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Abstract 

This report describes a formal verification of a concise algorithm that computes a solution to the 
n-Queens problem for all natural numbers n, such that n > 3. The formal proof of the algorithm is
completed in the Prototype Verification System (PVS) theorem prover. This report illustrates
that theorem provers are more capable than model checkers when verifying an algorithm with
potentially infinitely many input values using a concise algorithm for a general problem that
produces a solution. The particular algorithm used was chosen as a pedagogical example for
formal proof that does not employ recursion and is computationally less intensive than the
backtracking method.

Keywords: Model Checking, Theorem Proving, PVS, Verification, n-Queens, Formal Proof 
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1. Introduction

In this report, we introduce formal verification methods and highlight merits of various 
verification techniques, namely model checking and theorem proving, over testing. We also 
present a candidate algorithm, its formal specification, and analysis of its proof using a theorem 
prover. 

The eight queens problem is a classic problem using a chessboard. The goal is to place eight 
queens on an 8×8 chessboard so that no one queen can take another. For those familiar with the 
game of chess, the eight queens problem is as follows: arrange eight queens on a chess board so 
that none of them is in check of any other. For those unfamiliar with the game of chess, the 
problem may be stated as follows: find the different ways to place eight pieces (queens) on the 
chessboard so that no two of them share the same row, column, or diagonal. The eight queens 
problem is an example of the more general n-Queens problem of placing n queens on an n×n 
chessboard. Solutions exist for the n-Queens problem for all natural numbers n > 3, and there are 
no solutions for n ≤ 3 [Spr 1899], [Bal 1960], [Hof 1969]. 

Although mathematician C.F. Gauss is credited with this problem, the eight queens problem was 
originally published by German chess composer Max Bezzel in 1848. Many mathematicians 
have since worked on this problem. The first solution was published by Franz Nauck in 1850. He 
also extended the eight queens problem to n-Queens [Bal 1960]. 

Figure 1. A solution to the eight queens problem. 

For the eight queens there are 92 distinct solutions, one of which is shown in Figure 1. However, 
if solutions that differ only by symmetry operations (rotations and reflections) of the board are 
counted as one, the puzzle has 12 unique (or fundamental) solutions. 

In [Dah 1972] Dahl et al. mention that Edsger Dijkstra used this problem to illustrate the power 
of what he called structured programming and published a highly detailed description of a depth-
first backtracking algorithm. Backtracking is a well-known exhaustive search method that 
systematically examines all possible solutions for a queen at a particular position. If a solution is 
not possible, then the algorithm backtracks to consider other possible positions. The technique 
dates back at least 100 years and has since been successfully applied to a variety of problems, 
e.g., Artificial Intelligence (AI) and Sudoku. Some of these algorithms are used to produce a
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solution for the n-Queens problem for a given n while others are aimed at producing all solutions 
for a given n. 

There are a number of solutions to the n-Queens problem. It appears that the most commonly 
cited solutions that are formally verified are essentially variations of the backtracking algorithm 
[Fil 2012], [Kea 2000]. 

There are also explicit algorithms for placing n queens that require no combinatorial search 
whatsoever [Ber 1991], [Hof 1969]. The particular algorithm we chose to verify uses algebraic 
operations [Ber 1991]. It does not employ recursion and does not require an exhaustive search. 
Thus, this algorithm is computationally less intensive than the backtracking method. We describe 
the algorithm in the following section. 

The purpose of this report is not to present a new algorithm for finding a solution for a given n. 
Nor is the purpose to count all possible solutions for a given n. Rather, the purpose is to formally 
verify an existing algorithm that guarantees a solution for any given n; thus, highlighting the 
capability of theorem provers in handling arbitrary values. Hoffman et al. [Hof 1969] provided a 
paper-and-pencil proof of their proposed solution to this problem in their report. However, 
verification of correctness of an algorithm by the composition of a paper-and-pencil proof and/or 
manual examination of the proof is error prone [Mal 2006]. Although we believed the given 
proof was correct, to our knowledge, its correctness had not been formally verified. 

