NASA/TM-2020-220587

Copilot 3

Ivan Perez
National Institute of Aerospace, Hampton, Virginia

Frank Dedden
Royal Netherlands Aerospace Center, Amsterdam, The Netherlands

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

-
April 2020

NASA STI Program...in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STT Report Series,
which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

¢ TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

¢ CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

e Access the NASA STI program home page
at http://www.sti.nasa.gov

e E-mail your question to
help@sti.nasa.gov

o Phone the NASA STT Information Desk at
757-864-9658

o Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM-2020-220587

Copilot 3

Ivan Perez
National Institute of Aerospace, Hampton, Virginia

Frank Dedden
Royal Netherlands Aerospace Center, Amsterdam, The Netherlands

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

-
April 2020

Acknowledgments

The authors wish to thank Kaveh Darafsheh, Lee Pike, Robin Morisset, Sebastian Niller, Nis
Wegmann, Jonathan Laurent, Matt Clark, Laura Titolo, Swee Balachandran, César Munoz, Paul
S. Miner, Chris Hathhorn, Eli Mendelson, Georges-Axel Jolayan, Macallan Cruff, Ryan Spring, and
Lauren Pick.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199
Fax: 757-864-6500

Abstract

Ultra-critical systems require high-level assurance, which cannot always be guar-
anteed in compile time. The use of runtime verification (RV) enables monitoring
these systems in runtime, to detect property violations early and limit their poten-
tial consequences. The introduction of monitors in ultra-critical systems poses a
challenge, as failures and delays in the RV subsystem could affect other subsystems
and threaten the mission as a whole. This paper presents Copilot 3, a runtime ver-
ification framework for real-time embedded systems. Copilot monitors are written
in a compositional, stream-based language with support for a variety of Tempo-
ral Logics (TL), which results in robust, high-level specifications that are easier to
understand than their traditional counterparts. The framework translates monitor
specifications into C code with static memory requirements, which can be compiled
to run on embedded hardware. This paper presents version 3 of the Copilot lan-
guage, demonstrates its suitability with a number of examples, and discusses its use
in larger applications. Additionally, it describes the framework’s architecture, its
implementation as a Domain Specific Language (DSL) embedded in Haskell, and
the progress of the project over the years.

Contents

1

2

Introduction
Background

The Copilot 3 Specification Language

3.1 Streams e
3.1.1 Constant Streamso
3.1.2 Lifting and Point-wise Function Application
3.1.3 Temporal Translations
3.1.4 External Streams

3.2 Structso

3.3 ATTAYS . . .

3.4 Monitors

Logics and Languages

4.1 Logical Operators. e

4.2 Temporal Logics o
4.2.1 Past-time Linear Temporal logic
4.2.2 Bounded Linear Temporal Logic
4.2.3 Metric Temporal Logic

Applications
5.1 Copilot and NASA’s Core Flight System

The Architecture of Copilot 3
6.1 Structure of the Copilot Project

6.2 Compiler Frontend 0L
6.3 Compiler Backend L.

Conclusion

Grammar
A.1 Non-terminal Symbols
A.2 Terminal Symbols L

Typing Rules

B.1 Dependently Typed Typing Rules.
B.2 Haskell Typing Rules,
B.3 Safe and Unsafe Casting

Denotational Semantics

© 00~~~

14
14
14
15
16
17

19
19

22
22
22
23

26

30
31
32

33
34
37
38

39

1 Introduction

Embedded systems are used in a wide range of applications, ranging from televi-
sions and cellphones, to automobiles, aircraft and ships. In all of these applications,
we want the system to function correctly, but those systems that are safety criti-
cal, where failure can result in injury or death of a human, warrant special atten-
tion [Knight, 2002]. To achieve the necessary level of reliability, both hardware and
software of safety-critical systems need to be of very high quality.

Formal verification techniques are one method for achieving the level of reli-
ability required in safety-critical systems. Generally, formal verification is based
on mathematically proving correctness properties of a model of the system under
study. Formal methods vary in the abstractions used to represent models, how
faithful those models can be to the systems they represent, what properties can be
captured and verified, how exhaustive proof can be, how efficiently proofs or counter
examples can be produced, and how automated this process can be, among many
other things.

Although there have been considerable advances in creating industrial-scale for-
mal methods, it is not yet practical to apply them to an entire system. Formal
verification is normally carried out on a model of the system rather than the soft-
ware itself, and so the properties verified may not hold if the model is inaccurate
or if other faults make the system behave unpredictably. Moreover, technological
advances are enabling increasingly autonomous systems employing machine learning
and similar methods that are not amenable to formal verification.

Runtime verification (RV) [Havelund and Goldberg, 2008, Goodloe and Pike,
2010, Bartocci et al., 2018] is a verification technique that has the potential to
enable the safe operation of safety-critical systems that are too complex to formally
verify or fully test. In RV, the system is monitored during execution, to detect and
respond to property violations that take place during the actual mission. RV detects
when properties are violated in runtime, so it is not a proof of correctness, but a
significant improvement over testing alone.

Correct implementation of these monitors and the RV subsystem is crucial for the
safe operation of the complete system and the success of the mission as a whole. The
introduction of errors in the RV subsystem could disable or affect other subsystems,
or lead to suboptimal deviations from the mission. In resource-constrained environ-
ments and time-critical systems, runtime monitors are commonly implemented in
C for performance and memory constraints. This results in low-level code that is
error prone, hard to understand and difficult to maintain.

In this paper we present Copilot 3, a runtime verification framework to write
high-level specifications. Copilot is implemented as a stream-based, deeply embed-
ded domain-specific language in Haskell. Streams are used to specify monitors,
which denote functions that detect when properties are violated. Once a monitor is
triggered, a user-defined function is called to take appropriate action. Our frame-
work provides a constrained set of operations to define and combine streams, which
guarantees that they are well-formed. The language also relies on dependent types,
to enable safe use of non-primitive data structures, like structs and arrays. Copilot
translates definitions into a subset of C99 with predictable memory requirements

and real-time guarantees. To run the monitor on an embedded system, the gener-
ated C99 code can be compiled to the target platform and integrated into larger
applications. Additional Copilot libraries extend the core language with higher-
level constructs, like clock-based period and phase, Boyer-Moore majority voting,
and temporal logic [Pnueli, 1977, Manna and Pnueli, 1992].

The contributions of this paper are as follows:

e We summarize the history of the Copilot project and discuss its progress and
evolution over the years.

e We introduce the Copilot 3 specification language, which simplifies prior ver-
sions of the language [Pike et al., 2010, Pike et al., 2013] and extends it with
notions of arrays and structs.

e We demonstrate how to specify runtime monitors using basic stream-level
functions as well as different temporal logics.

e We discuss how we are using Copilot in larger applications built with NASA’s
Core Flight System (cFS).

e We describe the structure of the project, the architecture of the compiler, and
its implementation as a domain-specific language in Haskell.

e We provide formal definitions of Copilot’s grammar, typing rules, and big-step
semantics.

Notation

Throughout the main chapters in this document, we generally use different fonts and
symbols, with the following meanings. We use typescript (e.g., release) to represent
a construct in the Copilot language, or a programming term in the host language
Haskell. We use Greek lowercase letters (e.g., ¢) to represent logical propositions.
Symbols (e.g., ¢) and uppercase letters in calligraphic font (e.g., i) denote logical
operators. Italics are used mainly to emphasize text. The text Example at the
beginning of a paragraph, and the symbol [] aligned to the right margin, indicate
the beginning and end of an example that illustrates the idea that precedes it.

2 Background

In September 2008, NASA awarded Galois, Inc. and the National Institute of
Aerospace a contract “Monitor Synthesis for Software Health Management”
(NNLO8AA19B, order NNLOSADI13T) to perform research in the area of runtime
verification applied to hard real-time distributed avionics. The first deliverable was
a comprehensive survey of the field of runtime verification [Goodloe and Pike, 2010],
which found that most existing RV frameworks did not accommodate the very spe-
cialized domain of avionics, did not meet key constraints required for hard real-time,
and/or required extensive instrumentation of the code being monitored.

Consequently, the PIs embarked on the development of a new RV framework,
guided by an additional constraint: monitors for hard real-time avionics should not
affect the system under observation in a way that changes the functionality of the
system, requires re-certification, interferes with timing, or exhausts size, weight, and
power (SWAP) reserves. To meet SWAP requirements, it was decided that mon-
itors should be constant-time and constant-space code. The two most significant
design decisions were: the RV framework that came to be called Copilot would
be implemented as a Haskell embedded domain specific language (EDSL), and the
specification language would be a stream-based data-flow language inspired by Lus-
tre [Caspi et al., 1987] and LOLA [D’Angelo et al., 2005].

