Electrostrictive Graft-Elastomers (G-Elastomers)

-Materials, Devices and Applications-A Review

Ji Su

Advanced Materials and Processing Branch NASA Langley Research Center, Hampton, VA 23681, USA (ji.su-1@nasa.gov)

Chiba University Chiba, Japan August 26, 2019

Electroactive Polymers (EAP)

ELECTRONIC EAP

Electroactive Semi-crystalline Polymers

Ferroelectric and piezoelectric polymers

Poly (vinylidene-flouride) (PVDF) and its copolymers

Odd-numbered nylons

Electroactive Elastomers

Polyurethane (PU)

Dielectric Elastomers (DE)

Electrostrictive Graft Elastomers (G-elastomers)

Electro-Viscoelastic Elastomers (EVE)

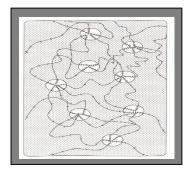
Liquid Crystal Elastomers (LCE)

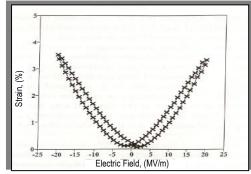
Electroactive Papers

Carbon Nanotubes (CNT)

IONIC EAP

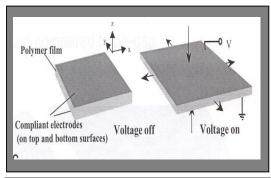
Conductive Polymers (CP)

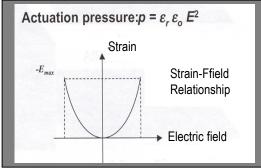

Electro Rheological Fluids (ERF)


Ionic Polymer Gels (IPG)

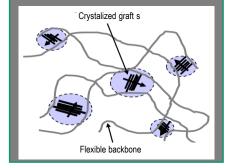
Ionic Polymer Metallic Composite (IPMC)

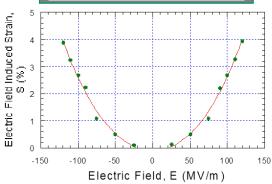
Electromechanically Functional Elastomers


Polyurethane elastomers



Physically cross-linked (hydrogen bonds) elastomers that offer field-induced strain by a combined mechanism.

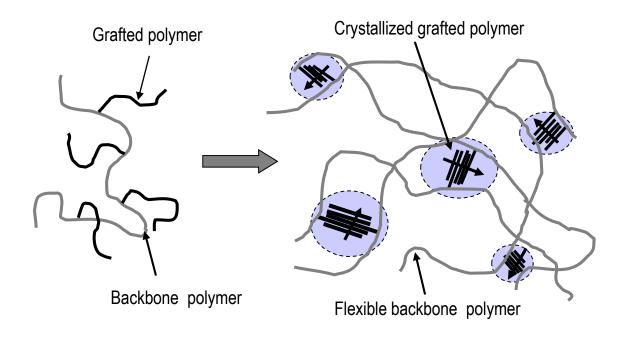

Electrostatic/dielectric elastomers



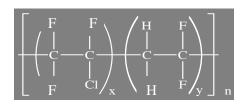
Chemically cross-linked soft elastomers that can offer a large ffield-induced strain due to the Maxwell Stress effect.

Electrostrictive graft elastomers

Physically cross-linked (formed crystal domains) elastomers that offer field-induced strain by primarily electrostriction.


Ref.: Z. Ma, etc. p. 2721, Vol.32, Journal of Polymer Science: Part B, Polymer Physics (1992)

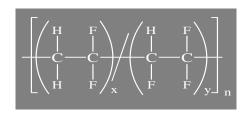
Ref.: "Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges" by J. Bar-Cohen (SPIE, 2003).


Electrostrictive Graft Elastomers (G-elastomers)

A Two Constituent System

- 1) Flexible backbone polymer that functions as a main contributor for elastomeric three-dimensional molecular network.
- 2) Grafted polymer that can crystallize (a) to form physical cross-linking sites for elastomeric three-dimensional network and (b) to produce polar domains that are electric-field responsive.