There are two general formal methods approaches for the verification of the correctness of an 
algorithm: theorem proving and model checking. Theorem proving requires a deductive proof 
of the protocol. Model checking is used for its ease, feasibility, and quick examination of the 
problem before a more rigorous attempt at proof is undertaken by a theorem prover. Model 
checking is based on specific scenarios and is generally limited to a subset of the problem space, 
which helps to highlight a key difference between theorem proving and model checking. 
Namely, model checking struggles to verify algorithms that can have a possibly infinite number 
of inputs. That is, for some systems, testing or model checking alone cannot possibly give a 100 
percent guarantee of correctness. This limitation is not present with interactive theorem provers 
like Prototype Verification System (PVS) [Owr 2008], [Sha 1999], [Owr 1992], as is illustrated 
by the solution to the n-Queens problem. PVS allows a user to input a proof of a mathematical 
statement, which it checks for logical correctness. Thus, the verification of this algorithm in PVS 
illustrates that, in more complicated problems when the correctness property is essential, such as 
a safety-related condition, there is an advantage to using an interactive theorem prover rather 
than testing or model checking. If the system itself has an infinite number of input values, it is 
typically impossible to guarantee that, for a given algorithm, a particular property, and for safety 
critical systems, a safety property, holds by using testing or model checking, but it is possible 
when using an interactive theorem prover. 

The number of fundamental solutions for n increases exponentially, for instance, for n = 8 and 
27, the number of fundamental solutions are 12 and 29,363,495,934,315,694 (or > 29x1015), 
respectively. Thus, as n increases, when using a model checker, the required memory, computing 
power, and time it takes to verify all solutions becomes impractical. Verification via a theorem 
prover like PVS, however, is independent of the actual value of n. 



3 

A formal verification of a two-line C program that computes the number of solutions to the n-
Queens problem using a variety of tools, e.g., Why3, Alt-Ergo, CVC3, and Coq, was reported in 
[Fil 2012]. The author emphasized that even the shortest program can be a challenge for formal 
verification. In [Fil 2012] two kinds of integer overflows are reported, depending on the use of 
integers as bit vectors or as counters. The count of solutions for n ≤ 19 would overflow with 32-
bit integers. Similarly, the count of solutions for n ≤ 28 would overflow with 64-bit integers. 
These limitations are absent in PVS, which uses unbounded integers. 

This report is organized as follows. Description of the algorithm for finding the solution to the n-
Queens problem is presented in Section 2. Section 3 is a description of the verification of the 
algorithm in PVS. Section 4 is a summary of the work and concludes the report. The PVS 
specification of the solution is presented in the Appendix. 

2. The Algorithm

The n-Queens algorithm presented here is attributed to Bo Bernhardsson [Ber 1991] who, in turn, 
based his algorithm on an earlier work by Hoffman et al. [Hof 1969]. The solution reported in 
[Hof 1969] is given by the three constructions listed below. In 1991, Bernhardsson brought 
attention to the solution provided by Hoffman et al. to point out that there is a much faster way to 
find a solution to the n-Queens problem [Ber 1991] than a polynomial time algorithm. This 
explicit solution in fact requires very little computer time and thus makes the n-Queens problem 
a bad benchmark problem for the purpose of comparing computational efficiency. It does 
however provide a great example highlighting the capability of theorem provers like PVS 
compared to model checkers in handling algorithms with potentially infinitely many input 
values. The following solutions can be found in [Ber 1991]. This algorithm is not a backtracking 
algorithm but is an explicit one. 

Let (i, j) be the square in column i and row j on the n×n chessboard, k an integer and for  
i = 1, 2, ..., floor(n/2). Then, 

1. If n is even and n ≠ 6k + 2, then
place queens at (i, 2i) and (n/2 + i, 2i - 1).

2. If n is even and n ≠ 6k, then
place queens at (i, 1 + (2i + n/2 - 3 (mod n))) and (n + 1 - i, n - (2i + n/2 - 3 (mod n))).