Early versions of Copilot compiled specifications into the Atom EDSL that, in
turn, was used to generate monitors implemented in C. A beta release of Copilot and
some experiments were described in [Pike et al., 2010]. The project showed enough
promise to continue, and two more versions were released, maturing the specification
language and the interpreter, as well as using SBV! as the C code generator. Copilot
was demonstrated in numerous flight tests such as those described in [Pike et al.,
2013]. The architecture of the Copilot 2.0 framework is described in [Pike et al.,
2012] along with a description of how lightweight formal methods were applied to
the problem of monitor correctness. To address the challenge of ensuring that a
formal specification is correct, research was conducted integrating model checking
and SMT capabilities into the Copilot 2.0 framework [Jonathan Laurent and Pike,
2015, Goodloe, 2016].

In spite of this progress, using Copilot 2.0 could be very clumsy in practice
because, in embedded systems, many variables were stored as either C structs or C
arrays, and Copilot could not handle these types of data structures. For instance,
suppose we needed to monitor the position as provided by the avionics in terms of
GPS coordinates, and it is stored in a C struct that gets updated every second. To
monitor this information, we would have to write C code to unpack the structure
into separate variables and make each one available to Copilot. Such situations were
common and became an impediment to users. Given that neither Atom nor SBV
supported generating code with arrays and structs, it was decided to build a new
C code generator from scratch that could accommodate the needs of Copilot. This
necessitated a considerable rewrite of the whole Copilot framework.

In addition to these revisions, the ability to invoke automatic theorem proving

1SMT Based Verification in Haskell: https://hackage.haskell.org/package/sbv.

https://hackage.haskell.org/package/sbv

tools such as model checkers and SMT solvers to prove properties about the Copilot
specifications was removed. Although considered a useful feature of Copilot 2.0,
it was removed in newer versions because the implementation depended on sev-
eral Haskell open source packages that are no longer supported, and we lacked the
resources to do all the work ourselves.

Copilot continues to be a research effort, and there are no plans to go through
the FAA qualification process. Copilot is an open source development project with
standard BSD license, so we invite any interested party to contribute.

3 The Copilot 3 Specification Language

Copilot is a framework that comprises an RV specification language, and a tool that
compiles specifications into C code. Copilot specifications are defined by a series of
triggers, that is, properties that need to be monitored paired with functions that
need to be called when those properties become true. Properties themselves are
defined as Boolean-carrying streams, using a rich language of stream definitions that
includes primitives and combinators, and gives access to external streams defined in

C.

3.1 Streams

Streams are infinite successions of values, and constitute the central entity of Copi-
lot specifications. Streams can be defined using primitives, or be built from other
streams with a series of combinators. We provide a limited Application Program-
ming Interface (API) to ensure that, by construction, streams are well-formed and
can be compiled to efficient C code.

3.1.1 Constant Streams

The simplest Stream definition in Copilot is a constant stream of values, for which
we provide the primitive constant that takes an element and returns a stream
consisting of that element at every sample.

Example The stream true, which Copilot defines in its Prelude for convenience,
represents a constant stream carrying the Boolean value True and is defined as:

true = constant True

O

Because Copilot is a strongly typed domain-specific language, every expression
and stream has a unique type. Following the notation of the host language Haskell,
the type signature of every top-level definition is normally stated right before, pref-
aced by ::. For example, true, as defined above, is a stream of Boolean values,
which we denote with the type signature true :: Stream Bool.

The primitives and combinators that form the Copilot language are also functions
that return streams. For example, the primitive constant itself is a Haskell function
with type:

constant :: Typed a => a -> Stream a

The type signature of this primitive has two parts, separated by the symbol =>.
On the right-hand side, the expression a -> Stream a indicates that constant
is a function that takes an element of any type, which we call a, and returns a
Stream carrying elements of the same type a. On the left-hand side, the expression
Typed a is a type constraint and requires a to be an instance of the class Typed,
denoting types that Copilot knows how to represent in C. We will not cover how to
define custom types or instances in this document. Readers interested can consult

standard Haskell textbooks to understand classes and instances, and the Copilot
API to understand the type class Typed.

Including the type signatures explicitly is not always mandatory and it may
be convenient to leave them out, especially when building very large and com-
plex expressions. However, Copilot sometimes requires explicit type signatures for
expressions that are ambiguous, in order to understand how to generate the corre-
sponding C code. For example, the expression constant 1 is a valid expression of
type Stream Int32, but also one of type Stream Int64 (and several other types).
Without some type annotation, Copilot cannot know if it needs to use uint32_t or
uint64_t in C to store the data, and so it requires that we spell out the type of the
expression. To minimize the need for type annotations, Copilot provides a family
of constant stream-building functions for each primitive type. For example, we can
define the constant stream of 1’s using 64-bit integer numbers as:

ones :: Stream Int64
ones = constlI6d 1

In this case, the type signature is redundant: because we have used the primitive
constI64, the compiler knows we mean to build a stream of 64-bit integers.

3.1.2 Lifting and Point-wise Function Application

We provide definitions that extend the standard API of each type supported by
Copilot to act pointwise on streams. Copilot supports Boolean values (i.e., Bool),
signed and unsigned fixed-length integers (i.e., Word8, Word16, Word32, Word64,
Int8, Int16, Int32, Int64), floating point numbers (i.e., Float, Double), limited
structs, and limited arrays. The operators and combinators provided by Copilot
are limited to a subset that we can compile to C efficiently. Details on structs and
arrays are given in Sections 3.2 and 3.3 respectively.

Example The standard negation function not, operating on Booleans, would nor-
mally take one Boolean value and return another Boolean. Copilot defines not to
operate on streams of Booleans. For example, the stream false, which holds the
constant value False, could be defined by applying not to negate every value in the
true stream defined earlier:

false :: Stream Bool
false = not true

Streams can contain other values representable in C, like integers and doubles.
We overload literal numbers and mathematical operators to work on streams: literals
denote constant streams, and operators are applied pointwise. For example, we can
define the constant stream carrying the number 4 based on the definition of ones
from before, as:

fours :: Stream Int64
fours = ones + 3

In this definition, the symbol 3 denotes the constant stream of 3’s, and the symbol
+ denotes addition of streams carrying numbers, defined pointwise (e.g., the first

element of ones plus the first element of 3, the second element of ones plus the
second element of 3, and so on). O

3.1.3 Temporal Translations

Delaying a stream requires that we hold the stream’s actual value in memory for
future use. Unbounded delays (i.e., those in which the amount of elements to hold is
potentially unbounded) are known to lead to memory leaks [Courtney and Elliott,
2001]. To make the generated C code efficient and memory usage predictable, we
provide very limited ways of delaying streams: streams can be delayed by pre-
pending a fized number of samples, with the operator (++), with type:

(++) :: Typed a => [a] -> Stream a -> Stream a

Example We can use the append operator (++) to create a stream that is initially
False and later becomes True indefinitely:

falseThenTrue :: Stream Bool
falseThenTrue = [False] ++ true

Note that streams can be defined recursively. For example, we can define the
stream that alternates between the values True and False as:

alternatingStream :: Stream Bool
alternatingStream = [True] ++ not alternatingStream

Using recursion, like before, we can define a step counter (e.g., [1,2,3,...]) as
follows:

counter :: Stream Int32
counter = [1] ++ (counter + 1)

O

Copilot also provides the opposite temporal transformation, dropping elements
from a stream, with the function:

drop :: Typed a => Int -> Stream a -> Stream a

Example In a way similar to before, we can use drop to eliminate the first 5
elements from the stream counter, with the expression:

counterFromFive :: Stream Int32
counterFromFive = drop 5 counter

O]

Dropping elements introduces a potential issue if the elements are not available,
which may happen if they come from an external source (e.g., a sensor). This is
discussed in the following.

3.1.4 External Streams

To connect Copilot specifications to existing C applications, we provide the primitive
extern to define a stream based on the value of a global C variable, by indicating
its name and its type. Within Copilot, we have no way of guaranteeing that the
given variable exists, or that it has the expected type. However, from a specification
containing an external stream, Copilot generates a C header file that declares the
existence of an extern global variable with a specific type. The use of a variable
name that does not exist, or that has the wrong type, would give rise to either an
error or a warning when trying to compile and link the generated C code as part of
a larger application.

Example Commonly in Copilot specifications, there is a need to access data pro-
vided by an external sensor. For example, given a global variable pos_data, of a
type Position, holding the current position of a Unmanned Aerial Vehicle (UAV),
we can use it in Copilot specifications as:

posdata :: Stream Position
posdata = extern "pos_data" Nothing

The additional argument Nothing contains an optional list of Positions that can
be used during simulation, when actual data from the sensor is not available.

External streams are one example of a stream from which we cannot drop sam-
ples, since that would require being able to provide data that has not been produced
by the system yet. If we try to drop samples from a stream, for example, by us-
ing the expression drop 1 posdata anywhere in our specification, Copilot reports
a compile-time error:

Copilot error: Drop applied to non-append operation!

The error is not reported if we first append samples to the stream, for example,
with drop 1 ([pl, p2] ++ posdata) (where p1l and p2 are two valid and known
positions). If we drop more samples than we prepend, however, Copilot still reports
an error:

Copilot error: Drop index overflow!