Structures and Functions of the Constituent Polymers


Backbone Polymer

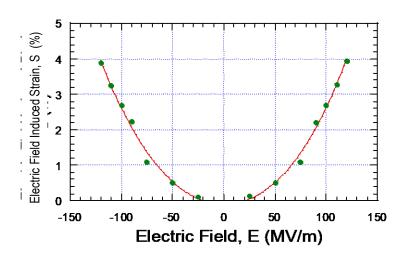
chlorotriflouroethylene-vinylidene flouride copolymer

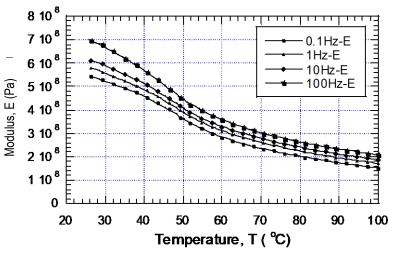
Nature: non-crystallizable and flexible

Functions

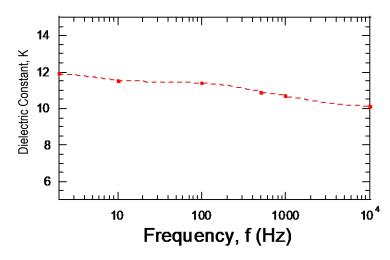
- (a) to be the main contributor to three-dimensional elastomeric molecular network
- (b) to provide space for dimensional change and adjust stiffness of the 3-D network

Grafted Polymer


trifluoroethylene-vinylidene flouride (VDF-TrFE) copolymer


Nature: crystallizable and polar

Functions


- (a) to form physical cross-linking sites for elastomeric three-dimensional network
- (b) to provide polar domains that are electric-field responsive and drive dimensional change

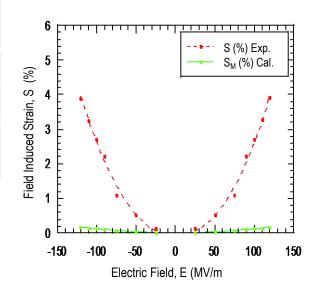
Important Properties of the Electrostrictive Graft Elastomers

Mechanisms of Electric Field-induced Strain in Elastomers

Mechanisms

Electrostriction

Maxwell effects


$$S_E = -Qe_o^2 (K-1)^2 E^2$$

 $S_M = -se_o KE^2 / 2$

Contributions of Different Mechanisms

Materials	Maxwell Effect	Electrostriction
Graft elastomers	<5	>95
Polyurethane	35	65
Dielectric elastomers	100	0

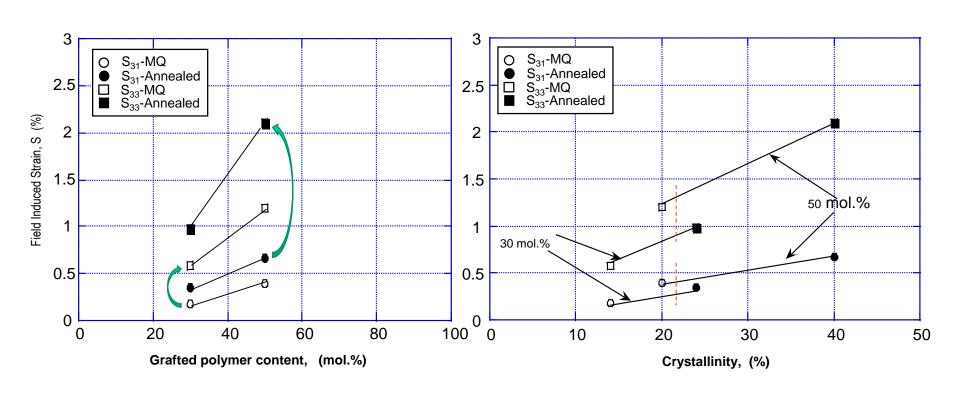
Advantages of Electrostriction Mechanism

Increase both the field-induced-strain and the mechanical modulus simultaneously

Morphology-Property Control of Electrostrictive G-Elastomers

<u>Molecular selection</u> of flexible backbone and crystalized graft polymers (dipole moment, crystal unit and crystal size as well as flexibility of the backbone polymers).

