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Introduction

• Reducing aircraft noise is a major objective in field of computational aeroacoustics.

• Acoustic scattering problems can be modeled by reformulating convective wave equation as a 
boundary integral equation (BIE).

• BIEs reduce spatial dimension by one, from three-dimensional partial differential equation to a 
two-dimensional surface integral equation.

• Numerical solutions can be obtained by discretizing surface and solving using boundary 
element methods (BEMs).

• BEMs effectively handle singular and infinite fields, ultimately saving computing memory and 
maintaining high computational efficiency.
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Time- vs. Frequency-Domain Solvers

• Methods for solving BIEs have been studied extensively in both frequency- and time-domain.

• Frequency-domain solvers are the most used and researched within literature.

• There are several distinct advantages to using a time-domain solver, including they:

• Allow for simulation and study of broadband sources and time-domain transient signals 
[studying broadband sources in frequency-domain carries high computational cost].

• Allow for scattering solutions at all frequencies to be obtained within a single computation 
using sparse matrices [frequency-domain requires inverting a large dense linear system].

• Naturally couples with nonlinear computational fluids dynamics simulations.
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Time-Domain Numerical Instability

• Time-domain BIEs (TD-BIEs) have been used since the 1960s to study wave propagation.

• As computers advanced and processing power improved, researchers discovered numerical 
instabilities when solving TD-BIEs over longer run times.

• Instability tends to occur at large time steps as a result of the existence of internal modes of 
resonance of the body corresponding to time harmonic solutions of the integral equation.

• In frequency-domain, resonant modes near frequency of interest yield an ill-conditioned 
matrix due to the existence of non-unique solutions at resonant frequencies.

• Resonant modes result in numerical instabilities in the time-domain solution.
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Burton-Miller Reformulation

• Burton-Miller method is effective for eliminating resonant frequencies.

• Supplementary integral equation is derived, resulting in unique solution for exterior problem.

• Results in formation of hypersingular integrals, mitigated by regularization process.

• Application of this method increases already high computational cost associated with time-
domain solvers, and is reduced using fast algorithms and high performance computing.
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Investigate feasibility and stability for modeling acoustic wave 
scattering using a Burton-Miller-type TD-BIE with IBC.

Research Objective



Impedance Boundary Conditions

• BCs are defined through terms involving normal derivative of pressure. 

• On rigid bodies, normal derivative of pressure is equal to zero. 

• On soft bodies, normal derivative of pressure is non-zero and defined by IBC, 𝑍 𝜔 , 
or admittance BC (ABC), 𝑌 𝜔 = 1/𝑍 𝜔 .

• Impedance is a complex-valued, measured quantity.

• Re(𝑍) is acoustic resistance.

• Im(𝑍) is acoustic reactance.

• Soft bodies imply that an acoustic liner is installed on the surface.

• Acoustic liners are typically composed of an array of Helmholtz resonators. 

• Transformed into the time-domain using Fourier transforms, an IBC or ABC                             
is coupled with TD-BIE to model acoustic wave scattering by soft bodies.
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Lined, Un-Lined Comparison

• Consider scattering of an acoustic point 
source by a sphere with rigid (un-lined) 
and soft (lined) surfaces.

• Frequency-domain solution along field 
line of coordinates −2.5 ≤ 𝑥 ≤ 2.5,
𝑦 = 0, 𝑧 = 0 converted from time-
domain at frequencies 𝜔 = 4𝜋, 8𝜋.
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Application of Acoustic Liners on Aircraft
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Acoustic Liner Models

• It is necessary to study TD-BIE to ensure stability of the system once coupled with IBC.

• Extended Helmholtz Resonator Model and Three-Parameter Impedance Model each represent 
acoustic liner impedance at a single frequency.

• Broadband Impedance Model simulates multiple frequencies simultaneously. 
• For time-domain IBC to be physical, each model is required to be causal, real, and passive.
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Study numerical stability of coupling a IBC with a Burton-
Miller-type TD-BIE using either the Extended Helmholtz, 

Three-Parameter, or Broadband Impedance model.