Problems with non-causal definitions are common in temporal frameworks [Bahr
et al., 2015, Elliott and Hudak, 1997] and, in this way, Copilot makes some potential
errors in specifications detectable at compile time.

O

3.2 Structs

A key contribution of this paper and Copilot 3 is the introduction of support for
structs and arrays. Both are first-class citizens, i.e., they live at the same syntactical
level as regular values like integers and Booleans.

Copilot structs are compiled into C structs and made available to the monitor.
To be able to generate a correct struct definition in C, Copilot structs need to be

10

defined using specific Copilot types. We normally implement structs in Copilot as
records made of fields, each having a name and a type. We use the type Field s t
to represent each field, with s being the field name (a type-level literal string), and
t being the type of the field.

Example One of the properties we monitor in our systems is the temperature of
the UAV’s battery. The following defines a new Copilot type Battery with a field
temperature of type Int16,? which corresponds to a struct in C with a field temp
of type int16_t:

data Battery = Battery
{ temperature :: Field "temp" Int16 }

O]

We provide a limited API to operate on streams of structs or records. Currently,
Copilot supports projections, that is, accessing a field of a struct, with the function?:

#) :: (Typed a, Typed t)
=> Stream a -> (a -> Field s t) -> Stream t

The first argument denotes the stream carrying a struct of type a, and the second
denotes a field of the struct with name s and type t. Because structs are first class,
they are valid types to be used in streams, and so are their fields.

Example If we have a global C variable battery of the struct type generated
from the definition of Battery above, holding the state of the battery at each step,
we can access it from Copilot with the following definition:

batt :: Stream Battery
batt = extern "battery" Nothing

We can extract a field of a stream of structs, producing another stream in a
type-safe way:

tempPlusl :: Stream Int16
tempPlusl = batt # temperature + 1

3.3 Arrays

Copilot also includes support for arrays, with an advanced type that includes the
length as part of the type of the array. For example, a stream in which each element
is an array with 16 elements of type Int64 would have type Array 16 Int64. The
presence of the array’s length as a type-level natural serves two purposes: first, it

2For the sake of simplicity, we omit other fields in the definition of Battery.
3The signature of (#) includes additional constraints. We omit details out of brevity, but this
does not change the way that it is used.

11

allows the compiler to detect, at compile time, some incorrect accesses (i.e., access
out of bounds), and, second, it allows us to generate C without dynamic mem-
ory allocation, as all arrays have known, fixed lengths. The details of how this is
implemented are discussed in Section 6.

Similarly to structs, Copilot provides a limited API to work with Streams of
Arrays. To access specific elements in the array, we provide the operator*:

(.11 :: (KnownNat n, Typed t)
=> Stream (Array n t)
-> Stream Word32
-> Stream t

This operation allows us to access an element of an array, where the position of
that element is determined by a number in a stream.

Example We can augment Battery with the measurements of the voltages of
individual cells by including a new field:

data Battery = Battery
{ temperature :: Field "temp" Intl6
, voltages :: Field "volts" (Array 10 Wordié)
+

The field voltages is an array of length 10, whose elements have type Word16.

Copilot allows us to define streams that access specific elements of these arrays.
For example, we can take the voltages field from batt, extract its first element,
and add one to the result.

voltOPlusl :: Stream Wordl6
voltOPlusl = (batt # voltages .!! 0) + 1

Copilot is able to detect some incorrect accesses at compile time, if the index
within the stream is out of range and the Copilot expression denoting that index is
a constant stream. For example, if we had passed 11 as second argument of (.!!),
we would have seen a warning during compilation. Nevertheless, it is not generally
possible for all streams to detect incorrect accesses in compile time, since the value
of the stream containing the index may only be determined at runtime if they de-
pend on some external variable.

O]

3.4 Monitors

The purpose of Copilot is to monitor properties and to raise an alert when an
assertion is violated. The Copilot language defines monitors as sequences of triggers.
A trigger is defined as a stream of Booleans, a C function to be called when the
current sample is true, and the arguments to pass to that function:

4The signature of (.!!) imposes additional constraints on the array, which we omit, but the
arguments and the way they are used are as described.

12

trigger :: String -> Stream Bool -> [Arg] -> Spec

Spec is a type internal to Copilot and represents a specification. Specs are monadic
computations, so we can declare multiple triggers by listing them in sequence in do
notation.

Properties in triggers denote violations, not assertions. Therefore, triggers de-
note functions to call when samples are True, not False.

The function to call is given by the first argument as a String, and needs to be
implemented by the user. Referring to a function that does not exist would lead to a
linking error. If the header files generated by Copilot are included in other C files of
the application that uses Copilot, referring to a function with the wrong arguments
in a trigger would also lead to a compilation error.

Example The following specification declares two monitors. The first one executes
the C function large, passing as argument the current value of the stream counter,
when the voltage of the first cell of the battery, plus one unit, is greater than 8. The
second monitor calls the function too_large with no arguments when the same
voltage is greater than 10 (see Sec. 3.3):

monitor = do
trigger "large" (voltOPlusl > 8) [arg counter]
trigger "too_large" (voltOPlusl > 10) []

Copilot specifications can be simulated on a computer, or compiled into C code to
be used in the same or a different device. We refer readers to Section 2 (Interpreting
and Compiling) of the Copilot tutorial for up-to-date instructions on how to simulate
and compile Copilot specifications using different backends available.

O

13

4 Logics and Languages

Monitors and specifications can become overly complex as systems grow. To aid
understanding, Copilot supports the standard logic operators from propositional
logic, as well as temporal combinators based on temporal logics.

4.1 Logical Operators

As mentioned in Section 3, Copilot extends the standard APIs of the supported
types to apply pointwise on streams. In the case of Booleans, Copilot provides a
number of logical operators based on propositional logic. Apart from the constants
true and false, the following operators on Boolean streams are provided:

not :: Stream Bool -> Stream Bool

(&&) :: Stream Bool -> Stream Bool -> Stream Bool
(1) :: Stream Bool -> Stream Bool -> Stream Bool
xor :: Stream Bool -> Stream Bool -> Stream Bool
(==>) :: Stream Bool -> Stream Bool -> Stream Bool

In all cases, these operators apply the associated Boolean operation to the values
at each sample. For example, given two Boolean streams s1 and s2, the stream
s1 ==> s2is true at a time (i.e., sample) if s2 is true at that time, or if s1 is false.

While these logical operators can help simplify basic expressions, the complex-
ity of real-world applications demands higher-level languages. In the following we
explore temporal logics supported by Copilot, and introduce operators to refer to
past or future values of a stream.

4.2 Temporal Logics

Generally speaking, temporal logics extend other logics with a temporal dimension.
To describe relations between formulas at different times, temporal logic languages
introduce modal operators that abstract over time. For example, some languages
provide an operator [] (called always, also written G, after the word globally), and
a formula [] ¢ is true if and only if ¢ is true at all times, where the specific meaning
of the expression “at all times” depends on the logic.

Temporal logic languages generally vary in the logic they are based on, the
temporal operators they support and in their model of time (e.g., continuous vs
discrete, linear vs branching, future and/or past, etc.). These aspects impact what
formulas can be expressed, which ones are true or false, what information is needed
to evaluate them, and how efficiently we can do so.

Because time is an essential component of stream languages, like Copilot, tem-
poral logics constitute a suitable mechanism to express many of the re-occurring
patterns in monitor specifications. In the following we discuss some of the languages
supported by Copilot, and demonstrate their use with examples.

14

4.2.1 Past-time Linear Temporal logic

Past-time Linear Temporal Logic (ptLTL) is an extension of propositional logic in
which time is seen as linear, discrete, and bounded. While, in propositional logic,
every variable may take the value true or false, in ptLTL, every variable may take
the value true or false, at each point in the present or in the past.

Past-time linear temporal logic introduces temporal operators, letting us express
logical formulas based not only on certain propositions being true at the present,
but also on their validity in the past.

Copilot supports the temporal operators alwaysBeen, eventuallyPrev,
previous, and since, all operating on and returning Boolean streams:

alwaysBeen :: Stream Bool -> Stream Bool
eventuallyPrev :: Stream Bool -> Stream Bool
previous :: Stream Bool -> Stream Bool
since :: Stream Bool -> Stream Bool -> Stream Bool

The meaning of these operators is relatively simple. A stream alwaysBeen x is
true at a time if x has been true at all times, present and past (Fig. 1). The operator
eventuallyPrev works the opposite way, and eventuallyPrev x is true if x has
ever been true. The temporal operator previous refers to the immediately previous
sample, with previous x being true if x was true in the last sample. Finally, since
X y is true at a time if the stream x has been continuously true since the first sample
after y became true.

» 090000000
alwaysBeen p @@@@@...

1 2 3 4 5 6 7 8

Figure 1: Example of values of the formula alwaysBeen p for different values of p at
different times.