<u>Fraction</u> of the two constitutes (dielectric constant, mechanical properties, and electromechanical properties).

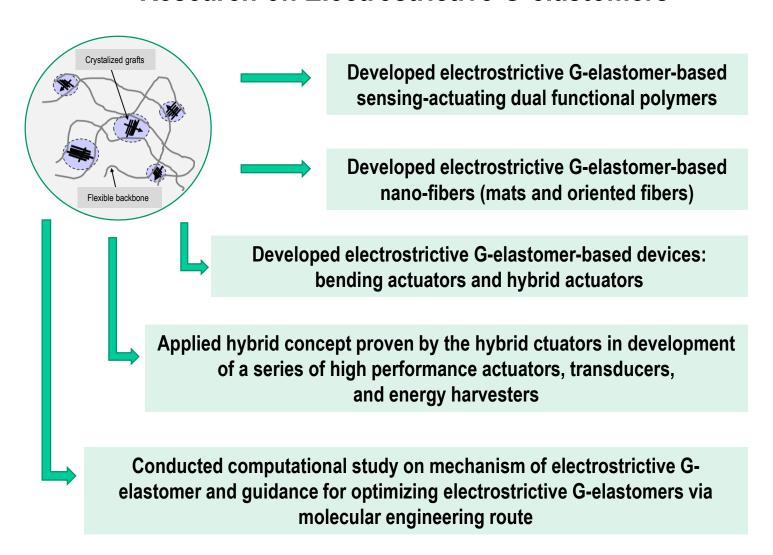

<u>Processing</u> of materials utilizing thermal, mechanical, and electrical processing techniques (morphology control and optimization of electric, mechanical, and electromechanical).

- -The electromechanical properties of the electrostrictive G-elastomers depend on the fraction of the grafted polymer and the crystallinity formed by the polar grafted polymers.
- -The fraction of the grafted polar polymers can be controlled through synthesis and the crystallinity can be controlled by thermal treatment and other processing.
- -Molecular engineering and morphological control can be employed to tailor and optimize the electromechanical properties of electrostrictive graft elastomers.

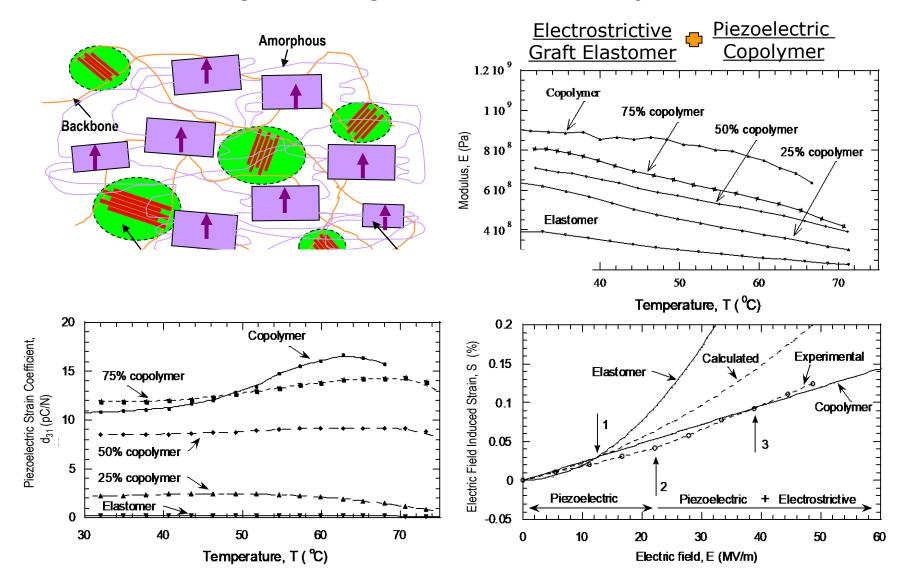
Effects of the Content and Crystallinity of the Grafted Polymer on Field-induced Strain of Electrostrictive G-Elastomers

