requires very little computer time and thus makes the n-Queens problem
a bad benchmark problem for the purpose of comparing computational efficiency. It does
however provide a great example highlighting the capability of theorem provers like PVS
compared to model checkers in handling algorithms with potentially infinitely many input
values. The following solutions can be found in [Ber 1991]. This algorithm is not a backtracking
algorithm but is an explicit one.

Let (i, j) be the square in column i and row j on the n×n chessboard, k an integer and for
i = 1, 2, ..., floor(n/2). Then,

1. If n is even and n ≠ 6k + 2, then
place queens at (i, 2i) and (n/2 + i, 2i - 1).

2. If n is even and n ≠ 6k, then
place queens at (i, 1 + (2i + n/2 - 3 (mod n))) and (n + 1 - i, n - (2i + n/2 - 3 (mod n))).

3. If n is odd, then
use one of the patterns above for (n - 1) and add a queen at (n, n).

Note that n ≠ 6k + 2 means that n mod 6 ≠ 2, and similarly, n ≠ 6k means that n mod 6 ≠ 0. This
algorithm produces a solution for any natural number n > 3, and a paper-and-pencil proof of it is
provided in [Hof 1969]. We would like to emphasize that this algorithm does not produce all
possible solutions or a count of all possible solutions for a given n.

4

The above algorithm is translated into PVS and named FinalChess:
 FinalChess (n : posnat | n > 3) : ChessType (n) =
 IF even? (n) AND (mod (n, 6) /= 2) THEN ChessMethod1 (n)
 ELSIF even? (n) THEN ChessMethod2 (n)
 ELSIF (mod (n - 1, 6) /= 2) THEN
 (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod1 (n - 1)(j) ENDIF)
 ELSE (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod2 (n - 1)(j) ENDIF)
 ENDIF

In the above description, together, functions ChessMethod1() and ChessMethod2() address steps
1 through 3 of the solution.

The correctness of the above algorithm, i.e., verification that it produces a solution to the n-
Queens problems for all n > 3, is the main claim and is captured by the following theorem:
 QueensFinal : THEOREM FORALL (n : {t: posnat | (t > 3)}) :

 QueensSolution (n, FinalChess (n))

3. Verification

In this section, we present our formal verification and proof of the n-Queens algorithm described
in Section 2 in PVS. We present our proof in terms of an object, chess, which is an array of size
n representing an n×n chessboard. Each element of the array is a positive natural number ranging
from 1 to n. The chess object is filled with the solution produced by the algorithm and each
element of the chess object contains the column assigned to the queen for the corresponding row.
The PVS specification of the algorithm is made available in the appendix.

The algorithm described in Section 2 is elegant and deceptively simple. Although readily
described in three lines, it imposed a number of unforeseen challenges in the formal
proof/verification process. This phenomenon has been acknowledged by the practitioners of
various mechanical verifiers [Fil 2012], [Mal 2012].

 ChessType (n : posnat) : TYPE = ARRAY [subrange (1, n)  {x : posnat | x ≤ n}]

The algorithm is described by three cases. The first two cases deal with even n, which, in the
description of the proof process, we refer to as methods 1 and 2. Each of these cases in turn is
divided into two distinctive regions: i = 1, 2, ..., floor(n/2) and j = floor(n/2), ..., n.

To prove that an algorithm produces a correct solution to the n-Queens problem, we must prove
that no two queens are on the same row, column, or diagonal, and thus cannot attack each other.
The following lemmas help to examine whether any two queens are on the same row or column
of the chessboard:

 M1Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i, j : subrange (1, n)) :
 (i ≠ j) IMPLIES (2 * i) ≠ (2 * j - 1)

 M2Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :
 (i ≠ j) IMPLIES (1 + (mod (2 * i + n / 2 - 3, n))) ≠ (1 + (mod (2 * j + n / 2 - 3, n)))

 M2Perm2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :
 (1 + (mod (2 * i + n / 2 - 3, n))) ≠ (n - (mod (2 * j + n / 2 - 3, n)))

5

The algorithm is easy to follow and simple to implement. It is well structured and treats even and
odd numbers separately, with odd numbers as a special case. However, mechanical/formal
verification of this algorithm has proven to be very difficult. One of the main challenges in the
verification process was dealing with the mod (modulo) operator. Since this operation was an
essential part of the algorithm and appeared many times in the proof of various lemmas, we
chose to unroll it into a concrete value, splitting the proof into multiple cases which had to be
handled separately. The following two lemmas unroll mod for the two distinct regions that are
associated with even values of n. It may be useful for others who want to formalize a solution to
the n-Queens problem to realize that having the following concrete values as the output of the
modulo function makes it easier to work with than the modulo function itself.