Example Borrowing the example in the prior section, imagine that we want to
detect if the first voltage of the battery was ever too high. We can express that in
Copilot with the following specification:

voltageWasTooHigh :: Stream Bool
voltageWasTooHigh = eventuallyPrev ((batt # voltages .!! 0) >= 10)

We can combine these temporal operators with the pointwise operators presented
earlier in this section, to capture, for example, that a safety system can only be
activated if a condition was violated before:

safetyResponseOK :: Stream Bool
safetyResponseOK = safetyEngaged ==> voltageWasTooHigh
where

15

safetyEngaged :: Stream Bool
safetyEngaged = extern "safety_system" Nothing

4.2.2 Bounded Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension of propositional logic in which time
is seen as linear, discrete, and unbounded. Analogously to ptLTL, in LTL, every
variable may take the value true or false, at each point in time, present or future.

LTL includes several operators that extend the logic with a temporal dimen-
sion and abstract over common temporal notions:® [(always), ¢ (eventually), O
(next), U (until) and R (release). The first four operators are the future-oriented
counterparts of the operators introduced for ptLTL. For example, the formula [] ¢
is true if ¢ is true at all times, present and future.

In LTL, it may not always be immediately possible to determine the validity of a
formula when performing runtime verification. For example, if a stream £ is false at
a time, then always f is definitely false at all times, present and future. However,
if a stream f is true at present, we cannot immediately determine the present value
of always f, because there is a chance that £ will become false at a future time.

Different forms of LTL adapt to this aspect differently. Some include a multi-
valued logic, in which the value of a temporal proposition is not just true or false,
but may also be “true so far” or “undecided”. In Copilot, we opt for implementing
Bounded LTL, a variant of LTL in which the amount of time into the future that
is observable is bounded in each application of a temporal operator. For example,
the expression always n f is true if £ is true at all times from now until n samples
from now. To be able to make a decision about the validity of a formula, our
implementation of Bounded LTL requires that we have enough samples available in
the stream (i.e., that we can drop samples from it). In particular, extern streams
used in Bounded LTL properties must have additional samples prepended at the
beginning with (++).

The corresponding Copilot operators for Bounded LTL are as follows:

next :: Stream Bool -> Stream Bool
eventually :: Integral a => a -> Stream Bool -> Stream Bool
always :: Integral a => a —> Stream Bool -> Stream Bool
until :: Integral a

=> a —-> Stream Bool -> Stream Bool —-> Stream Bool
release :: Integral a

=> a —-> Stream Bool -> Stream Bool -> Stream Bool

The constraint Integral a indicates that we can express the number of samples
into the future that we want to observe using any type that is an integral number.
All of these operations require the Boolean argument streams to have, at least, as
many samples as the first parameter indicates, except for next, which requires that
we can drop, at least, one sample.

SLTL has been extended with multiple operators. In the following, we present LTL with until
and next, which includes all the operators supported by Copilot.

16

Example Continuing with the same example, we may be interested in verifying
that the safety system is engaged in a timely fashion when a violation takes place.

We can capture part of that condition with the following Bounded LTL stream,
which states that the safety system is engaged, at the latest, 5 steps after the
violation is detected:

safetyResponseTimely :: Stream Bool
safetyResponseTimely = voltageWasTooHigh ==> eventually 5 safetyEngaged

Note that, for this to work, we would have to modify safetyEngaged to prepend
at least four additional samples to it.
O

This implementation of Bounded LTL sits on top of Copilot, making the combi-
nation of the two potentially more expressive than the original logic. In particular,
some properties are known not to be expressible in LTL, such as, for example, a
formula that is true at every other sample, but they can be expressed in Copilot
due to the existence of delays and recursion.

4.2.3 Metric Temporal Logic

Metric Temporal Logic (MTL) generalizes the notion introduced in Bounded LTL,
and requires that every application of a temporal operator be accompanied by a
range of time. For example, while in Bounded LTL, the formula [J, ¢ will be true
if ¢ is true at all times from now until n samples from now, in MTL, the formula
Cining] @ Will be true if ¢ is true at all times between n; and ny. Since we can always
make ni match the current or next time, we can easily define temporal operators
from Bounded LTL in MTL.

Our implementation of MTL includes both future-facing and past-facing oper-
ators, and adds two additional parameters to every temporal operator for more
versatility: first, a clock that indicates the current time, to facilitate re-sampling
streams at different rates, and second, the minimum distance between two adjacent
samples. For example, the signature of the MTL operator [] (always), analogous to
the one for Linear Temporal Logic, is as follows:

always :: (Typed a, Integral a) -- ’a’ %s the time and %s an integral
- number representable in C
=> a -— 7 Lower time bound
-> a -— 7 Upper time bound
—-> Stream a -— 7 Clock stream
-> a -= 7 Minimum time delta between samples

-> Stream Bool
-> Stream Bool

The first two arguments are times, and denote the bounds of the time period
that is being considered (n; and ng in the example above). The next two denote
the clock, which is a strictly positive signal carrying the current time, and a fixed
number denoting the minimum time delta between two successive time samples.

17

Finally, the last argument, a Boolean stream, is the stream to which the temporal
operator is actually being applied.

The types of other key MTL operators supported by Copilot are analogous and
listed below, where the constraint (Typed a, Integral a) applies in every case
but is omitted for brevity:

eventually a —> a —-> Stream a -> a —> Stream Bool -> Stream Bool

eventuallyPrev :: a -> a -> Stream a -> a —-> Stream Bool -> Stream Bool

alwaysBeen a —> a —-> Stream a -> a —> Stream Bool -> Stream Bool

until ::a > a —> Stream a -> a -> Stream Bool -> Stream Bool
-> Stream Bool

release ::a > a —> Stream a -> a -> Stream Bool -> Stream Bool
-> Stream Bool

since :: a —> a -> Stream a -> a -> Stream Bool -> Stream Bool

-> Stream Bool

Example A property that is commonly monitored in critical systems is whether
some alert or property violation has been on for too long. That would generally
indicate that the issue causing the alert may worsen, and/or that the systems that
should have addressed it may be malfunctioning.

For example, the following property becomes true when the voltage remains too
high for too many samples:

safetyResponseTimely’ :: Stream Bool
safetyResponseTimely’ = alwaysBeen 1 5 counter 1 voltageWasTooHigh

The first two arguments, 1 and 5, indicate the time bounds for the application of
the temporal operator (i.e., “between 5 samples ago and 1 sample ago”). The next
two arguments, counter and 1, are the stream that provides the current time, and
the minimum distance between two successive times.

O]

18

5 Applications

5.1 Copilot and NASA’s Core Flight System

We have integrated Copilot monitors into applications built using Core Flight Sys-
tem (cFS) [Wilmot, 2005], an architecture for rapid integration of flight applications
developed by the Flight Software Branch at NASA’s Goddard Space Flight Center.
In these applications, data and system updates from the flight computer of an air-
craft are made available via communication channels using the MavLink protocol.
Applications can be compiled to run on an embedded system (e.g., Arduino), or ex-
ecuted locally and visualized using a ground control system like MAVProxy (Fig. 2).

The integration of Copilot with cFS enables using Copilot as a Runtime Veri-
fication framework for existing applications. A Copilot cFS application subscribes
to the right messages (topics), obtains the updates, and makes them available to
monitors by copying the data to the global extern variables needed by the Copilot
streams. This process is currently manual, and Copilot does not provide an au-
tomatic mechanism to generate cF'S applications or copying data from all possible
kind of messages (topics). After copying the data, the cFS application calls Copi-
lot’s main step function, which runs the monitors, detects property violations, and
executes the trigger functions, if necessary. The same Copilot cF'S application glob-
ally declares those functions needed by the Copilot triggers, which, at each sampling
time, report property violations by writing messages to a log that can be observed
during simulation or execution.

Generally, using structs and arrays simplifies monitors. Without them, each
individual field would have to be made available as an individual stream, manually
unpacking each structure in C to access it in the monitor.

We are currently in the process of running these monitors directly on a UAV
in a controlled environment to evaluate their behavior in more realistic scenarios.
We are also developing more advanced temporal monitors to validate the behaviour
of ICAROUS (Independent Configurable Architecture for Reliable Operations of
Unmanned Systems) [Consiglio et al., 2016], a software architecture for Unmanned
Aerial Systems with a focus on safety and formal verification. ICAROUS is im-
plemented using cFS and makes data available via MavLink with custom topics,
making it simple to connect to Copilot (Fig. 2).