Effects of the Content

Effects of Crystallinity

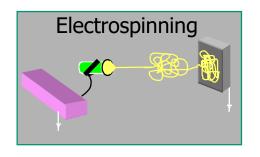

Comparison of Electromechanical Properties of Some Representative Electroactive Materials

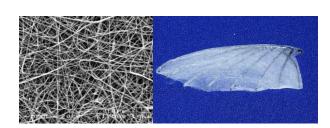
Materials	Strain (s) (%)	Modulus (Y) (MPa)	Output Force (YS) (Mpa)	Salient Features
LaRC G-elastomer	4	580	23	conformable, high strain, lightweight
Polyurethane	4	20	0.8	high strain, low force
PVDF	0.3	1600	4.8	low strain
PZT	0.3	6400	192	brittle, heavy

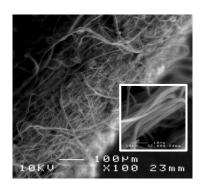

Some Advantages of Electrostrictive G-Elastomers

- -Large electric field-induced strain.
- -Light weight and high output power density.
- -Two constituent system with adjustable composition and morphology to optimize mechanical, electrical, and electromechanical properties.
- -Excellent process-ability for low cost fabrication and device requirements in shape complexity.
- -Excellent compatibility with other electroactive polymers for hybrid molecular systems offering multi-functions.

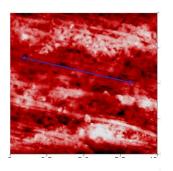
Research on Electrostrictive G-elastomers

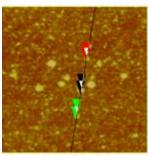


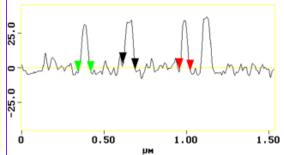

Sensing-Actuating Dual Functional Polymer Blends

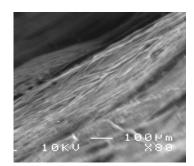


Electrostrictive G-elastomer Nano-fibers

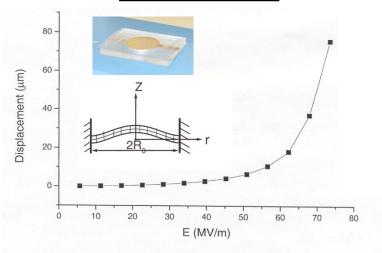

Nano-fibers and Mats by Electrospinning



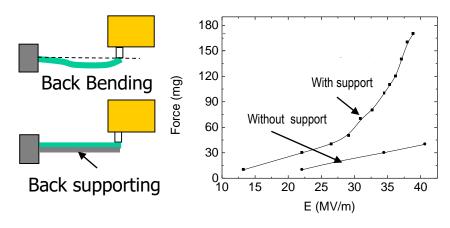




Highly Aligned Nano-fibers by Dynamic Precipitation

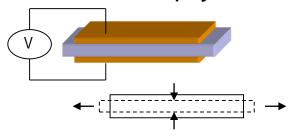


Actuators Using Electrostrictive G-Elastomer

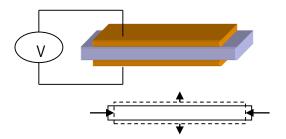

Two Direction Bending Actuator

Electroactive polymer layer Flectrodes Flectrodes Flectrodes Frogrammable HV supplier f(D) = 2f(E) f(D) = 1f(E)