 UnrollMod1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (1, n / 2)) :
 mod (2 * i + n / 2 - 3, n) =

 IF ((2 * i + n / 2 - 3) < n) THEN (2 * i + n / 2 - 3)
 ELSE ((2 * i + n / 2 - 3) - n)
 ENDIF

 UnrollMod2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (n / 2 + 1, n)) :
 mod (2 * (i - n/2) + n / 2 - 3, n) =

 IF ((2 * (i - n/2) + n / 2 - 3) < n) THEN (2 * (i - n/2) + n / 2 - 3)
 ELSE ((2 * (i - n/2) + n / 2 - 3) - n)
 ENDIF

Another issue was examining whether any two queens were able to attack each other diagonally.
We used the slope equation (gradient of a line) for this purpose. A slope of ±1 between their
positions, or alternatively, abs (slope) = 1, would indicate that the two queens were able to attack
each other diagonally:

 DiagonalCheck (X1, Y1, X2, Y2 : posnat) : bool = ((X2 ≠ X1) AND abs (((Y2 - Y1) / (X2 - X1))) = 1)

The following lemma, proven in PVS, uses the fact that the n×n chessboard is symmetric to
allow the inputs of the DiagonalCheck function to be readily swapped. As stated earlier,
solutions that differ only by symmetry operations (rotations and reflections) of the board are
counted as one.

 DiagonalCheckSym : LEMMA FORALL (X1, Y1, X2, Y2 : posnat) :
 DiagonalCheck (X1, Y1, X2, Y2) = DiagonalCheck (X2, Y2, X1, Y1)

The following lemmas, which have also been proven in PVS, address various special cases in the
proof that the algorithm never produces two queens whose positions satisfy the DiagonalCheck
function:

 M1Diag1 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (1, n)) :
 (i ≠ j) IMPLIES NOT DiagonalCheck (i, 2 * i, j, 2 * j)

 M1Diag2 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (n / 2 + 1, n)) :
 (i ≠ j) IMPLIES NOT DiagonalCheck (i, 2 * (i - n / 2) - 1, j, 2 * (j - n / 2) - 1)

 M1Diag3_1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 2)},
 i : subrange (1, n / 2), j : subrange (n / 2 + 1, n)) :
 NOT DiagonalCheck (i, 2 * i, j, 2 * (j - n / 2) - 1)

6

 M1Diag3_2 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) :
 NOT DiagonalCheck (i, 2 * i, ((n - 1) / 2 + i), 2 * i - 1)

 M1Diag3_3 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) ≠ 2)},
 i : subrange (1, (n - 1) / 2), j : subrange ((n + 1) / 2, n - 1)) :

 NOT DiagonalCheck (i, 2 * i, j, 2 * (j - (n - 1) / 2) - 1)

 M1Diag3_4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i, j : subrange ((n + 1) / 2, n - 1)) :
 (i ≠ j) IMPLIES NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, j, 2 * (j - (n - 1) / 2) - 1)

 M1Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) :
 NOT DiagonalCheck (i, 2 * i, n, n)

 M1Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) :
 NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, n, n)

 M2Diag1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :
 (i ≠ j) IMPLIES NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), j, 1 + (mod (2 * j + n / 2 - 3, n)))

 M2Diag2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :
 (i ≠ j) IMPLIES NOT DiagonalCheck (n + 1 - i, n - (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n)))

 M2Diag3 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :
 NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n)))

 M2Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) ≠ 0)}, i : subrange (1, (n - 1) / 2)) :
 NOT DiagonalCheck (i, 1 + (mod (2 * i + (n - 1) / 2 - 3, (n - 1))), n, n)

 M2Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) :
 NOT DiagonalCheck (i, (n - 1) - (mod (2 * (n - i) + (n - 1) / 2 - 3, (n - 1))), n, n)

The following predicate examines whether a particular solution, i.e., an element ct of
ChessType(n), is a valid solution to the n-Queens problem:

 QueensSolution (n : posnat, ct : ChessType (n)) : bool =
 FORALL (i, j : subrange (1, n)) :