Monitoring ICAROUS requires the use of more abstract temporal logics, like
Metric Temporal Logic. For example, one property we monitored during our initial
development was whether traffic conflicts had been detected a few samples before
ICAROUS was engaged. This property makes use of two external data sources. The
first is used to determine if ICAROUS is engaged, and is made available by the field
acParaml of the stream argsCmd. This field is of type Double and has value 1 if
ICAROUS is engaged, and 0 otherwise:

icarousEngaged :: Stream Bool
icarousEngaged = (argsCmd # acParaml == 1)

19

UNKNOWN ARM GPS: -- Vee: -- Radio: -- NS MAG AS RNG AHRS EKF LOG
Link 1 OK 97.7% (4496 pkts, 106 lost, 0.00s delay)

Hdg ---/--- Alt --- AGL ---/--- AirSpeed -- GPSSpeed -- Thr --- Roll --- Pitch --- Wind ---/---

WP -- Distance --- Bearing --- AltError -- AspdError -- FlightTime -- ETR --

Sent waypoint 3 : MISSION_ITEM {target_system : 1, target_component : 0, seq : 3, frame : 3, command : 16, current : 0,
autocontinue : 1, param1 : 0.0, param2 : 0.0, param3 : 0.0, param4 : 0.0, x : 37.067335, y : -76.440206, z : 5.0, mission_type :

Pk T A A ALPAILARL TR fE o4 i A A& ook A o A Emoo A | AR .1 A

Click- A7 NR7A1? 7R AANARY (AT72NA'NT? RR" _TR2IAR'2A Q4" (N 18 371004 A1NA3721) Nistance: 25 Am N Nnm Rearinn 274 /

Figure 2: MAVProxy showing an aircraft (ownship) on the left and a potential intruder on

the right. The system currently being executed runs both ICAROUS, as well as a Copilot
cFS application that executes the monitors.

The stream argsCmd is itself defined globally (as my_args in the example below):

argsCmd :: Stream ArgsCmd
argsCmd = extern "my_args" Nothing

The type of this stream is a struct whose definition mirrors the one provided by
ICAROUS in C. A simplified definition of the type ArgsCmd is:

data ArgsCmd = ArgsCmd
{ acTlmHeader :: Field "TlmHeader" (Array 16 Word3)
, acParaml :: Field "paraml" Double

¥

instance Struct ArgsCmd where
—-— Name of the type in C
typename _ = "argsCmd_t"

The second data source needed by the property we wish to monitor indicates
the number of traffic conflicts at any given time, which is available in our Copilot
specification as the field bNumConflictTraffic of the external stream bands. This
external stream is, like before, a struct whose type mirrors the one defined by
ICAROUS.

We monitor the aforementioned property using an MTL expression, which con-
strains the time when the collision alert should have been present to be between 5

20

and 3 samples prior to ICAROUS being engaged (Fig. 3). This property, used by
the trigger, defines a violation, not an assertion:

icarousEngaged &&
alwaysBeen 3 5 clock 1 (bands # bNumConflictTraffic == 0)

When the complete version of this Copilot specification, including the trigger
definitions, is compiled and executed, it generates C code and header files that can
be integrated as part of a larger cFS application.

i
n

Figure 3: Detail of MAVProxy showing an aircraft, maneuvering to avoid a collision with
an intruder. Copilot-generated C code is used by a cFS application to monitor the collision
avoidance logic and report property violations.

6 The Architecture of Copilot 3

As described earlier, Copilot is used to write high-level specifications, which in turn
are translated into C. With the widespread availability of C, this allows the code to
be executed on virtually any platform.

6.1 Structure of the Copilot Project

Copilot specifications are written using the Copilot Language, which contains the
EDSL described in Sec. 3. Copilot Libraries is an extra set of utilitarian functions
that provide more high-level concepts on top of the language. For example, these
libraries implement the temporal logic operators (Sec. 4), voting algorithms, support
for clocks (i.e., Boolean streams with a specific frequency) and take / drop operators.

High-level Copilot specifications can be compiled into C99, or interpreted on the
development machine. The behaviour of the C99 code and the interpreter should be
operationally equivalent, except for the effects of the trigger functions themselves.

To help gain confidence on the correctness of the back-end, a testing suite using
QuickCheck [Claessen and Hughes, 2011] has been implemented. QuickCheck gen-
erates a large number of random specifications, and the output of the execution of
the generated C code is compared with the output of the interpreter. The relation
between these components is captured in Figure 4.

[Copilot Libraries]

J Use

[Copﬂot Language]

Interprete7/ \C’ompilation
Interpreted C99
’ P } QuickCheck

Figure 4: Copilot Project Structure

There are several other libraries as part of the Copilot project, some of which
are used only internally. In the following sections we describe how the compilation
to C code is performed by the user, and we later describe internal aspects of the
compiler and other libraries involved.

6.2 Compiler Frontend

Copilot is implemented as a Domain Specific Language embedded in Haskell, and
the compilation into C code is a two-step process (Fig. 5). First, the Copilot spec-
ification, written in Haskell, is compiled into an executable program. Second, the

22

generated program is ezecuted, which generates C code in a .c file and a .h header
file. The benefit of this two-step process is that some language features can be cap-
tured at type level, leveraging static analysis on Haskell’s type checker, and both the
resulting Haskell program and the C compiler will perform additional static checks.

Copilot itself does not generate a complete C program that users can run directly.
It is up to the user to provide a main function and the necessary variables to monitor.
This approach enhances portability, as hardware-dependent parts can be written in

C.

Copilot
Specification
Haskell User
Compiler Application
~
Executable
or Binary

Haskell]

Executable

Figure 5: Compilation of specifications into C by first compiling Copilot specification to
obtain an executable, and running the executable to obtain C code. The generated C code
can be included and compiled with a C compiler as part of a larger application.

It is possible to convert the Copilot specification into C code in one step, by
running the Copilot specification through a Haskell interpreter.

6.3 Compiler Backend

Copilot specifications can be written using the Copilot language, as well as one of
the additional libraries provided, as described earlier in this section. Internally,
high-level Copilot specifications are type-checked and compiled into Copilot Core, a
relatively low-level specification language more suitable for compiling. Copilot Core
specifications can be compiled into target code, or interpreted on the development
machine (Fig. 6).

The specification provided by the user has the type Language . Spec, which needs
to be compiled into C code. We do so in a number of steps, spanning several modules.

First, the specification is analysed for some common pitfalls, like dropping more
elements than available in the buffer, and multiple definitions of the same trig-
ger. Next, the Language . Spec is turned into a Core.Spec by a reification process.
During this process, streams are given unique ids, so a form of sharing can be im-
plemented. Additionally, the datatype implementing Streams in Core is simplified

23

[Copilot Libraries]

Use

[Copilot Language]

Reification and
DSL-specific type-checking

Copilot Core

Imferpretef \Compilation
Interpreted C99
P QuickCheck

Figure 6: Copilot’s architecture

and modified, facilitating compilation to C99.6
Compilation into C code is split in two parts: compiling the header file and
compiling the monitors’ implementations (Fig. 7).

Header file C code file
Type definitions Imports
Extern variables Global variables

Trigger declarations Stream generators
Step declaration Step function

Figure 7: Parts of the generated header (.h) and C code (.c) files.

Compiling the header file is done by exploring the internal specification and
obtaining all the external variables, their types, and the definitions of those types.
In addition, the generated header file contains the declaration of all triggers, as well
the main step function.

The generated C files are split in four main parts: imports, global variables,
stream generators, and a main step function.

The generated C files make use of standard libraries. The header files std1ib.h
and stdint.h are included by default, and so is the header file generated from the
Copilot specification being compiled.

Next, the file includes global variables defining buffers needed to implement delay

5Although Copilot is designed to support multiple back-ends, outdated back-ends have been
removed and currently only C99 is supported.

24

operations, as well as the current positions within each buffer. At the beginning, the
buffer contains exactly the elements prepended to the stream, and, as the execution
progresses, new elements from the delayed stream are written into this buffer.

Third, every stream is translated into a function that returns the current sample
for that stream. A stream’s current value is not held in a variable, but calculated
each time in terms of the (current) values of other streams, by calling their associated
sample-generation functions. For example, if we define a stream f as the pointwise
addition of two streams g and h, the implementation of the function that returns
the current sample for f will call the functions that return the current samples of
g and h respectively, add them, and return that result. As a consequence of this
design decision, the resulting C code describes data relations, akin to a data-flow
graph, as opposed to describing how changes to external variables propagate forward
to all the streams that use them. This is one of the key aspects of Copilot which
best demonstrates its functional nature, and it is characteristic of fields like reactive
programming and functional reactive programming.

Finally, the C code includes a main step function, which executes the monitors
and advances the state of the Runtime Verification system in four steps: first, it
copies all external variables; second, it checks all triggers, executing them if nec-
essary; third, it updates stream buffers with new values, and finally, it increments
stream indices. Copying of the external variables is necessary to make the code
reentrant: it can continue its original execution after being interrupted. If this was
not done, the execution of a monitor might be interrupted and resumed after vari-
ables used by the monitor have been updated. This can cause the same conceptual
value to be different within one execution step, breaking the assumption of causality,
which is disastrous from the point of view of reliability.

Note that this module does not generate a complete C program (i.e., it contains
no main function). This approach helps integrate Copilot specifications into larger
applications, as was described in Sec. 5.