3. If n is odd, then
use one of the patterns above for (n - 1) and add a queen at (n, n).

Note that n ≠ 6k + 2 means that n mod 6 ≠ 2, and similarly, n ≠ 6k means that n mod 6 ≠ 0. This 
algorithm produces a solution for any natural number n > 3, and a paper-and-pencil proof of it is 
provided in [Hof 1969]. We would like to emphasize that this algorithm does not produce all 
possible solutions or a count of all possible solutions for a given n. 
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The above algorithm is translated into PVS and named FinalChess: 
 FinalChess (n : posnat | n > 3) : ChessType (n) = 
 IF even? (n) AND (mod (n, 6) /= 2) THEN ChessMethod1 (n) 
 ELSIF even? (n) THEN ChessMethod2 (n) 
 ELSIF (mod (n - 1, 6) /= 2) THEN  
    (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod1 (n - 1)(j) ENDIF) 
 ELSE (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod2 (n - 1)(j) ENDIF) 
 ENDIF 

In the above description, together, functions ChessMethod1() and ChessMethod2() address steps 
1 through 3 of the solution. 

The correctness of the above algorithm, i.e., verification that it produces a solution to the n-
Queens problems for all n > 3, is the main claim and is captured by the following theorem: 
 QueensFinal : THEOREM FORALL (n : {t: posnat | (t > 3)}) :  

  QueensSolution (n, FinalChess (n)) 

3. Verification

In this section, we present our formal verification and proof of the n-Queens algorithm described 
in Section 2 in PVS. We present our proof in terms of an object, chess, which is an array of size 
n representing an n×n chessboard. Each element of the array is a positive natural number ranging 
from 1 to n. The chess object is filled with the solution produced by the algorithm and each 
element of the chess object contains the column assigned to the queen for the corresponding row. 
The PVS specification of the algorithm is made available in the appendix. 

The algorithm described in Section 2 is elegant and deceptively simple. Although readily 
described in three lines, it imposed a number of unforeseen challenges in the formal 
proof/verification process. This phenomenon has been acknowledged by the practitioners of 
various mechanical verifiers [Fil 2012], [Mal 2012]. 

 ChessType (n : posnat) : TYPE = ARRAY [subrange (1, n)  {x : posnat | x ≤ n}] 

The algorithm is described by three cases. The first two cases deal with even n, which, in the 
description of the proof process, we refer to as methods 1 and 2. Each of these cases in turn is 
divided into two distinctive regions: i = 1, 2, ..., floor(n/2) and j = floor(n/2), ..., n. 

To prove that an algorithm produces a correct solution to the n-Queens problem, we must prove 
that no two queens are on the same row, column, or diagonal, and thus cannot attack each other. 
The following lemmas help to examine whether any two queens are on the same row or column 
of the chessboard: 

 M1Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i, j : subrange (1, n)) :  
  (i ≠ j) IMPLIES (2 * i) ≠ (2 * j - 1) 

 M2Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :  
  (i ≠ j) IMPLIES (1 + (mod (2 * i + n / 2 - 3, n))) ≠ (1 + (mod (2 * j + n / 2 - 3, n))) 

 M2Perm2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :  
  (1 + (mod (2 * i + n / 2 - 3, n))) ≠ (n - (mod (2 * j + n / 2 - 3, n))) 
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The algorithm is easy to follow and simple to implement. It is well structured and treats even and 
odd numbers separately, with odd numbers as a special case. However, mechanical/formal 
verification of this algorithm has proven to be very difficult. One of the main challenges in the 
verification process was dealing with the mod (modulo) operator. Since this operation was an 
essential part of the algorithm and appeared many times in the proof of various lemmas, we 
chose to unroll it into a concrete value, splitting the proof into multiple cases which had to be 
handled separately. The following two lemmas unroll mod for the two distinct regions that are 
associated with even values of n. It may be useful for others who want to formalize a solution to 
the n-Queens problem to realize that having the following concrete values as the output of the 
modulo function makes it easier to work with than the modulo function itself. 