 (i ≠ j IMPLIES ct (i) ≠ ct (j)) AND
 (i ≠ j IMPLIES NOT DiagonalCheck (i, ct (i), j, ct (j)))

The main result that has been formally proven in PVS is the following theorem, which states that
the solution returned by FinalChess satisfies the QueensSolution condition:

 QueensFinal : THEOREM FORALL (n : {t: posnat | (t > 3)}) :
 QueensSolution (n, FinalChess (n))

Others in the formal methods community [Fil 2012] have used model checking to test that a
particular solution to the n-Queens problem is valid, but the limitations of model checking
exclude a proof in the general case, which states that the particular function returns a valid
solution for every possible number n. A model checker can only test this for values of n less than
some threshold. However, the above main theorem, QueensFinal, states that the algorithm
FinalChess returns a correct solution to the n-Queens problem for every possible natural number
n that is at least 4. As an example, the following result has also been proven in PVS by simply
testing all possible inputs and in particular without using any of the lemmas stated above. It
states the same result as the result above, except in the case where n is 8, but the proof is trivial
since n is a specific value:

 EightQueens : THEOREM FORALL (n : {t : posnat | (t > 3)}, Chess : ChessType (n)) : QueensSolution (8, FinalChess (8))

7

4. Summary and Conclusion

We introduced the n-Queens problem and discussed backtracking, a well-known exhaustive
search method that systematically examines all possible solutions for a queen at a particular
position. We discussed the merits of model checking and theorem proving in tacking this
problem. We presented our reasons for the particular algorithm we chose as a pedagogical
example for formal proof as not employing recursion and being computationally less intensive
than the backtracking method.

As noted thus far, theorem proving has some advantages over model checking when verifying an
algorithm that has an infinite number of possible input values, like the n-Queens problem. Model
checkers can efficiently test a large input state space, but they are limited when it comes to
proving a result for every possible input out of an infinite number of choices. Results such as
these typically require a mathematical proof, along with the insight of a human to navigate the
proof, which is precisely what a theorem prover like PVS makes possible. Thus, the n-Queens
problem highlights a difference between model checking and theorem proving, and especially
the advantages of theorem proving when the system itself can have an infinite number of input
values. As noted in the introduction, the n-Queens problem therefore provides a simple example
that highlights the sufficiency of a formal proof and how testing and model-checking alone
cannot give absolute guarantees of correctness/safety, while this is tractable for a theorem prover
like PVS. Another key property that was proven in PVS is the completeness of the given
algorithm, namely that unlike backtracking, this algorithm always returns a solution, which is
also correct.

Acknowledgement

The author would like to thank Anthony J. Narkawicz, formerly a NASA employee, for his
helpful comments and suggestions.

References

[Bal 1960] W. W. Rouse Ball: “The Eight Queens Problem”, in Mathematical Recreations

and Essays, Macmillan, New York, pp. 165–171, 1960.
[Ber 1991] Bernhardsson, B.: Explicit Solutions to the N-Queens Problem for all N, SIGART

Bulletin, 2, 2, pg 7, April 1991.
[Dah 1972] O.J. Dahl, E. W. Dijkstra, C. A. R. Hoare: “Structured Programming”, Academic

Press, London, 1972 ISBN 0-12-200550-3 see pp. 72–82 for Dijkstra's solution of
the 8 Queens problem.

[Fil 2012] Filliatre, J.C.: Verifying Two Lines of C with Why3: An Exercise in Program
Verification, Lecture Notes in Computer Science Volume 7152, pp 83-97, 2012.

[Kea 2000] Kearse, M.D.; Gibbons, P.B.: Computational Methods and New Results for
Chessboard Problems, CDMTCS Research Report Series, May 2000.

[Hof 1969] Hoffman, E.J.; Loessi, J.C.; Moore, R.C.: Constructions for the Solution of the m
Queens Problem, Mathematics Magazine, Vol. 42, No.2, pp 66-72, March 1969.

8

[Mal 2006] Malekpour, M.R.; Siminiceanu, R.: Comments on the ‘Byzantine Self-Stabilizing
Pulse Synchronization’ Protocol: Counterexamples, NASA/TM-2006-213951,
February 2006.

[Mal 2012] Malekpour, M.R.: Model Checking A Self-Stabilizing Synchronization Protocol
For Arbitrary Digraphs, 31st Digital Avionics Systems Conference, October
2012.