We opted for C99 as our target language, which provides enough features of C
to write clear output code, and is well-supported by a broad range of compilers,
including GCC” and CompCert®, a formally verified C compiler. To aid in writing
the C code, Copilot makes use of a library implementing the C99 syntax. When
Copilot’s C backend was initially implemented, we could not find any libraries in
Haskell that implemented the C99 standard precisely: while the formal C99 gram-
mar is optimized for LR parsing, the libraries we found implemented a more abstract
grammar that resulted in simpler constructs. Because our goal is to produce verifi-
able code, crucial in our domain of interest, we needed to stick to a representation
that followed the standard exactly. Consequently, we implemented our own C99
library that strictly follows the syntax as defined in the standard.

"https://gcc.gnu.org/
8http://compcert.inria.fr/

25

https://gcc.gnu.org/
http://compcert.inria.fr/

7 Conclusion

In this paper, we described Copilot 3, a runtime verification framework for safety-
critical, real-time embedded systems. We discussed the evolution of the project,
how it was originally built, and how the components that make the framework
have changed over time based on both project need and resources available. The
new version of the language was introduced, and we saw how the new constructs of
structs and arrays help to deal with more complex data structures without sacrificing
safety. Copilot is a project rich in libraries, and we discussed different temporal
logics supported by the language. We also discussed how the language is being
used in combination with NASA Core Flight System applications, to add runtime
verification capabilities to autonomous vehicles with minimal intrusion.

There are a number of open problems in this domain, and in Copilot as a whole,
that remain to be addressed. We expect future versions of the language to be
simpler and require less boilerplate code, and the frontend language, presented in
this document, to be closer to the low-level core language used internally by Copilot.
Finding the logic that is most appropriate to express the properties of autonomous
vehicles remains an open problem in the runtime verification community. The use
of Signal Temporal Logic [Maler and Nickovic, 2004], as well as new higher-level
logics, could facilitate more consistent usage by domain experts.

Other stream-based languages and temporal formalisms, like Functional Reactive
Programming [Elliott and Hudak, 1997] and Monadic Stream Functions [Perez et al.,
2016], have recently seen advances that make them better suited for simulation,
interactivity, fault tolerance, testing, and compilation to FPGAs [Finkbeiner et al.,
2019, Perez, 2018, Perez et al., 2019]. The creation of a common abstraction that can
be used to express temporal behaviour while facilitating reuse for multiple objectives
is currently under study.

26

References

Bahr et al., 2015. Bahr, P., Berthold, J., and Elsman, M. (2015). Certified sym-
bolic management of financial multi-party contracts. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, pages 315327, New York, NY, USA. ACM.

Bartocci et al., 2018. Bartocci, E., Falcone, Y., Francalanza, A., and Reger, G.
(2018). Introduction to runtime verification. In Lectures on Runtime Verification
- Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer
Science, pages 1-33. Springer.

Caspi et al., 1987. Caspi, P., Pialiud, D., Halbwachs, N., and Plaice, J. (1987).
LUSTRE: a declarative language for programming synchronous systems. In 14th
Symposium on Principles of Programming Languages, pages 178—188.

Claessen and Hughes, 2011. Claessen, K. and Hughes, J. (2011). Quickcheck: A
lightweight tool for random testing of haskell programs. SIGPLAN Not., 46(4):53—
64.

Consiglio et al., 2016. Consiglio, M., Munoz, C., Hagen, G., Narkawicz, A., and
Balachandran, S. (2016). Icarous: Integrated configurable algorithms for reliable
operations of unmanned systems. In 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pages 1-5. IEEE.

Courtney and Elliott, 2001. Courtney, A. and Elliott, C. (2001). Genuinely Func-
tional User Interfaces. In Haskell Workshop, pages 41-69.

Damas and Milner, 1982. Damas, L. and Milner, R. (1982). Principal type-schemes
for functional programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT Sym-
postum on Principles of Programming Languages, POPL ’82, page 207-212, New
York, NY, USA. Association for Computing Machinery.

D’Angelo et al., 2005. D’Angelo, B., Sankaranarayanan, S., Sdnchez, C., Robinson,
W., Manna, Z., Finkbeiner, B., Spima, H., and Mehrotra, S. (2005). LOLA:
Runtime monitoring of synchronous systems. In 12th International Symposium on
Temporal Representation and Reasoning, pages 166—-174. IEEE.

Elliott and Hudak, 1997. Elliott, C. and Hudak, P. (1997). Functional reactive an-
imation. In Proceedings of the Second ACM SIGPLAN International Conference
on Functional Programming, ICFP ’97, pages 263-273. ACM.

Finkbeiner et al., 2019. Finkbeiner, B., Klein, F., Piskac, R., and Santolucito, M.
(2019). Synthesizing functional reactive programs. In Proceedings of the 12th ACM
SIGPLAN International Symposium on Haskell, Haskell 2019, page 162-175, New
York, NY, USA. Association for Computing Machinery.

Goodloe, 2016. Goodloe, A. (2016). Challenges in high-assurance runtime verifica-
tion. In Leveraging Applications of Formal Methods, Verification and Validation:

27

Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial,
Corfu, Greece, October 10-14, 2016, Proceedings, Part I, pages 446—460.

Goodloe and Pike, 2010. Goodloe, A. and Pike, L. (2010). Monitoring distributed
real-time systems: A survey and future directions. Technical Report NASA /CR-
2010-216724, NASA Langley Research Center.

Hall et al., 1994. Hall, C., Hammond, K., Jones, S. P., and Wadler, P. (1994). Type
classes in haskell. In Sannella, D., editor, Programming Languages and Systems
— ESOP ’94, pages 241-256, Berlin, Heidelberg. Springer Berlin Heidelberg.

Havelund and Goldberg, 2008. Havelund, K. and Goldberg, A. (2008). Verify Your
Runs, pages 374-383. Springer Berlin Heidelberg, Berlin, Heidelberg.

Jonathan Laurent and Pike, 2015. Jonathan Laurent, A. G. and Pike, L. (2015).
Assuring the guardians. In Proceedings of the 6th Intl. Conference on Runtime
Verification, LNCS 9333. Springer.

Knight, 2002. Knight, J. C. (2002). Safety critical systems: Challenges and direc-
tions. In Proceedings of the 24th International Conference on Software Engineer-
ing, ICSE 02, pages 547-550. ACM.

Maler and Nickovic, 2004. Maler, O. and Nickovic, D. (2004). Monitoring temporal
properties of continuous signals. In Lakhnech, Y. and Yovine, S., editors, Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages
152-166, Berlin, Heidelberg. Springer Berlin Heidelberg.

Manna and Pnueli, 1992. Manna, Z. and Pnueli, A. (1992). The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag, Berlin, Heidelberg.

Marlow, 2011. Marlow, S. (2011). Haskell 2010 language report. Technical report.

Perez, 2018. Perez, I. (2018). Fault tolerant functional reactive programming (func-
tional pearl). Proc. ACM Program. Lang., 2(ICFP).

Perez et al., 2016. Perez, 1., Barenz, M., and Nilsson, H. (2016). Functional reactive
programming, refactored. In Proceedings of the 9th International Symposium on
Haskell, Haskell 2016, page 33-44, New York, NY, USA. Association for Comput-
ing Machinery.

Perez et al., 2019. Perez, 1., Goodloe, A., and Edmonson, W. (2019). Fault-tolerant
swarms. In 2019 IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT), pages 47-54.

Pike et al., 2010. Pike, L., Goodloe, A., Morisset, R., and Niller, S. (2010). Copilot:
A hard real-time runtime monitor. In Runtime Verification (RV), volume 6418,
pages 345-359. Springer.

Pike et al., 2012. Pike, L., Wegmann, N., Niller, S., and Goodloe, A. (2012). Expe-
rience report: a do-it-yourself high-assurance compiler. In Proceedings of the Intl.
Conference on Functional Programming (ICFP). ACM.

28

Pike et al., 2013. Pike, L., Wegmann, N., Niller, S., and Goodloe, A. (2013). Copi-

lot: Monitoring embedded systems. Innovations in Systems and Software Engi-
neering, 9(4).

Pnueli, 1977. Pnueli, A. (1977). The temporal logic of programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science, SFCS 77,
pages 4657, Washington, DC, USA. IEEE Computer Society.

Wilmot, 2005. Wilmot, J. (2005). A core flight software system. In Proceedings of
the 3rd IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis, CODES+ISSS ’05, pages 13-14, New York, NY, USA.
ACM.