Research Proposal



Stability Assessment

• In literature, convolution quadrature methods have been numerically proven stable up to 
second-order but no theoretical proof has yet been provided for other methods.

• Eigenvalue analysis is current standard for studying the stability of TD-BIEs.

• Though eigenvalue analysis alone is not sufficient for proving stability, it is necessary that 
numerical scheme has maximum eigenvalues no greater than unity.
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Governing Equation

• Acoustic waves are assumed to be disturbances of small amplitudes.

• With a uniform mean flow, acoustic disturbances are governed by linear convective wave 
equation, with homogeneous initial conditions: 
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Homogeneous Initial Conditions

Linear Convective Wave Equation 



Green’s Function

• Introducing free-space adjoint Green's with homogeneous initial conditions: 

• Wave propagation problem is reformulated into TD-BIE by considering operation:
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Free-Space Adjoint Green’s Function

Initial Conditions



Resulting TD-BIE
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Retarded Time ValuesSource Contribution

TD-BIE is representative of acoustic field in 
presence of a uniform mean flow



Eliminating Resonant Frequencies

• TD-BIE has an intrinsic numerical instability due to resonant frequencies resulting from non-
trivial solutions in interior domain.

• Resonant frequencies eliminated and stability achieved using Burton-Miller reformulation.

• Reformulation is applied by taking derivative in form of:

• Constants 𝑎 and 𝑏 define stability condition:
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Stable Burton-Miller Reformulation
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The reformulation contains both 
hyper and weak singularities that 

are reduced prior to discretization.



Impedance Boundary Condition

• It is assumed that scattering surface 𝑆 is decomposed into rigid 𝑆0 and soft 𝑆𝑙 surfaces.

• On rigid surfaces, a Zero Energy Flux BC is imposed.

• On soft surfaces, 𝜕𝑝/𝜕𝑛′ of pressure is non-zero, and assuming 𝑀 = 0: 𝜕𝑝/𝜕𝑛′ = 𝜕𝑝/𝜕𝑛.

• Acoustic pressure is related to impedance by:
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The normal derivative of pressure is 
automatically zero on rigid surfaces.
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Collocation Method

• Stable Burton-Miller reformulation discretized using collocation methods.

• Surface 𝑆 is divided into 𝑁𝑒 boundary elements 𝐸𝑗 , 𝑗 = 1,… ,𝑁𝑒 where 
collocation point 𝒓𝑗 is located at centroid of each element 𝐸𝑗.

• Time-domain is divided into 𝑁𝑡 time steps where 𝑡𝑘 = 𝑘Δ𝑡.

• Solution is obtained by approximating 𝑝 and 𝜕𝑝/𝜕𝑛 terms using spatial 
basis functions 𝜙𝑗 and temporal basis functions 𝜓𝑘.

• 𝒖𝑘 and 𝒗𝑘 denote vector of all unknowns on 𝑆0 and 𝑆𝑙.
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Basis Functions

• The spatial and temporal basis functions are defined as follows:

• Integrations are computed by high-order Gauss quadrature on a 6 × 6 grid.

• The solution at 𝑡𝑛 is interpolated using time steps 𝑡𝑛−3, 𝑡𝑛−2, 𝑡𝑛−1, 𝑡𝑛.
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Constant Spatial

Third-Order Temporal



Burton-Miller System of Equations

• Evaluating Burton-Miller-type reformulation, it is cast into the following system:
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Burton-Miller System of Equations

• Evaluating Burton-Miller-type reformulation, it is cast into the following system:
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For rigid body scattering, 𝒗𝑘 = 𝟎.



Burton-Miller System of Equations

• Evaluating Burton-Miller-type reformulation, it is cast into the following system:
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A second system is 
needed to solve for 

both 𝒖𝑘 and 𝒗𝑘.