 UnrollMod1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (1, n / 2)) :  
  mod (2 * i + n / 2 - 3, n) = 

 IF ((2 * i + n / 2 - 3) < n) THEN (2 * i + n / 2 - 3) 
 ELSE ((2 * i + n / 2 - 3) - n) 
 ENDIF 

 UnrollMod2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (n / 2 + 1, n)) :  
  mod (2 * (i - n/2) + n / 2 - 3, n) =  

 IF ((2 * (i - n/2) + n / 2 - 3) < n) THEN (2 * (i - n/2) + n / 2 - 3) 
 ELSE ((2 * (i - n/2) + n / 2 - 3) - n) 
 ENDIF 

Another issue was examining whether any two queens were able to attack each other diagonally. 
We used the slope equation (gradient of a line) for this purpose. A slope of ±1 between their 
positions, or alternatively, abs (slope) = 1, would indicate that the two queens were able to attack 
each other diagonally: 

 DiagonalCheck (X1, Y1, X2, Y2 : posnat) : bool = ((X2 ≠ X1) AND abs (((Y2 - Y1) / (X2 - X1))) = 1) 

The following lemma, proven in PVS, uses the fact that the n×n chessboard is symmetric to 
allow the inputs of the DiagonalCheck function to be readily swapped. As stated earlier, 
solutions that differ only by symmetry operations (rotations and reflections) of the board are 
counted as one. 

 DiagonalCheckSym : LEMMA FORALL (X1, Y1, X2, Y2 : posnat) : 
 DiagonalCheck (X1, Y1, X2, Y2) = DiagonalCheck (X2, Y2, X1, Y1) 

The following lemmas, which have also been proven in PVS, address various special cases in the 
proof that the algorithm never produces two queens whose positions satisfy the DiagonalCheck 
function: 

 M1Diag1 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (1, n)) :  
  (i ≠ j) IMPLIES NOT DiagonalCheck (i, 2 * i, j, 2 * j) 

 M1Diag2 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (n / 2 + 1, n)) :  
  (i ≠ j) IMPLIES NOT DiagonalCheck (i, 2 * (i - n / 2) - 1, j, 2 * (j - n / 2) - 1) 

 M1Diag3_1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 2)}, 
  i : subrange (1, n / 2), j : subrange (n / 2 + 1, n)) :  
     NOT DiagonalCheck (i, 2 * i, j, 2 * (j - n / 2) - 1) 
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 M1Diag3_2 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) :  
  NOT DiagonalCheck (i, 2 * i, ((n - 1) / 2 + i), 2 * i - 1) 

 M1Diag3_3 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) ≠ 2)}, 
  i : subrange (1, (n - 1) / 2), j : subrange ((n + 1) / 2, n - 1)) : 

 NOT DiagonalCheck (i, 2 * i, j, 2 * (j - (n - 1) / 2) - 1) 

 M1Diag3_4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i, j : subrange ((n + 1) / 2, n - 1)) :  
  (i ≠ j) IMPLIES NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, j, 2 * (j - (n - 1) / 2) - 1) 

 M1Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) : 
  NOT DiagonalCheck (i, 2 * i, n, n) 

 M1Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) :  
  NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, n, n) 

 M2Diag1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :  
  (i ≠ j) IMPLIES NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), j, 1 + (mod (2 * j + n / 2 - 3, n))) 

 M2Diag2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :  
  (i ≠ j) IMPLIES NOT DiagonalCheck (n + 1 - i, n - (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n))) 

 M2Diag3 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) ≠ 0)}, i, j : subrange (1, n / 2)) :  
  NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n))) 