29

Appendix A

Grammar

The following describes the grammar of Copilot expressions. For both non-
terminal symbols and terminal symbols, we use a notation based on Extended
Backus-Naur Form. To facilitate reading and to avoid confusion between meta-level
language (grammars) and language-level symbols (Copilot’s), we use different fonts
for different parts. When describing non-terminals, we use the notation {symbol)
to refer to non-terminal symbols, and the notation (SYMBOL) to refer to terminal
symbols. When the terminals expand to only one literal, for readability, we simply
include the expected word in monospace font. Particular attention may be granted
to the rule that allows expressions in Copilot to be parenthesized, in which parenthe-
ses in the Copilot language appear in monospace font, as opposed to, for example,
the rule for (valueListy, in which the parentheses on the right-hand side indicate
that the * applies to everything inside the parentheses. The syntax [a — z] indicates
any characters between a lowercase a and a z. As standard in EBNF, the symbols *,
* and * denote meta-level postfix operators and indicate, that the term immediately
preceding the symbol may, respectively, be optional, appear multiple times or not
at all, and appear multiple times but at least once. A multiplicity operator, when
subscripted by a numeric constraint, indicates a limit on the number of repetitions
(e.g., (A)X3, indicates that (A) can appear zero, one, or any number of times, up
to 30 times). Expressions separated by a vertical line indicate choice (e.g., (4)|(B)
indicates that the expression is either (A) or (B)). Extra spaces between tokens
are ignored. There are terminal symbols whose definitions overlap. For example,
the pattern for an (ID) matches also keywords in Copilot and in the host language.
Generally, we assume terminals to be listed in order of precedence, and no Haskell
keyword is a valid {ID) or (UID).

Because Copilot is a language embedded in Haskell, there are a number of con-
nections between this grammar and the grammar of Haskell [Marlow, 2011]. First,
the language generated by (def) is contained by the language generated by the non-
terminal {(decl) in Haskell’s grammar (in particular, it is contained in the second
case of the production, expanding to (funlhs){rhs)). Also, the terminal symbols
{(Ip) and (UID) correspond to the Haskell grammar elements (varid) and {consid),
respectively. Second, some elements in Haskell that are needed or can be used by
Copilot modules escape the description below. For example, we do not describe a
mechanism to define new types or type classes, but assume that it exists in the host
language and is correct. Generally, we have defined a minimal Copilot grammar,
but any Haskell expression or type that reduces to a valid Copilot expression (value
or type) will be accepted by the compiler.

30

A.1 Non-terminal Symbols

(defsy — (def)*
{def) — (D) = {stream)

(stream) — ({stream))
| constant (value)
| extern (STRING) (sampleV)
| (valueListy ++ (stream)
| drop (VINT) (stream)
| <(Op1) (stream)
| {stream) (OP2) (stream)
| (OP3) (stream) {stream) {stream)
|

(stream) # (ID)

(sampleV) — Nothing
| (Just {valueList))
(valueListy — [((value) ,)* {value)]

(VFLOAT)
(VINT)

array (valueList)

(valuey — (VBooL)
|
|
|
| (UIb) {field)*

{field) — (Field (value))

31

A.2 Terminal Symbols

(OpPl) — not | abs | signum | complement
| recip | exp | sqrt
| log|sin | cos | tan
| asin | acos | atan
| sinh | cosh | tanh
| asinh | acosh | atanh
| cast | unsafeCast
OpP2) — +|-|*| ‘mod‘ | ‘div®
| /| **| ‘logBase’
| <l<=l=1/=1>=|>
| 11| && | ‘xor® | ==>
(T2 S I R S R B O
| .
(OP3) — mux
(VBooL) — true
| false
NT) — -°10-—9
VI ! *
(VFLOAT) — -=’[0—9]T.[0-9]"

(STRING) — "[a—z[|A—Z][a—z|A—Z[[0 —9]%;3"

() — [a—z][a—za—2]o— 9|]]*

(UID) — [A—Z][a—z|a —2Z[0—9||"]*

32

Appendix B

Typing Rules

In the following we list the typing rules of Copilot’s high-level language. We limit
ourselves to Copilot stream expressions formed from the grammar given previously,
and do not include any aspects of the host language Haskell.

The typing domain is that of dependent types. In particular, the type of streams
includes the amount of “lookahead” available in the streams. We do that to prevent
dropping from external streams without appending enough samples. Dependently
typed Copilot expressions can be assigned a standard Haskell type trivially, by
dropping the values at type-level. This is illustrated at the end of this section, and
the resulting types coincide with those available in Copilot.

We only give types to expressions formed from the non-terminal symbol {stream),
and any symbol used, directly or indirectly, by it, and we do not include a typing
rule for the non-terminals {defs) or {(def). In accordance with our grammar, which
does not include a way to define new Haskell datatypes, we assume the existence of
the appropriate constructor and projection functions for structs. These are denoted
at type-level with the symbol ->, which has the common interpretation in Haskell
of denoting a function. The definition of structs as Haskell records, standard in
Copilot and described in Section 3, immediately provides the necessary projection
functions and constructors as required by these typing rules.

The format for these rules follows that of [Damas and Milner, 1982], and use the
notion of type classes existing in Haskell, which captures the idea of overloadable
interfaces [Hall et al., 1994]. This notion is represented in these rules with the
syntax C' k => «, which means that some type k, presumably mentioned in «, is
an instance of some type class C. For example, the constraint Num a indicates that
the type a must be a type that is a number, like Integer or Float, and can not be,
for example, Bool. The type classes used by these rules and their standard meaning
is inherited from Haskell, and the requirements for a type to be an instance of each
class can be consulted in the standard Haskell documentation.

It may come to the reader’s attention that these rules include projections for
structs and arrays, but no injection counterparts. In its present version, Copilot
does not include functions to update elements of arrays or fields of structs.

To simplify rules, we abuse notation in STREAMOP1FLOATING with the use of
exp,...,atanh to indicate “any operator in the production for (OP1) from the

appearance of exp until atanh, both included”. We also use the syntax k > 0 to

33

indicate that k is a token whose numeric value is greater than or equal to zero. We
use parts of the grammar used for streams to refer to elements that also exist at
type-level, like numbers and strings.

In the rules that follow, the type for streams is a dependent type that includes
the amount of lookahead available in the stream as part of its type. For example,
a pure stream that does not depend on external data, like a constant stream, has
infinite lookahead available: we may drop as many elements as we desire, and we
can still obtain a valid element at the current time. In contrast, an external stream
does not have any lookahead available: the only value available is the current one,
and we cannot drop any elements from that stream (unless we concatenate elements
first). We capture this notion in the types with a type-level number indicating
the lookahead available as part of the type of streams Stream k 7, with x being
the amount of lookahead and 7 being the type of the values in the stream. The
typing rules ensure that dropping elements is only well-typed for streams with values
available. We use the notation [7]. to refer to lists of known length s containing
elements of type 7. These features are only present in the types in these typing
rules: from the user side, the only dependently-typed features available in Copilot
are those discussed in Section 3.

The rules for casting between types are most conveniently expressed with two
auxiliary relations that capture when casting is possible. We represent the safe
casting relation with the function ¥ which, for any type, returns the countable
set of types to which we can cast it safely, and we assume it possible to test for
membership in that set (e.g., from Int8 to Int16). Analogously, we use the relation
® to represent the function for the types onto which casting is possible, but not
safe (e.g., from Int16 to Int8). The contents of these two relations are listed later
in this section, in Tables B1 and B2. We also distinguish in these rules between
the different implementations of cast and unsafeCast available by means of a sub-

index, indicating the return type after casting.

B.1 Dependently Typed Typing Rules

I'-x:Stream k 7

(STREAMPAR)
I'- (z) : Stream Kk T
I'—z:7
(STREAMCONST)
I' - constant z:Stream oo 7
I' - s:String I' - v :Maybe [7]4
(STREAMEXT)

I' - extern sv:Stream 0 7

34

L'ls:[7]s ' s:Stream kg T

(STREAMAPPEND)
' ls ++ s:Stream (k1 + K2) T
I' - ¢: Integer I'-2:Streamx 7 1<K
(STREAMDROP)
' drop ¢ x : Stream (k —4) T
I' - 2 : Stream k Bool op € {not}
(STREAMOP1BOOL)
I' - op x: Stream k Bool
' x:Bits 7= Stream Kk T op € {complement}
(STREAMOP1BITWISE)
I'opx:Stream k 7
I' -2 : Integral 7 = Stream Kk 7T op € {abs, signum}
(STREAMOP1INUM)

I'—opx:Stream xk 7

I' -z :Fractional 7 = Stream Kk 7T op € {recip}

(STREAMOP1FRACTIONAL)
I'-opx:Stream k 7

' z:Floating 7 = Stream k T op € {exp,...,atanh}

I'-opx:Stream k 7
(STREAMOP1FLOATING)

T'2:Streamk 7y T € W(11)

(STREAMOP1CAST)
I' - cast,, z : Stream Kk T

I' -z :Stream k 74 T9 € O(7y)

(STREAMOP1UNSAFECAST)
I' - unsafeCast,, x : Stream Kk T

I' - x: Stream k1 Bool I' -y : Stream ko Bool ope{ll,&&, ‘xor‘, ==>}

't op x y: Stream (min k1 K2) Bool
(STREAMOP2BOOL)

'+ x: Integral 7 = Stream k1 T I' - y: Integral 7 = Stream Ky T op € {‘mod¢, ‘div‘}