[Sha 1999] Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS System
Guide, PVS Language Reference, PVS Prover Guide, PVS Prelude Library,
Abstract Datatypes in PVS, and Theory Interpretations in PVS, Computer
Science Laboratory, SRI International, Menlo Park, CA (1999)

[Owr 1992] Owre, S., Rushby, J., and Shankar, N.: A Prototype Verification System, in
Deepak Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag
(1992)

[Spr 1899] Sprague, T.B.: On the question of the eight queens problem, proceedings of the
Edinburgh Mathematical Society 17, pp 43-68, 1899.

[Owr 2008] Owre, S.; Shankar, N: A Brief Overview of PVS, Theorem Proving in Higher
Order Logics (TPHOLS) 2008, in Lecture Notes in Computer Science (LNCS),
Volume 5170, pp 22-27, August 2008.

9

Appendix – PVS Specification

% File Name: Queens.pvs
% Author: Mahyar R. Malekpour
% NASA Langley Research Center
% Hampton, VA 23681-2199
%
%..
Queens : THEORY
BEGIN

 IMPORTING ints@primes, ints@mod_lems

%..
% The data structure.
%
 ChessType (n : posnat) : TYPE = ARRAY [subrange (1, n) -> {x : posnat | x <= n}]

%..
% Generic lemmas.
%
 XPlusOne_grt_X : LEMMA FORALL (X, Y : int) :
 NOT ((((X + 1) / 2) > Y) AND (Y > ((X) / 2)))

 XPlusOne_grt_X_Even : LEMMA FORALL (X, Y : int) :
 even? (X) IMPLIES NOT (((X / 2 + 1) > Y) AND (Y > ((X) / 2)))

 XPlusOne_grt_XMinusOne : LEMMA FORALL (X, Y : int) :
 odd? (X) IMPLIES NOT ((((X + 1) / 2) > Y) AND (Y > ((X - 1) / 2)))

 mod_minus_eq_0_divides : LEMMA FORALL (x, y : nat, n : {t : nat | t > 0}) : mod (x, n) = mod (y, n) IMPLIES
divides (n, x - y)

 mod_eq_mod1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n /
2)) :
 (i /= j) IMPLIES (mod (2 * i + n / 2 - 3, n)) /= (mod (2 * j + n / 2 - 3, n))

 UnrollMod1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (1, n / 2)) :
 mod (2 * i + n / 2 - 3, n) =
 IF ((2 * i + n / 2 - 3) < n) THEN (2 * i + n / 2 - 3)
 ELSE ((2 * i + n / 2 - 3) - n)
 ENDIF

 UnrollMod2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (n / 2 + 1, n)) :
 mod (2 * (i - n/2) + n / 2 - 3, n) =
 IF ((2 * (i - n/2) + n / 2 - 3) < n) THEN (2 * (i - n/2) + n / 2 - 3)
 ELSE ((2 * (i - n/2) + n / 2 - 3) - n)
 ENDIF

 DiagonalCheck (X1, Y1, X2, Y2 : posnat) : bool = ((X2 /= X1) AND abs (((Y2 - Y1) / (X2 - X1))) = 1)

 DiagonalCheckSym : LEMMA FORALL (X1, Y1, X2, Y2 : posnat) :
 DiagonalCheck (X1, Y1, X2, Y2) = DiagonalCheck (X2, Y2, X1, Y1)

10

%..
% Intermediate level lemmas used to checking cases 1, 2, and 3 of the algorithm, separately, as they
% pertain to the "chess" data structure.
%
 ChessMethod1 (n : {t : posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 2)}) : ChessType (n) =

 LAMBDA (i : subrange (1, n)) :
 IF (i <= n / 2) THEN (2 * i)
 ELSE (2 * (i - n / 2) - 1)
 ENDIF

 ChessMethod2 (n : {t : posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}) : ChessType (n) =
 LAMBDA (i : subrange (1, n)) :

 IF (i <= n / 2) THEN (1 + (mod (2 * i + n / 2 - 3, n)))
 ELSE (n - mod (2 * (n + 1 - i) + n / 2 - 3, n))
 ENDIF

 FinalChess (n : posnat | n > 3) : ChessType (n) =
 IF even? (n) AND (mod (n, 6) /= 2) THEN ChessMethod1 (n)
 ELSIF even? (n) THEN ChessMethod2 (n)
 ELSIF (mod (n - 1, 6) /= 2) THEN
 (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod1 (n - 1)(j) ENDIF)
 ELSE (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod2 (n - 1)(j) ENDIF)
 ENDIF