 M2Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) ≠ 0)}, i : subrange (1, (n - 1) / 2)) : 
  NOT DiagonalCheck (i, 1 + (mod (2 * i + (n - 1) / 2 - 3, (n - 1))), n, n) 

 M2Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) :  
  NOT DiagonalCheck (i, (n - 1) - (mod (2 * (n - i) + (n - 1) / 2 - 3, (n - 1))), n, n) 

The following predicate examines whether a particular solution, i.e., an element ct of 
ChessType(n), is a valid solution to the n-Queens problem: 

 QueensSolution (n : posnat, ct : ChessType (n)) : bool = 
  FORALL (i, j : subrange (1, n)) : 

 (i ≠ j IMPLIES ct (i) ≠ ct (j)) AND 
 (i ≠ j IMPLIES NOT DiagonalCheck (i, ct (i), j, ct (j))) 

The main result that has been formally proven in PVS is the following theorem, which states that 
the solution returned by FinalChess satisfies the QueensSolution condition: 

 QueensFinal : THEOREM FORALL (n : {t: posnat | (t > 3)}) :  
  QueensSolution (n, FinalChess (n)) 

Others in the formal methods community [Fil 2012] have used model checking to test that a 
particular solution to the n-Queens problem is valid, but the limitations of model checking 
exclude a proof in the general case, which states that the particular function returns a valid 
solution for every possible number n. A model checker can only test this for values of n less than 
some threshold. However, the above main theorem, QueensFinal, states that the algorithm 
FinalChess returns a correct solution to the n-Queens problem for every possible natural number 
n that is at least 4. As an example, the following result has also been proven in PVS by simply 
testing all possible inputs and in particular without using any of the lemmas stated above. It 
states the same result as the result above, except in the case where n is 8, but the proof is trivial 
since n is a specific value: 

 EightQueens : THEOREM FORALL (n : {t : posnat | (t > 3)}, Chess : ChessType (n)) : QueensSolution (8, FinalChess (8)) 
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4. Summary and Conclusion 
 
We introduced the n-Queens problem and discussed backtracking, a well-known exhaustive 
search method that systematically examines all possible solutions for a queen at a particular 
position. We discussed the merits of model checking and theorem proving in tacking this 
problem. We presented our reasons for the particular algorithm we chose as a pedagogical 
example for formal proof as not employing recursion and being computationally less intensive 
than the backtracking method. 
 
As noted thus far, theorem proving has some advantages over model checking when verifying an 
algorithm that has an infinite number of possible input values, like the n-Queens problem. Model 
checkers can efficiently test a large input state space, but they are limited when it comes to 
proving a result for every possible input out of an infinite number of choices. Results such as 
these typically require a mathematical proof, along with the insight of a human to navigate the 
proof, which is precisely what a theorem prover like PVS makes possible. Thus, the n-Queens 
problem highlights a difference between model checking and theorem proving, and especially 
the advantages of theorem proving when the system itself can have an infinite number of input 
values. As noted in the introduction, the n-Queens problem therefore provides a simple example 
that highlights the sufficiency of a formal proof and how testing and model-checking alone 
cannot give absolute guarantees of correctness/safety, while this is tractable for a theorem prover 
like PVS. Another key property that was proven in PVS is the completeness of the given 
algorithm, namely that unlike backtracking, this algorithm always returns a solution, which is 
also correct. 
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Appendix – PVS Specification 
 
%  File Name: Queens.pvs 
%  Author: Mahyar R. Malekpour 
%  NASA Langley Research Center 
%  Hampton, VA 23681-2199 
%   
%.................................................................................................... 
Queens : THEORY 
BEGIN 
 
   IMPORTING ints@primes, ints@mod_lems 
 
%.................................................................................................... 
%  The data structure. 
% 
   ChessType (n : posnat) : TYPE = ARRAY [subrange (1, n) -> {x : posnat | x <= n}] 
 
%.................................................................................................... 
%  Generic lemmas. 
% 
   XPlusOne_grt_X : LEMMA FORALL (X, Y : int) :  
      NOT ((((X + 1) / 2) > Y) AND (Y > ((X) / 2))) 
 