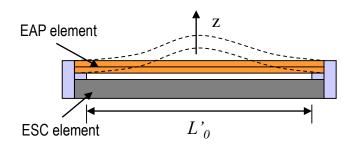
Circular Actuator


Backed Bending Actuator

Hybrid Electromechanical Actuators


Electric Field-induced Strain

Electroactive polymer

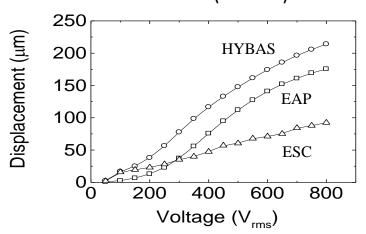

Longitudinal strain: **Negative**Transverse strain: **Positive**

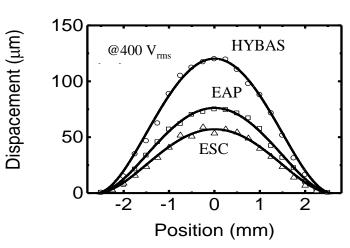
Electroactive Ceramics

Longitudinal strain: **Positive** Transverse strain: **Negative**

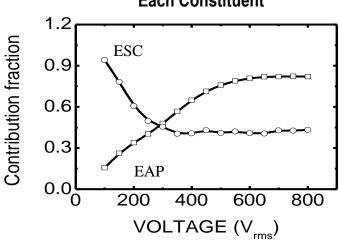
Hybrid Actuator

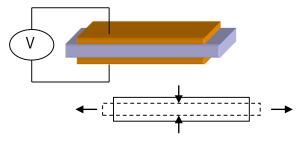
EAP: Electrostrictive G-elastomer ESC: Electroactive single crystal


The HYBrid Actuation System (HYBAS) utilizes the characteristics of the electromechanical response of the two electroactive constituents cooperatively to achieve significantly increased displacement for actuation under one electric excitement source.

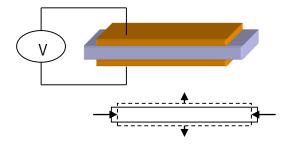

Performance of the Hybrid Electromechanical Actuators

Significantly increased displacement


Proven hybrid concept for advanced electromechanical devices



Voltage Dependence of Contributions of Each Constituent


Generalization of Hybrid Concept and Its Extended Application

Active Constituent 1

Longitudinal strain: **Negative**Transverse strain: **Positive**

Active Constituent 2

Longitudinal strain: **Positive** Transverse strain: **Negative**

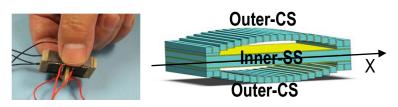
Design and Selection of Active Constituents

Purpose: to make the two active constituents respond in opposite directions when a driving electric field is applied.

Single Material:

ceramics, polymers, single crystals, etc.

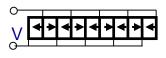
Composites:


ceramics/polymer, polymer/polymers, single crystal/ceramics, single crystal/polymers, etc.

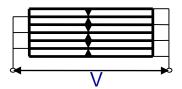
Multilayer/stacks:

single material, composites, single material-based laminates, stacks, etc.

A Successful Sample: HYbrid Piezoelectric Energy Harvesting Transducer System (HYPEHT)


The Energy Harvester

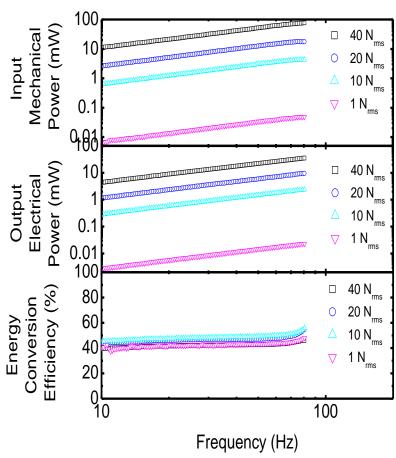
Dimensions: 30 mm (I) × 15 mm (w) × 11 mm (h)


Weight: 21 gram

Active Constituents

Outer Constituent:

Multi-stacked d₃₃ effect in x-direction

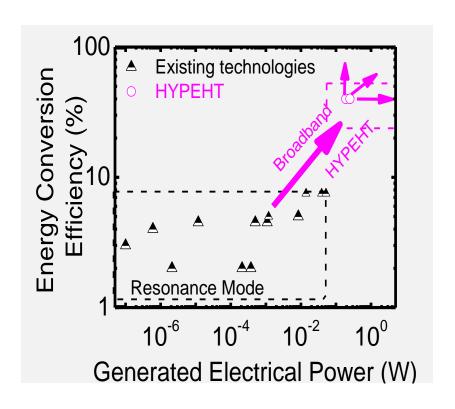


Inner Constituent:

Multi-layered d₃₁ effect in x-direction

Conversion Efficiency: >40%

Performance

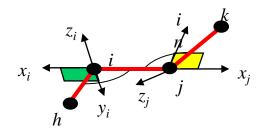


Recognition of the HYPEHT Energy Harvesting Technology

- A proven hybrid concept for advanced eletromechanical devices has been successfully applied to both actuation and broadband energy harvesting transducers.
- Innovation through multidisciplinary approaches
 - 1) to capture one order of magnitude more mechanical energy into piezoelectric structure
 - 2) to increase energy conversion efficiency
 - 3) to enhance energy charging/storage performance

More than **40**% mechanical to electrical energy conversion efficiency can be achieved.

 HYPEHT is a broadband harvester at both offresonance frequencies and resonance frequency.



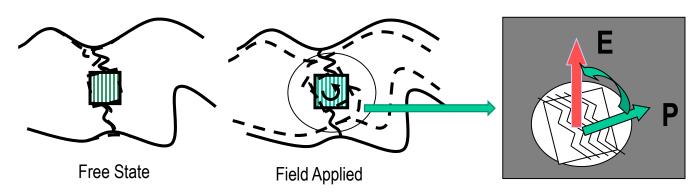
Computational Study of Mechanisms of G-elastomers

Formation of Element for the Model

Key Parameters Considered

Chemical Bond Element

Driving energy (effective electric field)



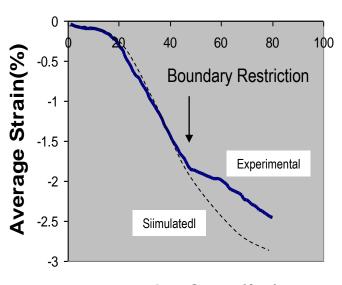
Field-induced Movement (dimensional change)

Potential response (polar domain/crystal structure)

Allowance (free volume/backbone)

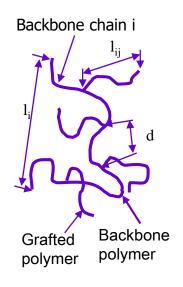
Deformation Mechanisms

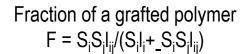
E: electric field


P: polarization

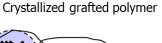
Comparison of Simulated Deformation of Electrostrictive G-elastomers and Experimental Results

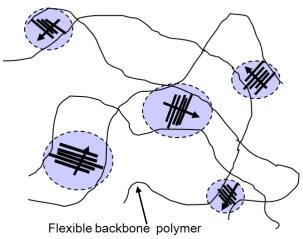
Simulated Deformation


graft Shape Deformed shape


Comparison

Loading Steps(/10) (level of the field)


Molecular Engineering for Property Control of Electrostrictive G-elastomers

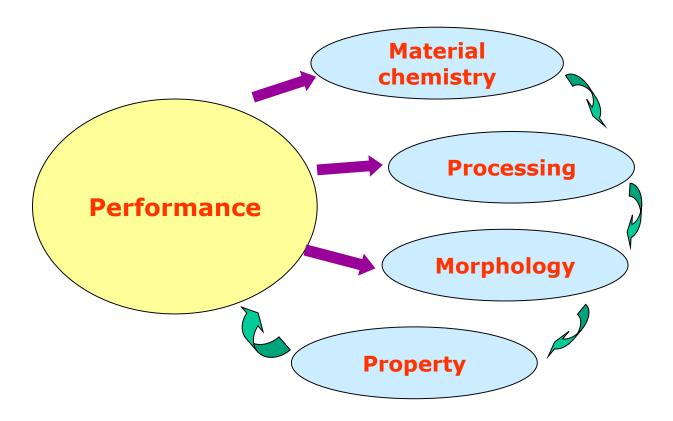


Average length of a grafted polymers $I = S_i I_{ij} / N_{ij}$

Average interval distance between the grafting sites $d = I_{ii}/N_{ii}$

Total amount of field responsive grafts

Fraction of grafted polymer $F = S_i S_i I_{ij} / (S_i I_i + S_i S_i I_{ij})$


Crystal size and size distribution

Average length of grafted polymers $I = S_j I_{ij} N_{ij}$

Cross-linking density and free volume

Average interval between grafting sites $d = I_i/N_{ij}$

The Route to the Desired Electroactive Polymers

Machine Learning?