Spatial Resolution of BEM

• The spatial resolution is studied by assessing metric points-per-wavelength-squared (PPW2).
• Consider scattering of acoustic point source by a rigid sphere centered at 0,0,0 with radius 

of 0.5 and point source of 1 located at 𝑥, 𝑦, 𝑧 = (0, 0, 1).
• Computations carried out by increasing number of elements used from 729 to 72,901.
• Solution along field line of coordinates −2.5 ≤ 𝑥 ≤ 2.5, 𝑦 = 0, 𝑧 = 0 used for analysis.
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𝑝 : order of the basis function
𝑘 : wavenumber, 𝑘 = 𝑤/𝑐
𝑁 : surface elements
𝑆𝐴 : surface area

𝑃𝑃𝑊2 =
4𝜋2 𝑝 + 1 2𝑁

𝑘2𝑆𝐴
≈
4𝜋2 ⋅ DOF

𝑘2𝑆𝐴



Sphere Simulation
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Sphere PPW2 

• Using exact solution, the relative error in the 𝐿2 norm is graphed as a function of 𝑃𝑃𝑊2.

• Excellent spatial resolution demonstrated with relative error in 𝐿2 norm less than 3% and 5%, 
respectively, with 25 𝑃𝑃𝑊2 (original and rotated, respectively) likely due to using high-order 
Gauss quadrature integration over a closed domain.

• over a closed, hence periodic, domain
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Scalability and Performance Using CPUs

• The Burton-Miller reformulation of the TD-BIE has been implemented in numerical algorithm 
called TD-FAST: Time-Domain Fast Acoustic Scattering Toolkit.

• TD-FAST has capability of performing large-scale parallel computations using either central 
processing units (CPUs) or graphics processing units (GPUs).

• TD-FAST has significant speed-up when utilizing GPU architecture, yet maintains ability to 
exploit parallelism with CPUs for instances when GPU hardware may be unavailable.

• It is important to study performance of TD-FAST when utilizing CPU architecture only.
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Problem Size and Core Count

• Consider scattering of acoustic point source by a flat plate.
• Dimension of flat plate : −0.5, 0.5 × −0.5, 0.5 × −0.1,0.1
• Point source location : 𝑥, 𝑦, 𝑧 = (0, 0, 1)

• Assessed multiple problem sizes at differing processing powers.

• Elements Range : 70 elements to 7,000 elements

• Processing Power : 1 to 4 nodes, exclusive

Ranging 1 to 128 cores

23 March 2020 DISSERTATION DEFENSE 33



Strong Scaling

• Indicates how solution time varies with an increasing core count for a fixed problem size.

• IDEAL: as core count increases, speedup is linearly proportional to problem size.

• Speedup measures how must faster an algorithm performs compared to serial processing.
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As core count increases for a 
fixed problem size, there is an 

increase in time associated 
with performing parallel 

communications.
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Acoustic Pressure

• Consider geometric body with surface treated with acoustic liner.

• Assume model with no mean flow, i.e., Mach number 𝑀 = 0.

• Acoustic pressure is related to impedance by: 

• By Fourier transforms, a relation for normal derivative of acoustic pressure is obtained: 
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IBC Relating Impedance to the 
Time-Derivative of Pressure



Discretizing IBC

• IBC is discretized using collocation methods, same as with Burton-Miller.

• Surface 𝑆 is divided into 𝑁𝑒 boundary elements 𝐸𝑗 , 𝑗 = 1,… ,𝑁𝑒 .

• Time-domain is divided into 𝑁𝑡 time steps where 𝑡𝑘 = 𝑘Δ𝑡.

• Solution is obtained by approximating terms using 𝜙𝑗 and 𝜓𝑘.

• Solution is cast into the following system of equations:

• And coupled with the Burton-Miller system:
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Coupled Matrix System

• Due to limited temporal stencil width, 𝑩, 𝑪, 𝑫, 𝑬 are sparse.

• Matrices are diagonally dominant, each with size 𝑁 × 𝑁 for scattering body with 𝑁 elements.

