#### Orion MPCV E-STA Nonlinear Correlation for NESC

Matt Griebel<sup>1</sup>, Adam Johnson<sup>1</sup>, Brent Erickson<sup>1</sup>, Andrew Doan<sup>1</sup>, Chris Flanigan<sup>1</sup>, Jesse Wilson<sup>1</sup>, Paul Bremner<sup>2</sup>, Joel Sills<sup>3</sup>, Erica Bruno<sup>4</sup>

<sup>1</sup>Quartus Engineering Incorporated <sup>2</sup>AeroHydroPLUS <sup>3</sup>Johnson SpaceCenter <sup>4</sup>Analytical Mechanics Associates, Inc.



## Background

- European Service Module (ESM) Structural Test Article (E-STA) vibration testing performed using the Mechanical Vibration Facility (MVF) at NASA Plum Brook Station
  - Verify structural integrity of near flight-specimen of ESM
- Large nonlinear behaviors observed
  - Frequency and damping vary widely between test cases
  - Nonlinear FRF shapes
- Previous low level modal/random tests at other facilities did not produce significant nonlinearities





#### **E-STA Model Overview**

**Dual Load Path** 





### **Linear Correlation Summary**

- Previous effort by Quartus for NESC (presented at SCLV 2018) resulted in 2 correlated linear FEMs
  - Low load level (LLL) 20%
  - High load level (HLL) 100%
- Linear correlation performed in frequency domain
- Differences between FEMs reduced to properties at 3 joints (largest sources of nonlinearity)
  - Airfoils (SAJ to CMA), PSM, and ESM spherical bearings

| Location           | DOF | LLL Stiffness<br>Increase over HLL |
|--------------------|-----|------------------------------------|
| Airfoil            | 1-3 | 1500                               |
| PSM                | 4   | 100                                |
| Spherical Bearings | 1   | 1.5                                |

#### **Airfoil Springs**



#### PSM Springs



**ESM SB Springs** 





#### **E-STA Joints**

#### **Airfoil Springs**



#### PSM Springs



#### **ESM SB Springs**





QUARTUS E N G I N E E R I N G





### **Linear Correlation Results – Acceleration**

- Representative location shown (CM-LAS)
  - Many more locations were examined/compared during the correlation process





SCLV Dynamic Environments Workshop, June 4, 2019

#### **Linear Correlation Results – Strain**

- Representative location shown (inner load path longeron)
  - Many more locations were examined/compared during the correlation process

Y-Drive - FRF - G157, Long, -Y-Z Bot under Cshape





#### **Nonlinear Correlation Motivation**

- Further elucidate the source and type of nonlinearity
- Capture extent of MPCV nonlinear dynamics in a single model
  - Can correlate linear models to high or low loads conditions, but cannot ensure that analysis of those models will envelope responses
- Inform the use of linear models in CLA (not covered in this SCLV presentation)
  - Can linearized models accurately predict MPCV flight responses?
  - What linearized models (HLL vs. LLL) should be used for different cases?
  - What uncertainty factors are required?



### **HCB Model Reduction**

- Hurty/Craig-Bampton (HCB) reduced model created from linear correlated LLL model
  - Retained I/F, response, and nonlinear joint DOF
    - I/F grid BSET, all other boundary grids CSET (FEM: 4.4e6 DOF; HCB: 1218 DOF)
- HCB matrices converted from NASTRAN to Abaqus





### **Nonlinear Transient Analysis**

- Nonlinear implicit dynamic analyses performed using Abaqus/Standard
  - HHT time integration
- Recovered transient E-STA sine sweep test data used as inputs
  - Analyzed both 20% & 100% input levels for all three axes
- Nonlinear joints modeled using Abaqus connector elements
  - Lagrange multipliers allow for complicated reactions including Coulomb friction
- FRFs calculated from transient responses using spectral density estimation



#### **Transient Sine Sweep Inputs**

- **Recovered transient E-STA sine sweep test data used as input**  $\bullet$ 
  - Input levels vary (not a constant sine sweep)
  - All tests are sweeps up in frequency (frequency increases with time)



### **Nonlinear Joint Models**

- The airfoils and PSMs were modeled using regular Coulomb friction
- The spherical bearings used nonlinear stiffness/viscous damping in the axial direction
- Abaqus connector elements with friction have the following available variables
  - K1 = slip stiffness
  - K1 + K2 = stick stiffness
  - $-\mu$  = coefficient of friction



Critical slip load kept constant using constant internal generating normal force

-  $\tau = \mu F_{int}$ 



### **Nonlinear Correlation Summary**

 Table below summarizes the final nonlinear joint parameters in relation to their initial settings informed from the linear correlation

-  $K1_i = HLL, K1_i + K2_i = LLL, \tau_i$  determined during LLL linear correlation

| Nonlinearity Table     |     |                                  |        |       |  |  |
|------------------------|-----|----------------------------------|--------|-------|--|--|
| Location               | DOF | Nonlinear Correlated E-STA Model |        |       |  |  |
|                        |     | K1                               | K1+K2  | τ     |  |  |
| Airfoil-to-CMA         | 2-3 | 0                                | 8*LLL  | 2*LLL |  |  |
| PSM                    | 4   | HLL                              | LLL    | LLL   |  |  |
| ESM Spherical Bearings | 1   | 0                                | 33*LLL | LLL   |  |  |









ESM SB Springs



#### $\tau = \mu F_{int}$



# Nonlinear FEM Correlation Results – Acceleration

- Representative location shown (CM-LAS)
  - Many more locations were examined/compared during the correlation process



### **Nonlinear FEM Correlation Results – Strain**

- Representative location shown (inner load path longeron)
  - Many more locations were examined/compared during the correlation process

