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MOTIVATION

1. In the course of analyzing complex phenomena, 
the cost of data acquisition is prohibitive.

2. In this small data regime, data-driven methods 
often fail to provide convergence or quantify 
uncertainty associated with their predictions.

3. There exists a vast amount of prior knowledge 
not being utilized in modern machine learning.

4. There's skepticism regarding the solid 
grounding of purely data-driven approaches.
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GOAL
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• To develop a scalable framework for uncertainty 
propagation in physical systems that leverages 
recent developments in machine learning and 
governing physical laws in the form of partial 
differential equations.



WHAT IS A PI-GAN?

A combination of:

• Generative Adversarial Networks (GANs):

• Uses adversarial training to learn to generate new 
samples based on the underlying distribution of 
some training data.

• Physics-Informed Neural Networks (PINNs):

• Constraints the space of admissible solutions by 
some stochastic partial differential equation that 
encodes the governing physical laws of the 
system being studied into the training procedure.
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ADVERSARIAL TRAINING
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PROBLEM SETUP

• To illustrate the main idea of PI-GANs, consider a partial differential equation of 
the form:

Where:
-> a general differential operator
-> d-dimensional physical domain of
-> probability space
-> random event that denotes the random instance of the snapshot

and are modeled by generators, and is induced using the 
automatic differentiation capabilities of TensorFlow 2.
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PI-GAN LOSS FORMULATION
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Standard NN Loss
PINN Loss PI-GAN Loss

GAN Loss

The PINN loss is a function of u and k, 
which are individual neural networks; i.e.,

The PDE is derived through automatic 
differentiation of these networks.



APPLICATION
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• Problem:
• Traditional test-driven certification of novel materials and structures is 

expensive and time consuming.



INFERING MATERIAL PROPERTIES OF A BAR 
IN UNIAXIAL TENSION
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• A one-dimensional bar with unknown, spatially-
varying elastic modulus subjected to a known 
stress σ.

• The target for elastic modulus was assumed to be:

where is a Beta random variable, making a 
stochastic function whose uncertainty is to be 
quantified by the network.
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• In this case, has a closed form expression:

• is related to through the governing PDE:

INFERING MATERIAL PROPERTIES OF A BAR 
IN UNIAXIAL TENSION (Cont.)
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• Training Data: 1,000 snapshots of 
displacement measurements at 60 
uniformly distributed sensors (with 
inherent randomness)

• PDE constraint: enforced at 10,000 
uniformly distributed collocation points

• Training Steps: 50,000

• Training Time: 2h15m (Tesla V100)

INFERING MATERIAL PROPERTIES OF A BAR 
IN UNIAXIAL TENSION (Cont.)
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PRELIMINARY RESULTS
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Displacement along the bar Stiffness along the bar



K-CLUSTER PERFORMANCE
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• # of Data Points: # Sensors * #Snapshots

• CPU: Dual socket 8 core 2.6 GHz Intel E5-
2640v3 Haswell Node

• GPUs:
• NVIDIA Tesla K40
• NVIDIA Tesla V100

• Future work involves higher dimensions and 
significantly more data. The scalability and 
efficiency provided by GPUs will be critical.



FUTURE WORK

• Scale architecture to 2D data.

• Expand work to Digital Image Correlation(DIC) 
samples of full-field displacements over the surface 
of a small number of test specimens.

• Explore distributed deep learning to minimize the 
cost of scaling the network.
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