%..
% Lemmas for checking conflict along a row/col/diag. Note, these lemmas are independent of the
% "chess" data structure.
%
% Lemmas for case 1 and 3 of the algorithm.
%
 M1Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i, j : subrange (1, n)) :

 (i /= j) IMPLIES (2 * i) /= (2 * j - 1)

 M1Diag1 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (1, n)) :
 (i /= j) IMPLIES NOT DiagonalCheck (i, 2 * i, j, 2 * j)

 M1Diag2 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (n / 2 + 1, n)) :
 (i /= j) IMPLIES NOT DiagonalCheck (i, 2 * (i - n / 2) - 1, j, 2 * (j - n / 2) - 1)

 M1Diag3_1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 2)}, i : subrange (1, n / 2), j :
subrange (n / 2 + 1, n)) :

 NOT DiagonalCheck (i, 2 * i, j, 2 * (j - n / 2) - 1)

 M1Diag3_2 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) :
 NOT DiagonalCheck (i, 2 * i, ((n - 1) / 2 + i), 2 * i - 1)

 M1Diag3_3 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) /= 2)}, i : subrange (1, (n - 1)
/ 2), j : subrange ((n + 1) / 2, n - 1)) :

 NOT DiagonalCheck (i, 2 * i, j, 2 * (j - (n - 1) / 2) - 1)

 M1Diag3_4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i, j : subrange ((n + 1) / 2, n - 1)) :
 (i /= j) IMPLIES NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, j, 2 * (j - (n - 1) / 2) - 1)

 M1Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) :
 NOT DiagonalCheck (i, 2 * i, n, n)

 M1Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) :
 NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, n, n)

11

%
% Lemmas for case 2 and 3 of the algorithm.
%

 M2Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) :
 (i /= j) IMPLIES (1 + (mod (2 * i + n / 2 - 3, n))) /= (1 + (mod (2 * j + n / 2 - 3, n)))

 M2Perm2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) :
 (1 + (mod (2 * i + n / 2 - 3, n))) /= (n - (mod (2 * j + n / 2 - 3, n)))

 M2Diag1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) :
 (i /= j) IMPLIES NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), j, 1 + (mod (2 * j + n / 2 - 3, n)))

 M2Diag2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) :
 (i /= j) IMPLIES NOT DiagonalCheck (n + 1 - i, n - (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n)))

 M2Diag3 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) :
 NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n)))

 M2Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) /= 0)}, i : subrange (1, (n - 1) /
2)) :

 NOT DiagonalCheck (i, 1 + (mod (2 * i + (n - 1) / 2 - 3, (n - 1))), n, n)

 M2Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) :
 NOT DiagonalCheck (i, (n - 1) - (mod (2 * (n - i) + (n - 1) / 2 - 3, (n - 1))), n, n)

%..
% The main properties.
%
 QueensSolution (n : posnat, ct : ChessType (n)) : bool =

 FORALL (i, j : subrange (1, n)) :
 (i /= j IMPLIES ct (i) /= ct (j)) AND
 (i /= j IMPLIES NOT DiagonalCheck (i, ct (i), j, ct (j)))

 QueensFinal : THEOREM FORALL (n : {t: posnat | (t > 3)}) :
 QueensSolution (n, FinalChess (n))

 EightQueens : THEOREM FORALL (n : {t : posnat | (t > 3)}, Chess : ChessType (n)) : QueensSolution (8,
FinalChess (8))

%..

END Queens

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2020-220588

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-21067

1. REPORT DATE (DD-MM-YYYY)
1-04-2020 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

4. TITLE AND SUBTITLE

Formal Verification of a Solution to the n-Queens Problem

PAGES

NASA

340428.02.20.07.01

Unclassified-
Subject Category 62
Availability: NASA STI Program (757) 864-9658

14. ABSTRACT

This report describes a formal verification of a concise algorithm that computes a solution to the n-Queens problem for all natural
numbers n, such that n > 3. The formal proof of the algorithm is completed in the Prototype Verification System (PVS) theorem
prover. This verification effort serves two purposes. First, it is presented as a pedagogical example for learning a theorem prover, such
as PVS, and second, as a candidate benchmark for comparing other formal methods tools to PVS.

15. SUBJECT TERMS

Formal Proof; PVS; Verification; n-Queens

6. AUTHOR(S)

Malekpour, Mahyar R..

18