FEA - Nonlinear (100%) FEA - Nonlinear (20%) ---- Test - SV0374 (20%) Test - SV0377 (100%) Frequency (Hz)

Y-Drive - FRF - G157, Long, -Y-Z Bot under Cshape



### **Summary & Recommendations**

- Nonlinear analysis can successfully capture MPCV nonlinear dynamic response
  - Single model accurately captures response for all load levels
  - Excellent correlation achieved for primary lateral response
  - Very good correlation achieved for primary axial response
- Subsequent analysis of select CLA load cases showed that the linear correlated FEM(s) match the nonlinear correlated FEM relatively well
  - With modest uncertainty factors, HLL bounds for "high" load events while LLL bounds for "low" load events
- Beyond a full nonlinear CLA, a dual linearized CLA may be appropriate to fully bound the response of MPCV
  - Linear model selection & uncertainty factors informed by limited nonlinear CLA study



### **Future Work**

- Improve axial response
  - Spherical bearing kinetic friction
  - Add friction regularization
- Perform limited nonlinear full-vehicle CLA
  - Correlated nonlinear MPCV model integrated into SLS
  - Determine if MPCV nonlinearities effect system modes or MPCV I/F levels
- Perform linear and nonlinear correlation for future flight configurations
  - Use breakout nonlinear CLA study to inform model selection/uncertainty factors











#### **Linear Correlation Results – Strain**





SCLV Dynamic Environments Workshop, June 4, 2019

#### **HCB Abaqus Conversion – Modes Check**

| Mada | Nastran | Abaqus                   |         |  |
|------|---------|--------------------------|---------|--|
| wode | HCB     | HCB Only HCB w/ Connecto |         |  |
|      | % Error | % Error                  | % Error |  |
| 1    | 0.000%  | 0.000%                   | 0.000%  |  |
| 2    | 0.000%  | 0.000%                   | 0.000%  |  |
| 3    | 0.000%  | 0.000%                   | 0.000%  |  |
| 4    | 0.000%  | 0.000%                   | 0.000%  |  |
| 5    | 0.000%  | 0.000%                   | 0.000%  |  |
| 6    | 0.000%  | 0.000%                   | 0.000%  |  |
| 7    | 0.000%  | 0.000%                   | 0.000%  |  |
| 8    | 0.000%  | 0.000%                   | 0.000%  |  |
| 9    | 0.000%  | 0.000%                   | 0.128%  |  |
| 10   | 0.000%  | 0.000%                   | 0.097%  |  |
| 11   | 0.000%  | 0.000%                   | 0.213%  |  |
| 12   | 0.000%  | 0.000%                   | 0.260%  |  |
| 13   | 0.000%  | 0.000%                   | 0.018%  |  |
| 14   | 0.000%  | 0.000%                   | 0.438%  |  |
| 15   | 0.000%  | 0.000%                   | 0.014%  |  |
| 16   | 0.000%  | 0.000%                   | 0.039%  |  |
| 17   | 0.000%  | 0.000%                   | 0.193%  |  |
| 18   | 0.000%  | 0.000%                   | 0.119%  |  |
| 19   | 0.000%  | 0.000%                   | 0.076%  |  |
| 20   | 0.000%  | 0.000%                   | 0.057%  |  |
| 21   | 0.000%  | 0.000%                   | 0.120%  |  |
| 22   | 0.000%  | 0.000%                   | 0.114%  |  |
| 23   | 0.000%  | 0.000%                   | 0.288%  |  |
| 24   | 0.000%  | 0.000%                   | 0.000%  |  |
| 25   | 0.000%  | 0.000%                   | 0.325%  |  |
| 26   | 0.000%  | 0.000%                   | 0.081%  |  |
| 27   | 0.000%  | 0.000%                   | 0.047%  |  |
| 28   | 0.000%  | 0.000%                   | 0.088%  |  |
| 29   | 0.000%  | 0.000%                   | 0.004%  |  |
| 30   | 0.000%  | 0.000%                   | 0.055%  |  |
| 31   | 0.000%  | 0.000%                   | 0.036%  |  |
| 32   | 0.000%  | 0.000%                   | 0.004%  |  |
| 33   | 0.000%  | 0.000%                   | 0.354%  |  |
| 34   | 0.000%  | 0.000%                   | 0.413%  |  |
| 35   | 0.000%  | 0.000%                   | 0.042%  |  |
| 36   | 0.000%  | 0.000%                   | 0.014%  |  |
| 37   | 0.000%  | 0.000%                   | 0.024%  |  |
| 38   | 0.000%  | 0.000%                   | 0.000%  |  |
| 39   | 0.000%  | 0.000%                   | 0.000%  |  |



#### **HCB Abaqus Conversion – Cross-Ortho**

#### NASTRAN HCB to Abaqus HCB (Matrices Only)

<u>NASTRAN HCB to Abaqus HCB</u> (w/ Abaqus Connector Elements)





SCLV Dynamic Environments Workshop, June 4, 2019

#### **HCB Abaqus Conversion - FRF**





### **HHT Time Integration – Numerical Damping**

- Abaques defaults to  $\alpha = -0.05$ ,  $\beta = 0.275625$  and  $\gamma = 0.55$  for "transient fidelity" applications
  - If the time increment is 40% of the period of oscillation of interest, this results in a damping ratio < 2% due to numerical integration only
    - See "New Algorithm" curves



and Houbolt and Wilson schemes

<sup>1</sup> Hilber, H. M., T. J. R. Hughes, and R. L. Taylor, "Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics," Earthquake Engineering and Structural Dynamics, vol. 5, pp. 283–292, 1977.

### **Nonlinear FEM Correlation Results – Strain**

- Representative location shown (inner load path longeron)
  - Many more locations were examined/compared during the correlation process