• 𝑩, 𝑪 are defined by Burton-Miller and 𝑫, 𝑬 are defined by the IBC.
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Acoustic Liner Models

• Various liner models are investigated for simulating sound absorption of lined bodies.

• Extended Helmholtz Resonator Model

• Three-Parameter Impedance Model

• Broadband Impedance Model

• Extended Helmholtz and Three-Parameter specify liner impedance at a single frequency 𝜔.

• Broadband Model allows for the investigation of multiple frequencies simultaneously.
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Measured Impedance Quantity 
Established by Each Liner Model



Extended Helmholtz Resonator Model 

• Surface impedance is defined as:
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Face-Sheet Resistance, 𝐹𝑅

Face-Sheet Mass Reactance, 𝜔𝑚

Parameter used for varying cavity reactance, 𝐹𝛽

Cavity Reactance, −cot
1

2
𝜔𝜈Δt − i

1

2
𝜖

𝜈Δt = 2L/c for depth 𝐿, speed of sound 𝑐

Damping in cavity’s fluid, 𝜖



Extended Helmholtz Resonator IBC

• For Im 𝜔 < 𝜖/(𝜈Δ𝑡):

• Substituting 𝑧 𝑡 into normal derivative of acoustic pressure, discretizing, and letting the 
solutions for 𝑝 and 𝜕𝑝/𝜕𝑛 be expanded in the same manner as with Burton-Miller BEM:
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Inverse Fourier Transform

Time-Domain IBC Discretization



Three-Parameter Impedance Model and IBC

• Surface impedance is defined as:
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Inverse Fourier Transform

Time-Domain IBC Discretization



Broadband Impedance Model

• Surface impedance is defined as:

• To facilitate easy conversion to time-domain, the following terms are defined:
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Broadband IBC

• Simplifying and using Fourier transforms, time-domain IBC and subsequent partial differential 
equations are given to be:
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IBC Discretization

• Unlike the Helmholtz and Three-Parameter models where discretized IBC is cast into a single 
equation and coupled with Burton-Miller reformulation, the Broadband model has three 
additional equations that must be included in coupled system.

• The following vectors are additionally defined:

• 𝒑𝑗
0
, 𝒑𝑗

1,2
denote vectors that contain auxiliary variables from all points where IBC is applied.

• Coupled system provides solutions for 𝒖𝑘 , 𝒗𝑘, 𝑷(0,1,2)
𝑘 .
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Broadband System of Equations
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System has dimension 𝑁 2 + 𝐽1 + 2𝐽2 × 𝑁 2 + 𝐽1 + 2𝐽2 , each submatrix is banded 

diagonal, and when solved iteratively, provides solutions for 𝒖𝑘 , 𝒗𝑘 , 𝑷(0,1,2)
𝑘 .
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Eigenvalue Analysis

• Recall: direct numerical solution of TD-BIE without Burton-Miller is prone to instabilities.

• To study stability of coupled Burton-Miller TD-BIE / IBC system, a numerical eigenvalue study is 
conducted.

• Denote the coupled systems:

• as: 
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Generalized Eigenvalue Problem

• Look for solutions of the form 𝒘𝒏 = 𝜆𝑛𝒆𝟎 to the corresponding homogenous system.

• Obtain a polynomial eigenvalue problem:

• Cast into a generalized eigenvalue problem, such that 𝒆𝒋 = 𝜆𝑗𝒆𝟎:
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Stability Condition

• Look for solutions of the form 𝒘𝒏 = 𝜆𝑛𝒆𝟎 to the corresponding homogenous system.

• Obtain a polynomial eigenvalue problem:

• Cast into a generalized eigenvalue problem, such that 𝒆𝒋 = 𝜆𝑗𝒆𝟎:
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Stable if 𝜆 ≤ 1 for all eigenvalues.



