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Overview

• Introduction to the materials and structural testing at NASA Langley 
Research Center (LaRC)

• Acknowledgment of active DIC contributors and sponsors

• Examples of recent activities
• Why are measurements being made?

• What is requested to be measured?

• What is needed to be measured?

• What equipment is needed?

• How will the equipment be used and test article prepared?

• How will the data be processed and presented?
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NASA LaRC James H. Starnes Structures Lab, B1148

Load Frame Test Machines

• Focus on large static and combined load tests

• ~ 40 Load Frames: 5,000 lbs. to 1,000,000 lbs.

• Environmental chambers: -320 to 600 F

• COLTS

– Combined pressure, axial, torsion, shear loading

– Test articles as large as 15 by 40 ft.

B1148

1M lbs. Load Frame

Backstop

Combined Loads Test 

System (COLTS)
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NASA LaRC Fatigue and Fracture Lab, B1205
Load Frame Test Machines

• Focus on sub-component and material level tests

• Environmental Chambers: -320°F to 600°F

• Load Frames: 5,000 to 400,000 lbs.

• Cyclic and static loading

B1205

3-Point Bend Composite Fatigue Crack Growth

Tension/Torsion

Sub-component Level Testing

iDICs 2019 4



Other NASA and non-NASA Facilities Supported
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NASA MSFC
NASA WSTF Lockheed-Denver (NASA JPL)

Cimarron-Huntsville (NASA LaRC)

California (for NASA WSTF)
NASA AFRC



How is DIC Used at NASA LaRC

• Material Characterization
• Composite and metallic materials

• Mostly room temperature with some work between -200F and +300F

• Fatigue and fracture

• Plastic response

• Validation of damage models

• Structural Characterization
• Aircraft and space flight sub-component, component, and full-scale

• Impact of large structures

• Validation of structural models

• Special Projects
• Qualification of flight hardware

• High-speed and vibration characterization

• “Can you tell me what is going on with my …”
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DIC Contributors and Sponsors

DIC Contributors Sponsors

• Dave Dawicke, AS&M Inc.
• Nate Gardner, AS&M, Inc.
• Michael McNeill, STC

• Will Johnston, STC
• Justin Littell, LaRC 
• Paul Leser, LaRC
• Patrick Leser, LaRC
• Jake Hochhalter, U. of Utah
• Geoff Bomarito, LaRC

• Advanced Composite Project: Cheryl Rose, Wade Jackson, Andrew 
Bergan, Frank Leone, James Radcliff, Dawn Jegley (all LaRC)

• Shell Buckling Knockdown Factor (SBKF) Program: Mark Hilburger, 
Marc Schultz, Tom Haynie, Adam Przekop, Cyrus Kosztowny (all 
LaRC)

• NESC Assessments and Investigations
• LaRC: Mike Kirsch, Clint Cragg, Sotiris Kellas, James Reeder, 

Pete Parker
• WSTF: Jon Haas
• GRC: Heather Hickman
• KSC: Rick Russell
• JPL: Lorie Grimes-Ledesma

• Other NASA
• MSFC: Jeff Rayburn
• JSC: Ian Juby, Mark Mcelroy
• KSC: Dan Bell
• LaRC: Robin Schlecht, David Sleight, Arun Satyanarayana, Tom 

Jones, Andrew Lovejoy, Steve Smith
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DIC Summer Students

• Phillip Cragg, VaTech
• Dan Newall, U. of NH
• Cameron Underwood, VaTech
• Jonathan “Jonas” Merrill, U. of Utah



Example #1: Characterization of the Influence of Grain Structure 
Problem: 

• Standard tensile tests exhibited considerable scatter that resulted in design allowables that were too low to meet margins

• The processing of an aluminum flight hardware structure resulted in a microstructure with a wide variation in grain sizes

• The structure is loaded well beyond the elastic range

• Fracture control requirements also presented concerns with identifying critical locations for safe-life analyses

Goal:

• Identify root cause of scatter and influence of microstructure

• Collect data for validation of microstructural model
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Example #1: DIC Setup Solution

iDICs 2019 9

Hardware/Software:

• Two pairs of cameras

• 12MP FLIR Grasshopper 3 with 50mm lenses

• Cameras on opposite sides of the test article

• Cameras supported with tripods and 80/20

• Software synced systems front and back

• VIC3D-8TM with RealTime

• 20 kip servo-hydraulic load frame

• Aperture, exposure time, and lighting optimized

DIC Configuration:

• AOI ~ 2.5 inch x 1.7 inch

• Pixel Resolution ~ 1700 pixels/inch

• Speckle Size ~ 0.002 inch (fine spray paint)

• Subset Size 29 pixels and Step Size 7 pixels

• Standoff Distance ~ 10 inches

• Camera Angle ~ 25-degrees

• Calibration grid: 14x10 4mm

Issues

• Light glare from the load frame

• Narrow depth of field during calibration

• Front/back coordinate system alignment



Example #1: DIC Noise Floor
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Example #1: Strain Localization
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Example #1: Correlation of Localization to Grain Structure
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Localization at 

0.4% Strain

Localization at 

Failure

Fracture Path EBSD with 

Fracture Path

• EBSD: Electron Backscatter 

Diffraction

• EBSD identifies grains and 

grain orientation 

• The localization occurred at or 

near grain boundaries

• Fracture followed the worst 

localization path

• Fracture also followed grain 

boundaries



Example #1: Findings and Ramifications

• The yield stress and elongation scatter was directly related to strain 
localization at grain boundaries

• The strain localization prevented the structure from being flight qualified for 
damage tolerance using existing qualification standards

• The largest crack that could be missed by an NDE inspection will exist at the worst 
location

• The cracked structure must survive 4 lifetimes of operational loading

• Risk was reduced by conducting coupon tests
• The coupons were loaded to about 0.6% strain as measured by DIC in real-time

• The region of strain localization was identified in each coupon and a notch was added 
along the grains in the high strain region

• The notched coupons were precracked elastically to the NDE detectable size

• The cracked coupons were cycled for 4 lifetimes
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Example #2: Characterization of Cracks and Delaminations in 
Composite Materials
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Problem:

• A single hat stiffened composite panel was 

tested in bending

• The validation of progressive damage 

models in composites requires the 

characterization of cracks and 

delaminations

Goals:

• Quantify when and were cracking first 

occurs

• Quantify when delaminations occur and 

measure the shape



Example #2: DIC Setup
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Hardware/Software:

• Two pairs of cameras (left and right)

• 12MP FLIR Grasshopper 3 with 50mm lenses

• Overlapping AOI

• Cameras mounted on 80/20 above the test article

• Software synced systems left and right

• VIC3D-8
TM

with RealTime

• 20 kip servo-hydraulic load frame

• Aperture, exposure time, and lighting optimized

DIC Configuration

• AOI ~ 10 inch x 8.2 inch

• Pixel Resolution ~ 250 pixels/inch

• Speckle Size ~ 0.015 inch (spray paint)

• Subset Size 17 pixels and Step Size 3 pixels

• Standoff Distance ~ 50 inches

• Camera Angle ~ 10-degrees (limited optical access)

• Calibration grid: 14x10 10mm

Issues

• Common coordinate system in both systems for 

multiple tests run over 18 months 



Example #2: Common Coordinate System
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Calibration Grid Viewed from Front Cameras Calibration Grid Viewed from Back Cameras

y, v

x, u

y, v

x, u

Coordinate System Approach

• Both pairs of cameras could view center section of the test article

• A calibration grid was placed at a marked location on the loading platform that within view of both pairs of 

cameras and a coordinate system defined

• This provided a quick method of defining a coordinate system that would always be aligned with the 

loading fixture



Example #2: DIC Noise Floor
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Example #2: Out-of-Plane Displacement Contours
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Example #2: Characterizations of Delaminations
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Frame 528 was used as a reference and the out-of-plane displacements shown below 

Ultrasonic Scan



Example #2: Findings and Ramifications

• The shape, displacement, and strain measurements from DIC were used 
to validate the structural analyses

• The DIC measurements were able to detect delaminations and quantify 
delamination size and growth

• The delamination measurements were validated with x-ray CT 
measurements that were performed at the end of loading cycles where 
delaminations were detected

• The delamination measurements were used to validate progressive 
damage models
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Example #3: AFRC Passive Aeroelastic Tailored (PAT) Wing Test
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Problem:

• A full-scale composite wing (>40 

feet) was tested in bending

• The characterization of wing 

deformations needed for 

validation of structural analyses 

and composite designs

• The rigidity of the boundary 

conditions was a concern, so 

characterization of support 

fixtures was required

Goals:

• Quantify the wing deformations 

during upward and downward 

bending

• Quantify the support fixtures to 

establish the boundary conditions 

for the structural analyses

Top View of Wing

Edge View of Wing



Example #3: Initial DIC Camera Plan
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Example #3: PAT Wing DIC Setup Top View
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Hardware/Software:

• 30MP AVT cameras 28mm lenses suspended above the wing on 

a 36’ tall boom

• Hardware synced with a function generator

• VIC3D-8
TM

with RealTime

• Aperture & exposure time optimized for ambient lighting

DIC Configuration:

• AOI ~ 164 inch x 65 inch

• Pixel Resolution ~ 40 pixels/inch

• Speckle Size ~ 0.08 inch (ink stamp)

• Subset Size 41 pixels

• Step Size 7 pixels

• Standoff Distance ~ 22 feet

• Camera Angle ~ 20-degrees

• Calibration grid: 12x9 70mm

Issues:

• Travel logistics (i.e., make sure we have everything we need)

• Movement of the camera supports during the long duration test

• Fall and drop hazards



Example #3: Top View Rigid Body Motion

iDICs 2019 24

The boom supporting the top view cameras moved continuously during the tests (likely due to temperature 

changes during the test). A table was placed in the field of view (isolated from the test article and loading 

structure) and speckled. The table was used as a fixed point to remove rigid body motions.
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Example #3: DIC Noise Floor for Top View
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Example #3: Top View Displacement (Rigid Body Motion Removed)

iDICs 2019 26

w-disp

(inch)

3

0

Side A – Trailing Edge

Side B – Leading Edge



Example #3: PAT Wing DIC Setup Side View
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Hardware/Software:

• 12MP FLIR Grasshopper 3 with 28mm lenses

• Supported on tripods

• Viewing the support structure

• Hardware synced with a function generator

• VIC3D-8
TM

with RealTime

• Aperture & exposure time optimized for ambient lighting

DIC Configuration:

• AOI ~ 100 inch x 65 inch

• Pixel Resolution ~ 50 pixels/inch

• Speckle Size ~ 0.05 inch (ink stamp)

• Subset Size 29 pixels

• Step Size 7 pixels

• Standoff Distance ~ 18 feet

• Camera Angle ~ 18-degrees

• Calibration grid: 12x9 70mm

Issues:

• Speckling a large structure

• Obstructions for camera placement



Example #3: DIC Noise Floor for Side Views
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Example #3: Fixture Movement
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Example #3: Side Coordinate System
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Example #3: Support Plate Deformations
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Example #3: Pin Movement
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Example #3: DIC Measurements
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Example #3: Findings and Ramifications

• The top camera movement was larger than expected and accounted for by 
removing rigid body motion

• The pin rotation and plate deformation were unexpected

• The boundary conditions that were measured with DIC were incorporated 
into the finite element analyses

• The top surface displacements and strains were used to validate the finite 
element model
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Example #4: Mars 2020 Heat Shield
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Problem:

• The Mars 2020 heat shield (flight hardware) is 

required to have a ground proof test to 120% of the 

entry, descent, and landing loads

• The first test performed in 2018 and the strain during 

loading was monitored with strain gages, but a 

fracture occurred away from the strain gages

• The heat shield was redesigned for testing in 2019

• A failure of the second proof test would likely cause 

a 2-year delay in the launch

Goals:

• Perform full-field characterization of the entire heat 

shield in real-time during the proof test loading to 

prevent fracture by identifying any regions of 

elevated strain

• Characterize the full-field strain distribution for 

validation of structural models

Space.com article from April 28, 2018



Example #4: DIC Preparations

• Selected and received approval to use a vinyl 
wrap (3M 1080) for use on the flight hardware 

• Used an optimized speckle pattern (Bomarito, 
Hochhalter, Ruggles, and Cannon, “Increasing 
Accuracy and Precision of Digital Image 
Correlation Through Pattern Optimization,” 
Optics and Lasers in Engineering, Vol. 91, PP 
73-85, April 2017)

• Conducted preliminary tests to demonstrate that 
the strain obtained from the vinyl wrap was 
representative of structure

• Developed a full-scale plywood mockup
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Example #4: DIC Setup
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Hardware/Software:

• Three pairs of cameras (every 120-degrees)