   XPlusOne_grt_X_Even : LEMMA FORALL (X, Y : int) :  
      even? (X) IMPLIES NOT (((X / 2 + 1) > Y) AND (Y > ((X) / 2))) 
 
   XPlusOne_grt_XMinusOne : LEMMA FORALL (X, Y : int) :  
      odd? (X) IMPLIES NOT ((((X + 1) / 2) > Y) AND (Y > ((X - 1) / 2))) 
 
   mod_minus_eq_0_divides : LEMMA FORALL (x, y : nat, n : {t : nat | t > 0}) : mod (x, n) = mod (y, n) IMPLIES 
divides (n, x - y) 
 
   mod_eq_mod1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 
2)) :  
      (i /= j) IMPLIES (mod (2 * i + n / 2 - 3, n)) /= (mod (2 * j + n / 2 - 3, n)) 
 
   UnrollMod1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (1, n / 2)) :  
      mod (2 * i + n / 2 - 3, n) =  
         IF ((2 * i + n / 2 - 3) < n) THEN (2 * i + n / 2 - 3) 
         ELSE ((2 * i + n / 2 - 3) - n) 
         ENDIF 
 
   UnrollMod2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i : subrange (n / 2 + 1, n)) :  
      mod (2 * (i - n/2) + n / 2 - 3, n) =  
         IF ((2 * (i - n/2) + n / 2 - 3) < n) THEN (2 * (i - n/2) + n / 2 - 3) 
         ELSE ((2 * (i - n/2) + n / 2 - 3) - n) 
         ENDIF 
 
   DiagonalCheck (X1, Y1, X2, Y2 : posnat) : bool =  ((X2 /= X1) AND abs (((Y2 - Y1) / (X2 - X1))) = 1) 
 
   DiagonalCheckSym : LEMMA FORALL (X1, Y1, X2, Y2 : posnat) : 
       DiagonalCheck (X1, Y1, X2, Y2) = DiagonalCheck (X2, Y2, X1, Y1) 
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%.................................................................................................... 
%  Intermediate level lemmas used to checking cases 1, 2, and 3 of the algorithm, separately, as they  
%  pertain to the "chess" data structure. 
% 
   ChessMethod1 (n : {t : posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 2)}) : ChessType (n) =  

  LAMBDA (i : subrange (1, n)) : 
  IF (i <= n / 2) THEN (2 * i) 
  ELSE (2 * (i - n / 2) - 1) 
  ENDIF 

   ChessMethod2 (n : {t : posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}) : ChessType (n) =  
  LAMBDA (i : subrange (1, n)) : 

  IF (i <= n / 2) THEN (1 + (mod (2 * i + n / 2 - 3, n))) 
  ELSE (n - mod (2 * (n + 1 - i) + n / 2 - 3, n)) 
  ENDIF 

   FinalChess (n : posnat | n > 3) : ChessType (n) = 
 IF even? (n) AND (mod (n, 6) /= 2) THEN ChessMethod1 (n) 
 ELSIF even? (n) THEN ChessMethod2 (n) 
 ELSIF (mod (n - 1, 6) /= 2) THEN  
    (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod1 (n - 1)(j) ENDIF) 
 ELSE (LAMBDA (j : subrange (1, n)) : IF (j = n) THEN n ELSE ChessMethod2 (n - 1)(j) ENDIF) 
 ENDIF 

%.................................................................................................... 
%  Lemmas for checking conflict along a row/col/diag. Note, these lemmas are independent of the 
%  "chess" data structure. 
% 
%  Lemmas for case 1 and 3 of the algorithm. 
% 
   M1Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3)}, i, j : subrange (1, n)) : 

  (i /= j) IMPLIES (2 * i) /= (2 * j - 1) 

   M1Diag1 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (1, n)) : 
  (i /= j) IMPLIES NOT DiagonalCheck (i, 2 * i, j, 2 * j) 