' opx y:Stream (min K1 Ka) T
(STREAMOP2INTEGRAL)

I' - x : Fractional 7 = Stream k1 T I' — y:Fractional 7 = Stream kg T

' op x y:Stream (min k1 K2) T
(STREAMOP2FRACTIONAL)

35

'+ x:Floating 7 = Stream k1 T '+ y:Floating 7 = Stream Ky T op € {**, ‘logBase‘}

I'—op x y:Stream (min k1 Ka) T
(STREAMOP2FLOATING)

I'-2:Num 7 = Stream k; T '~ y:Num 7 = Stream Ky T op € {+, -, *}

' op xy:Stream (min K1 Kk2) T
(STREAMOP2NUM)

I'-2z:Eq 7= Stream Kk 7 I'+~y:Eq 7= Stream ko T op € {==,/=}

'+ op x y:Stream (min K1 k2) Bool

(STREAMOP2EQ)
I'+~x:0rd 7 = Stream k1 7 '+~ y:0rd 7 = Stream ko T op € {<,<=,>=>}
't op x y: Stream (min k1 K2) Bool
(STREAMOP2ORD)
I'~x:Bits 7= Stream k1 T '+ y:Bits 7= Stream ko 7 ope{.&.,.l.,.7.}
I't—op x y:Stream (min k1 Ka) T
(STREAMOP2BITWISE)
I'+—x:Bits 7 = Stream k1 7T 't~y : Integral 74 = Stream kg 7| ope{.>>., .<<.}

' op x y:Stream (min K1 Ka) T
(STREAMOP2BWSHIFT)

k is a (VINT) token k>0 '+ 2 :Stream k; (Array k 7) I' -y : Stream ko Word16

I'ax My :Stream (min k1 ko) T
(STREAMOP2ARRAY)

'+ x : Stream k1 Bool '+ y:Stream kg 7 'l z:Stream k3 7 op € {mux}

't opxy z:Stream (min (min K1 K2) K3) T
(STREAMOP3)

s is a (STRING) token I'- 2 :Stream k1 Ty '~ f:7 —> Field s 1

'~ z#f : Stream k1 ™
(STREAMSTRUCTACCESS)

(SAMPLEVNOTHING)
I' - Nothing : Maybe 7

'~wv:7r

(SAMPLEV JUST)
I' -+ Just v : Maybe 7

36

21,27

(VALUELIST)

r [[xl’--',xn] : [T]n

z is a (VBOOL) token
(VALUEBOOL)

'~z :Bool
i is a (VINT) token
(VALUEINT)
I' - ¢ : Integer

x is a (VFLOAT) token

(VALUEFLOAT)
I' =2 :Float
k is a (VINT) token k>0 F'ap:7 ... Fag:7
(VALUEARRAY)
I' - array [zo,..., 2k | : Value (Array k 7)
kg, ..., k, are (STRING) tokens I'x9:Field kg 79 ... I' + x, : Field k, 7,
[} c:Field kg 79 => ... -> Field k,, 7, -> T

I'cxg ... zp = T
(VALUESTRUCT)
k is a (STRING) tokens Nz:7 ()
FIELD

I' - (Field z) : Field k 7

s is a (STRING) token

(STRING)

I' - s:String
B.2 Haskell Typing Rules

The above typing rules help us understand when a stream in Copilot is ill-formed.
The types implemented in Copilot as a Domain Specific Language embedded in
Haskell do not include the length or lookahead as part of the stream. While the
translation from one to the other is trivial, we include it here for completeness.
For every typing rule, the type above the line is a dependent type, and the type
below the line is a Haskell type. We assume that typing rules are listed by order of
precedence. In particular, the last typing rule only applies if no other typing rule
can apply, and any type that is not a dependent type in the previous rules is a valid

type in Haskell.

I'-s:Stream k 7

(STREAM)
I's:Stream 7

37

's:[71k

(L1ST)
I's:[7]1
I's:7
—_— (ANY)
I's:7

B.3 Safe and Unsafe Casting

From To

Bool Bool, Int16, Int32, Int64, Int8, Word8 , Word16, Word32, Word64
Int8 Int8, Int16, Int32, Int64

Int16 Int16, Int32, Int64

Int32 Int32, Int64

Int64 Int64

Word8 | Int16, Int32, Int64, Word8, Word16, Word32, Word64

Word16 | Int32, Int64, Word16, Word32, Word64

Word32 | Int64, Word32, Word64

Word64 | Word64

Table B1: List of safe castings in the Copilot language (V).

From To

Int& Double, Float, Word8

Int16 Double, Float, Int8, Word16

Int32 Double, Float, Int16, Int8, Word32

Int64 Double, Float, Int16, Int32, Int8, Word64
Word8 | Double, Float, Int8

Word16 | Double, Float, Int16, Word8

Word32 | Double, Float, Int32, Word16, WordS8

Word64 | Double, Float, Int64, Word16, Word32, Word8

Table B2: List of unsafe castings in the Copilot language (P).

38

Appendix C

Denotational Semantics

This section provides a denotational semantics for the key constructs in Copi-
lot. We restrict ourselves to Copilot as described in the grammar provided earlier,
without including all possible constructs available in Haskell.

The semantic domain of Copilot specifications is that of functions from natural
numbers to values, where the natural number denotes the number of the sample
in the stream (informally, the “time”). We therefore give meaning to Copilot’s

syntactic expressions by defining the function:
[-] :: Stream a — (N — «)

Triggers would map to the same domain, and specifications to lists of functions in
this domain.

We overload the same function to assign meaning to other constructs in the
language, like literals, and functions operating on Booleans and numbers, for which
we assume the obvious meaning, normally as defined in Haskell. For example, the
meaning of [not] is just the Boolean function not :: Bool -> Bool. We consider
most of these functions uninteresting for the purposes of discussing the semantics
of the language and therefore leave them out of this chapter.

We assume the existence of a function externDict that, for a given name, returns
a function from N to values of the necessary type. This function is partial, and its
meaning depends on the type of the values returned. A proper treatment of this
aspect would require knowing the type of elements in the stream, and using a family
of functions externDict indexed by that type. For the treatment of fields, we assume
to have available a function unField : Field s k — k that simply unwraps the value
in a field.

39

[Cexp)] =

[constant exp] =

[extern name samples]

[ls ++ exp]

[drop k exp] =

[opl exp] =

[expl op2 exp2] =

[op3 expl exp2 exp3] =
lexp # id] =

At — [exp] (t)

At — [exp]

At — (externDict(name)) (t)

. {[[ls]] (t) if ¢ < length(is)
[exp](t — length(ls)) otherwise

At — [exp](k + t)

At — [op1]([exp] (¢))

At — [op2]([expl] (t), [exp2] (1))

At — [op3]([expl] (¢), [exp2] (¢), [exp3] (1))
At — unField([id]([exp] (t)))

40

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-02-2020 Technical Memorandum

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Copilot 3

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Ivan Perez and Frank Dedden and Alwyn E. Goodloe

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-21127

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM-2020-220587

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited

Subject Category 64
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Ultra-critical systems require high-level assurance, which cannot always be guaranteed in compile time. The use of runtime verification (RV) enables monitoring these systems in runtime, to
detect property violations early and limit their potential consequences. The introduction of monitors in ultra-critical systems poses a challenge, as failures and delays in the RV subsystem could
affect other subsystems and threaten the mission as a whole. This paper presents Copilot 3, a runtime verification framework for real-time embedded systems. Copilot monitors are written in a
compositional, stream-based language with support for a variety of Temporal Logics (TL), which results in robust, high-level specifications that are easier to understand than their traditional
counterparts. The framework translates monitor specifications into C code with static memory requirements, which can be compiled to run on embedded hardware. This paper presents version
3 of the Copilot language, demonstrates its suitability with a number of examples, and discusses its use in larger applications. Additionally, it describes the framework’s architecture, its

implementation as a Domain Specific Language (DSL) embedded in Haskell, and the progress of the project over the years.

15. SUBJECT TERMS
runtime verification, formal methods, embedded systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT |c. THIS PAGE ABSTRACT g:GE s STI Information Desk (help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
uu
u u u 41 (757) 864-9658

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	Introduction
	Background
	The Copilot 3 Specification Language
	Streams
	Constant Streams
	Lifting and Point-wise Function Application
	Temporal Translations
	External Streams

	Structs
	Arrays
	Monitors

	Logics and Languages
	Logical Operators
	Temporal Logics
	Past-time Linear Temporal logic
	Bounded Linear Temporal Logic
	Metric Temporal Logic

	Applications
	Copilot and NASA's Core Flight System

	The Architecture of Copilot 3
	Structure of the Copilot Project
	Compiler Frontend
	Compiler Backend

	Conclusion
	Grammar
	Non-terminal Symbols
	Terminal Symbols

	Typing Rules
	Dependently Typed Typing Rules
	Haskell Typing Rules
	Safe and Unsafe Casting

	Denotational Semantics