• 30MP AVT cameras 50mm lenses 

• Overlapping AOI

• Cameras mounted on 80/20 supported by ladders

• Hardware synced systems 

• VIC3D-8
TM

with RealTime

• Aperture, exposure time, and lighting optimized

DIC Configuration

• AOI ~ 176 inch x 117 inch

• Pixel Resolution ~ 36 pixels/inch

• Speckle Size ~ 0.1 inch (printed on vinyl)

• Subset Size 29 pixels and Step Size 7 pixels

• Standoff Distance ~ 15 feet

• Camera Angle ~ 22-degrees 

• Calibration grid: 12x9 70mm

Issues

• Travel logistics (i.e., make sure we have everything we need)

• Flight hardware (i.e., surface must be returned to pristine condition)

• Real-time monitoring (i.e., ~1 second refresh) during loading

• High strain resolution (< 100 microstrain)

• Limited floor space

• Drop hazards (one of a kind flight hardware)



Example #4: DIC Noise Floor for Side Views
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DIC Strain Extracted the Strain Gage Height for 360-degrees 

Example #4: DIC and Strain Gage Locations
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Example #4: DIC and Strain Gage Comparisons (4 Lowest Gage Locations)

iDICs 2019 40

Z = 10 inches Z = 12.5 inches

Z = 14 inches Z = 17.5 inches

P
re

s
s
u

re
 

Min Principal Strain 

DIC Avg.

DIC -sigma

DIC + sigma

SG 4-degrees

SG 124-degrees

SG 244-degrees

P
re

s
s
u

re
 

Min Principal Strain

DIC

DIC -sigma

DIC + sigma

SG 4-degrees

SG 124-degrees

SG 244-degrees
P

re
s
s
u

re
 

Min Principal Strain 

DIC

DIC -sigma

DIC + sigma

SG 4-degrees

SG 124-degrees

SG 244-degrees

P
re

s
s
u

re
 

Min Principal Strain 

DIC

DIC -sigma

DIC + sigma

SG 4-degrees

SG 124-degrees

SG 244-degrees

0Compressive

0

0Compressive

0

0Compressive

0

0Compressive

0



P
re

s
s
u

re
 

Min Principal Strain 

DIC

DIC -sigma

DIC + sigma

SG 4-degrees

SG 124-degrees

SG 244-degrees

Example #4: DIC and Strain Gage Comparisons (3 Highest Gage Locations)
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Example #4: Stitched DIC and Analysis Predictions at a Constant Pressure
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Example #4: Findings and Ramifications

• The Mars 2020 Heat Shield passed 
the 120% qualification test without 
fracture or strains that exceed 
prediction limits

• The vinyl was removed and the 
Heat Shield is being prepared for 
launch in August 2020

• The DIC strain and displacement 
measurements were in good 
agreement with independent point 
measurements

• The full-field strain measurements 
were extracted at FEA node points 
for direct comparison with analytical 
predictions
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Example #5: Characterization of Buckling Behavior in a Large, 
Integrally Stiffened Metallic Cylinder
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Problem:

• Cylinder buckling is the primary design 

driver in launch vehicle designs

• Overly conservative design factors can 

result in overweight structures

• The buckling behavior is strongly influenced 

by the shape and imperfections 

• The imperfections and shape may change 

during initialization

Goals:

• Obtain test data to develop and validate 

high-fidelity buckling simulations and design 

guidelines

• Characterize the installed shape and 

imperfections

• Characterize loading boundary conditions

www.nasa.gov/sls

(a) Test Article (8’ dia.)

(b) Hydraulic Actuator

(c) Loading Rod

(d) Load Cell

(e) Attachment Ring

(f) Load Introduction 
Cylinder

(g) Load Strut

(h) Loading Spider



Example #5: DIC Setup

iDICs 2019 45

Hardware/Software:

• Eight pairs of cameras (every 45-degrees)

• 5MP FLIR Grasshopper with 6 and 8mm lenses 

• Overlapping AOI (~15-degrees)

• Cameras mounted on existing building frame

• Hardware synced systems 

• VIC3D-8
TM

with RealTime

• Aperture, exposure time, and lighting optimized

DIC Configuration

• AOI ~ 84 inch x 70 inch

• Pixel Resolution ~ 30 pixels/inch

• Speckle Size ~ 0.5 inch (painted with vinyl stencils)

• Subset Size 35 pixels and Step Size 7 pixels

• Standoff Distance ~ 6 to 10 feet

• Camera Angle ~ 25 to 30-degrees 

• Calibration grid: 14x10 56mm

Issues

• Travel logistics (i.e., make sure we have everything we need)