   M1Diag2 : LEMMA FORALL (n : {t: posnat | (t > 3)}, i, j : subrange (n / 2 + 1, n)) : 
  (i /= j) IMPLIES NOT DiagonalCheck (i, 2 * (i - n / 2) - 1, j, 2 * (j - n / 2) - 1) 

   M1Diag3_1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 2)}, i : subrange (1, n / 2), j : 
subrange (n / 2 + 1, n)) :  

  NOT DiagonalCheck (i, 2 * i, j, 2 * (j - n / 2) - 1) 

   M1Diag3_2 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) : 
  NOT DiagonalCheck (i, 2 * i, ((n - 1) / 2 + i), 2 * i - 1) 

   M1Diag3_3 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) /= 2)}, i : subrange (1, (n - 1) 
/ 2), j : subrange ((n + 1) / 2, n - 1)) :  

  NOT DiagonalCheck (i, 2 * i, j, 2 * (j - (n - 1) / 2) - 1) 

   M1Diag3_4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i, j : subrange ((n + 1) / 2, n - 1)) : 
  (i /= j) IMPLIES NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, j, 2 * (j - (n - 1) / 2) - 1) 

   M1Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange (1, (n - 1) / 2)) : 
  NOT DiagonalCheck (i, 2 * i, n, n) 

   M1Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) : 
  NOT DiagonalCheck (i, 2 * (i - (n - 1) / 2) - 1, n, n) 
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% 
%  Lemmas for case 2 and 3 of the algorithm. 
% 

   M2Perm1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) : 
  (i /= j) IMPLIES (1 + (mod (2 * i + n / 2 - 3, n))) /= (1 + (mod (2 * j + n / 2 - 3, n))) 

   M2Perm2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) : 
  (1 + (mod (2 * i + n / 2 - 3, n))) /= (n - (mod (2 * j + n / 2 - 3, n))) 

   M2Diag1 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) : 
  (i /= j) IMPLIES NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), j, 1 + (mod (2 * j + n / 2 - 3, n))) 

   M2Diag2 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) : 
  (i /= j) IMPLIES NOT DiagonalCheck (n + 1 - i, n - (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n))) 

   M2Diag3 : LEMMA FORALL (n : {t: posnat | even? (t) AND (t > 3) AND (mod (t, 6) /= 0)}, i, j : subrange (1, n / 2)) : 
  NOT DiagonalCheck (i, 1 + (mod (2 * i + n / 2 - 3, n)), n + 1 - j, n - (mod (2 * j + n / 2 - 3, n))) 

   M2Diag4 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3) AND (mod (t - 1, 6) /= 0)}, i : subrange (1, (n - 1) / 
2)) :  

  NOT DiagonalCheck (i, 1 + (mod (2 * i + (n - 1) / 2 - 3, (n - 1))), n, n) 

   M2Diag5 : LEMMA FORALL (n : {t: posnat | odd? (t) AND (t > 3)}, i : subrange ((n + 1) / 2, n - 1)) : 
  NOT DiagonalCheck (i, (n - 1) - (mod (2 * (n - i) + (n - 1) / 2 - 3, (n - 1))), n, n) 

%.................................................................................................... 
%  The main properties. 
% 
   QueensSolution (n : posnat, ct : ChessType (n)) : bool =  

  FORALL (i, j : subrange (1, n)) : 
  (i /= j IMPLIES ct (i) /= ct (j)) AND 
  (i /= j IMPLIES NOT DiagonalCheck (i, ct (i), j, ct (j))) 

   QueensFinal : THEOREM FORALL (n : {t: posnat | (t > 3)}) :  
  QueensSolution (n, FinalChess (n)) 

   EightQueens : THEOREM FORALL (n : {t : posnat | (t > 3)}, Chess : ChessType (n)) : QueensSolution (8, 
FinalChess (8)) 

%.................................................................................................... 

END Queens 
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