Stability Problem Statement

• Consider scattering of acoustic point source by a flat plate.
• Dimension of flat plate : −0.5, 0.5 × −0.5, 0.5 × −0.1,0.1
• Point source location : 𝑥, 𝑦, 𝑧 = (0, 0, 1)

• The values of maximum eigenvalue solved iteratively by a code written in MATLAB.

• Liner Models : Helmholtz, Three-Parameter, Broadband

• Surface Discretizations : 5 × 5 × 1, 10 × 10 × 2, 20 × 20 × 4, 30 × 30 × 6

• Time steps : Δ𝑡 = 1/12, 1/24
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Fully-Lined Eigenvalue Results 
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Matrix Exceeds MATLAB Memory Bounds
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Did Not Converge
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𝜆 did not converge to a tolerance of
𝛿 = 10−9 within 5,000 iterations.



Largest Eigenvalue Exceeds Unity
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Extended Helmholtz Resonator Model
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Three-Parameter Impedance Model
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Broadband Impedance Model 
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Numerical Example of Lined Body
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• Consider scattering of acoustic point source by a flat plate.
• Dimension of flat plate : −2,2 × −2,2 × −0.02,0
• Point source location : 𝑥, 𝑦, 𝑧 = (0, 0, 1)

• Three-Parameter model applied on all elements with 𝑍 𝜔0 = 0.5 + 0.2𝑖.
• Graph illustrates frequency-domain solution converted from time-domain at 𝜔 = 12𝜋.
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Lined Body Simulation
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Un-Lined Fully-Lined

Sound Pressure Sound Pressure



Concluding Remarks

• Proposed formulation of acoustic wave scattering of bodies treated with acoustic liners.

• Coupled time-domain IBC with a TD-BIE, stabilized by Burton-Miller type reformulation. 

• Presented March-On-in-Time scheme for the solution of coupled system using spatial and 
temporal basis functions.

• Excellent spatial resolution demonstrated with relative error less than 3% and 5%, respectively, 
with 25 PPW2 (original and rotated, respectively).

• Algorithm scaled well with fewer CPUs for small problem sizes and performance suffered as 
processing power increased due to the costs associated with parallel overhead.

• Three acoustic liner models and their IBCs discussed: Extended Helmholtz Resonator Model, 
Three-Parameter Impedance Model, Broadband Impedance Model.

• Stability assessment reinforced that eigenvalue analysis is necessary to show stability.
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Major Contributions

• Proposed formulation of acoustic wave scattering of bodies treated with acoustic liners.

• Coupled time-domain IBC with a TD-BIE, stabilized by Burton-Miller type reformulation. 

• Presented March-On-in-Time scheme for the solution of coupled system using spatial and 
temporal basis functions.

• Excellent spatial resolution demonstrated with relative error less than 3% and 5%, respectively, 
with 25 PPW2 (original and rotated, respectively).

• Algorithm scaled well with fewer CPUs for small problem sizes and performance suffered as 
processing power increased due to the costs associated with parallel overhead.

• Three acoustic liner models and their IBCs discussed: Extended Helmholtz Resonator Model, 
Three-Parameter Impedance Model, Broadband Impedance Model.

• Stability assessment reinforced that eigenvalue analysis is necessary to show stability.
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Application of Acoustic Liners on Aircraft
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Spatial Resolution of BEM

• The spatial resolution of the TD-BEM with respect to the spatial basis functions is studied by 
considering PPW and PPW2.

• Consider the scattering and shielding of an acoustic point source by a flat plate.
• Dimension of flat plate : −0.5, 0.5 × −0.5, 0.5 × −0.1,0.1
• Point source location : 𝑥, 𝑦, 𝑧 = (0, 0, 1)
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Contour plots of the frequency-
domain solutions converted from 
time-domain solution at 𝜔 = 5𝜋

[left] and 𝜔 = 15𝜋 [right].