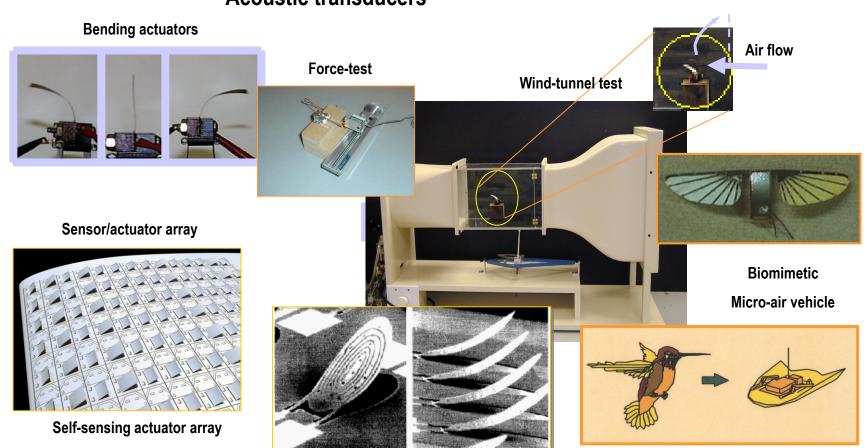
Summary, Challenges and Opportunities

Summary

- -As a new class of electroactive polymers, **Electrostrictive G-elastomers** have demonstrated promising electromechanical properties with some advantages over other electroactive polymers.
- -A device using the G-elastomer has proven a Hybrid Concept that provides a new route of developing high performance electromechanical devices.
- -Computational study demonstrated the key factors that control the electromechanical properties of the G-elastomers

Challenges

Low voltage operation
Flexible, durable and low
constraint electrode
High conversion efficiency
Low dielectric loss
Low mechanical loss
Thermal stability
Electric leaking


Challenges = Opportunities

In order to make EAPs that may be used in many possible applications, the electroactivities need to be **intrinsic**. Molecular Engineering should be one of the ways to achieve the goal.

(NASA-LaRC)

Some Applications in NASA Research Activities

Aerodynamic control Passive optics
Deformable mirror array Tunable antennas
Acoustic transducers

Acknowledgements

Dr. Tian-Bing Xu

National Institute of Aerospace (NIA)

Prof. Xiaoning Jiang and Laura Tolliver

NC State University

Prof. Lei Zuo and Dr. Wanlu Zhou

Virginia Tech

Drs. Shihai Zhang and Shan Wu

PolyK Technologies, LLC

Paul W. Rehrig

Saint-Gobain Innovative

Dr. Wesley S. Hackenberger

TRS Technologies

Dr. Muralidharan S. Nair

National Science Foundation

Dr. Qiming Zhang

Dr. Zoubeida Ounaies

Pennsylvania State University

Dr. Jerry I Scheinbeim

Rutgers University

Dr. Roy Kornbluh

SRI International

Dr. Joycelyn Harrison

Air Force Research Office

Dr. Yoseph Bar-Cohen

Jet Propulsion Laboratory

Dr. Peter X. Ma

University of Michigan

Dr. Peter Lellihi

Dr. William Cooks

Rheal Turcotte

Dr. Emilie Siochi

Dr. Kristin Pawloski

Dr. Terry St. Clair

NASA Langley Research Center

Ray Baughman

Lockhead Martin Corp

Dr. Changjie Sun

Dr. Chongjian Zhang

Dr. Youqi Wang

Kansas State University