• Real-time monitoring (i.e., ~5 second refresh) during loading

• Syncing multiple systems
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Top-view of low-speed DIC system layout



Example #5: Typical DIC Noise Floor
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Example #5: DIC Operations
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• Images acquired every five seconds 
[0.2 Hz]

• Set of images acquired at tare load for 
noise estimates [~ 50 images]

• Load line and pressure data recorded 
by DIC to synchronize with data 
acquisition system

• VIC-3D™ Real-time module used 
during testing

• Each of the eight systems was monitored

• DIC results compared to predictions in real-time to 
identify anomalies that could influence loading 
decisions Control Room with VIC-3DTM Real-time Monitoring of each system



Example 5: DIC Results
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intersection with adjacent 
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• Referred to as q – thresholding

• DIC data outside these points 
was removed from data sets

• Minimizes measurement 
uncertainty in the assembled 
data

• Allows for an estimate of the 
displacement uncertainty

• σmag = 0.001 inches

• 3σmag = 0.003 inches (99.7% 
confidence interval)



Example #5: Anomalous Behavior
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Example #5: Using DIC Boundary Conditions in Analysis
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• The DIC data indicated that the cylinder slipped 

at the stiffer weld region

• DIC characterized:

• The extent of the slippage around the 

circumference

• The magnitude of the slippage (axial 

displacement)

• DIC measurements were included as boundary 

conditions to the analysis at the hold load



Example #5: Findings and Ramifications

• The “jump” in the LVDT displacements have been previously observed and 
attributed to “issues” with the LVDT

• The DIC measurements allowed the root cause to be determined and 
incorporated in the analysis as modified boundary conditions

• Additional studies were performed to understand the slippage and a new 
potting approach was developed for future tests
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Additional Example #1: Ascent Cover Separation

• The Ascent Cover protects the 
docking mechanism from 
aerodynamic loads during launch

• An explosive charge separates the 
two hemispheres and jettisons the 
cover away from the flight vehicle

• Testing was performed to evaluate 
rivet separation times and 
hemisphere velocities

• 2D DIC was used to characterize 
rivet separation times

• 3D DIC was used to characterize 
oscillations during separation
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Additional Example #2: COPV Deformations

• Composite Overwrapped Pressure 
Vessels (COPVs) contain pressurized 
gases or liquids and are used on nearly 
all space flight vehicles

• A COPV consists of a metallic liner that 
acts as a barrier and a composite 
overwrap for strength

• Multiple 3D DIC systems are used to 
characterize:

• Hoop and axial strains

• Tank elongations

• Volume change estimates

• Complex strain fields in the dome regions

• Localized deformations

• Liner composite delaminations
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Additional Example #3: Crack Growth in Composite Materials

• The Advanced Composite Project is 
developing methods for predicting 
progressive damage in composite 
materials

• Tests were conducted on open hole 
tension coupons to develop data on crack 
nucleation and propagation

• DIC was used to determine:
• The load that cracks initiated

• The rate that cracks propagated

• Local crack parameters (e.g., crack opening 
displacement)
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Crack growth in an open hole tension 

composite test coupon (45° outer plies)



Additional Example #4: Mars 2020 Rover Wheels

• The Mars 2020 Rover wheels will be 
tested to simulate landing loads

• Validation of models

• Evaluate peak strains relative to design 
margins

• Testing of a full-scale 3D printed mockup 
was performed to determine 
requirements

• Flight hardware tests will be performed 
in Oct-Nov 2019
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Additional Example #5: Composite Panel Buckling

• The Advanced Composite Project (ACP) 
is developing tools to reduce certification 
time for composite materials and 
structures

• High fidelity computational methods are 
being developed for strength and life 
predictions

• Tests are being conducted to validate the 
computational tools
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Lessons Learned

• Boundary conditions need to be considered in any structural test
• Rigid conditions are usually not rigid

• Analyses with incorrect boundary condition assumptions can be right for the wrong 
reason or right, but not know it because the analysis does not agree with the test 
measurements

• Complex tests, especially at remote locations and on a tight schedule, 
require planning

• Mockups are extremely useful when traveling to remote locations

• Build DIC setup with the mockup, then pack for shipping

• Understand the noise floor relative to the magnitude of the quantities being 
measured

• Follow iDICs “Good Practices Guide for Digital Image Correlation” for 
documenting results
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