Flat Plate Solution

• The top and bottom of plate (at 𝑧 = 0.1 and 𝑧 = −0.1) are discretized by 𝑁𝑥𝑁𝑦 elements

• A series of computations are carried out by increasing the number of elements used from 
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 20 × 20 × 4 (1,120 elements) to 100 × 100 × 20 (28,000 elements).
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Frequency-domain 

solution along 

− 2.5 ≤ 𝑥 ≤ 2.5, 

𝑦 = 0, 𝑧 = −2.5
converted from the 

time-domain 

solution at 𝜔 = 15𝜋.



Flat Plate PPW

• PPW is a metric used to measure spatial resolution along one direction on the surface.

• Using solution computed by 100 × 100 × 20 as the reference, the relative error in the 𝐿2
norm is plotted as a function of PPW.
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𝑝 : order of the basis function

𝑘 : wavenumber, 𝑘 = 𝑤/𝑐
𝐿𝑥 : plate length in 𝑥-direction

𝑁𝑥 : elements in 𝑥-direction

𝑃𝑃𝑊 =
2𝜋 𝑝 + 1 𝑁𝑥

𝑘𝐿𝑥



Flat Plate PPW2

• PPW2 is a metric used to measure spatial resolution over the entire surface.

• Using solution computed by 100 × 100 × 20 as the reference, the relative error in the 𝐿2
norm is plotted as a function of PPW2.
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𝑝 : order of the basis function
𝑘 : wavenumber, 𝑘 = 𝑤/𝑐
𝐿𝑥 : plate length in 𝑥-direction
𝑁𝑥 : elements in 𝑥-direction

𝑃𝑃𝑊2 =
4𝜋2 𝑝 + 1 2[2𝑁𝑥𝑁𝑦 + 2 𝑁𝑥 + 𝑁𝑦 𝑁𝑧]

𝑘2[2𝐿𝑥𝐿𝑦 + 2 𝐿𝑥 + 𝐿𝑦 𝐿𝑧]



Flat Plate PPW2

• To investigate whether the location of the point source affects the accuracy of the solution, a 
shifted point source located at 𝑥, 𝑦, 𝑧 = (0.5, 0, 1) is considered.

• Results further demonstrate that the relative error in the 𝐿2 norm becomes less than 2% for all 
discretizations with 25 PPW2.
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𝑝 : order of the basis function
𝑘 : wavenumber, 𝑘 = 𝑤/𝑐
𝐿𝑥 : plate length in 𝑥-direction
𝑁𝑥 : elements in 𝑥-direction

𝑃𝑃𝑊2 =
4𝜋2 𝑝 + 1 2[2𝑁𝑥𝑁𝑦 + 2 𝑁𝑥 + 𝑁𝑦 𝑁𝑧]

𝑘2[2𝐿𝑥𝐿𝑦 + 2 𝐿𝑥 + 𝐿𝑦 𝐿𝑧]



Speedup for 280 through 4,480 Elements
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Matrix Power Iteration

• The matrix power iteration method is used for finding the largest eigenvalue of:
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• Given an arbitrary unit vector 𝒆(𝟎), and 
for 𝑘 = 1,2, … compute:

Iteration stops when 𝜆𝑘 − 𝜆𝑘−1 / 𝜆𝑘 < 𝛿, where 𝛿 = 10−9.

Iteration converges to largest eigenvalue of 𝑨, i.e., 𝜆 max.



Helmholtz, Three-Parameter IBC Data

• IBC constants generated using 
numerical data from Rienstra 2006.

• Rienstra proposed eighteen different 
impedance curves.

• Model data obtained from curves at 
single frequency 𝜔Δ𝑡 = 𝜋/10.
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Broadband Frequency IBC Data

• Two acoustic liners, CT157 and 
GE03, tested in the Grazing 
Flow Impedance Tube at NASA 
Langley Research Center.

• Impedance values measured 
along a broad range of 
frequencies.

• Using measured data, twenty-
five numerical models were 
generated using least squares.
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CT157 GE03



Time Step Δ𝑡 = 1/12
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Time Step Δ𝑡 = 1/24
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Partially-Lined  
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Δ𝑡 = 1/12 (left), Δ𝑡 = 1/24 (right)


