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* |onosphere: ionized portion of upper atmosphere
— Extends from around 60 km to beyond 1000 km
— Completely encircles the Earth
— Main Source: photoionization of neutrals

+ Other production processes dominate in different
ionospheric regions

— Loss Mechanism: ionospheric outflow, recombination

Main regions and transport processes



lonosphere outflow

* Main cause
— Ambipolar electric field

— pressure gradients

— Mirror force due to gyration of charged particles
* Polar wind: lonospheric loss at polar latitude

— Along essentially open geomagnetic field lines

At mid-latitudes the plasma may bounce to the
conjugate ionosphere or become the plasmasphere

Main regions and transport processes
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Global convection Plasma flow IR T

polar and auroral

ionosphere
* |Inthe Late 50s,  Dusk Dawn
ground-based Aff@i;@;ﬁ“
measurements

revealed the plasma
flow pattern in the polar and auroral ionosphere

— Anti-sunward flow over the polar cap and

— Return flow equatorward of the auroral oval
* |n 1959 Gold introduced the term convection

— Resemblance to thermally driven flow cells

Main regions and transport processes



ReCOﬂneCtiOn Plasma flow in the
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e |f the polar geomagnetic field lines are open

— The electric field produces an anti-sunward ExB
drift of solar wind and magnetospheric plasma
across the polar cap

— Reconnection occurs down tail

— Closed geomagnetic field lines flow back
towards Earth at lower latitudes

Main regions and transport processes



Plasma sheet

* Plasma sheet: population of
lonospheric and solar wind |
particles being accelerated Earthward

* Neutral current sheet: large-scale current flow
from dawn to dusk across the plasma sheet

— Separates the two regions of oppositely directed
magnetic field in the magnetotail

— Accelerates particles towards Earth
* Direct access to night side auroral oval -
— Can fall into the atmosphere producing aurora

Main regions and transport processes
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Electrons and ions in a plasma follow paths driven by the i

changing ambient magnetic and electric fields. Three basic
motions are described by the Adiabatic Invariants (u,J,®).

Gyration of a charged particle in a magnetic field results in it
having a magnetic moment, the first Invariant:

mv?

2B
A gyrating particle will bounce between regions of stronger
magnetic field, the second Invariant:

b
] = Jv”ds

A bouncing particle on a planet’'s magnetic field drifts
azimuthally, leading to the third Invariant:

@ = the total magnetic flux enclosed by a drift surface

n=

Main regions and transport processes
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Second Adiabatic Invariant

Magnetic Bottle:

Current
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Main regions and transport processe‘




abatic Invariant o =rrs

INsi

Posl:lves Negatives

Sorn  Gam

e

]

DRIFT DRIF

Magnetic field upwards through paper O

Stronger field

Q970 0.

‘_DRIFT Weaker field D_'r’RlF

Gradient-B Drift

g

, & BxAB
vVB_qB B2

Curvature-B Drift

S 8" ﬁc X §
Vp =
R~ qB R2B2




Ring Current

e Hot (1-400 keV) .
tenuous (1-10s cm3)

e diamagnetic current produced
by motion of plasma trapped
in the inhomogeneous geomagnetic field

— Torus-shaped volume extending from ~3 to 8 R
— Main Source: plasma sheet particles

— Loss Mechanisms: charge exchange, coulomb
collisions, atmospheric loss, pitch angle (PA)
diffusion, and escape from magnetopause  Chorus

Main regions and transport processes



Radiation Belt

* Very Hot (100s keV - MeV)
* Extremely tenuous: <<1 cm3

— QOuter belt: very dynamic region
+ Mostly elections located at 3-6 R
— Inner belt: fairly stable population
+ Protons, electrons and ions at 1.5-2 R;

 Source: injection and energization events
following geomagnetic storms

e Loss Mechanisms: Coulomb collisions,

magnetopause shadowing, and PA diffusion
Main regions and transport processes
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Plasmasphere

* Cool (<10 eV)
* High density (100s-1000s cm)
 Co-rotating plasma

— Torus-shaped, extends to 4-8 R, R
— Plasmapause: essentially the boundarY‘.‘"”-"'i"?"f%,
between co-rotating and convecting plasma
e Main Source: the ionosphere

e Loss Mechanism: plasmaspheric erosion and
drainage plume

Main regions and transport processes



Geomagnetic storms

e Large (2100s nT — reduced B-field on Earth’s
surface due to ring current)

* Prolonged (days)
* Magnetospheric disturbances
— Caused by variations in the solar wind

— Related to extended periods of large southward
interplanetary magnetic field (-IMF Bz)

+Increasing the rate of magnetic reconnection

+ Enhancing global convection

Geomagnetic Activity



Geomagnetic storms

Halloween Storm of 2013
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* Enhanced convection

— Increased rate of injection into the ring current

+ The ring current then expands earthward

+ Induced current can reduce the horizontal
component of the geomagnetic field (100s nT)

* Used to calculate Dst

Geomagnetic Activity



Before Storm After Storm

Plasmaspheric Plumes

* Enhanced convection
also causes the co-rotating _
plasmaspheric material to surge sunward

— Decreasing the night-side plasmapause radius
— Extending the dayside plasmapause radius
Creates a plume extending from ~12 to 18 MLT

e For continued enhanced convection less material
remains to feed the plume and it narrows in MLT

— Dusk edge remains almost stationary
— Western edge moves eastward

Geomagnetic Activity




Substorms

e A relatively short (hours) period of increased energy
input and dissipation into the inner magnetosphere

— Events may be isolated or occur during a storm

— Associated with a flip from northward to southward
IMF Bz

* |Increased rate of reconnection
* |ncreased flow in magnetospheric boundary layer

e Release of energy accumulated in the near-Earth tail

Geomagnetic Activity
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Substorms
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* Additional magnetic
flux in the tail lobes .
causes the cross-tail s
current sheet thickness to decrease

— When the current sheet thickness reaches its
threshold reconnection occurs =<4
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e The substorm current wedge closes the cross-tail
current through the ionosphere

— The cross-tail current is disrupted

e Particle precipitation increases Auroral activity
k Geomagnetic Activity
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Models — Empirical: IRI
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Is — Empirical: GCPM
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