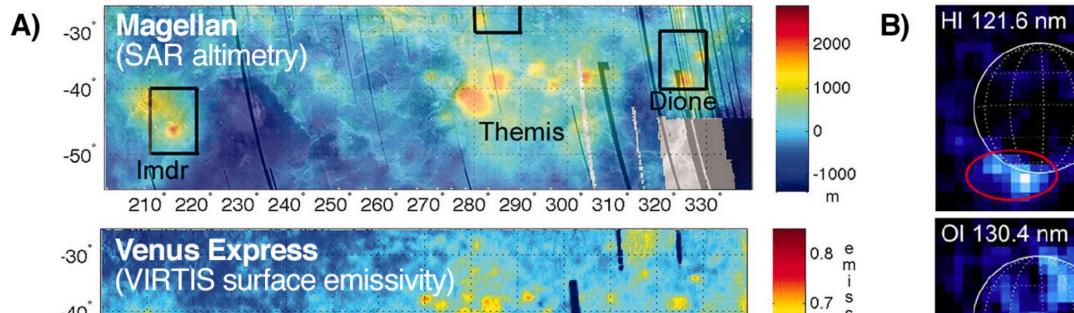
a space telescope for planetary science C. L. Young, ²K.M. Sayanagi, and team* ¹NASA Langley Research Center (LaRC), Hampton (Deputy PI), VA, ²Hampton University, Hampton, VA (PI) NA SA

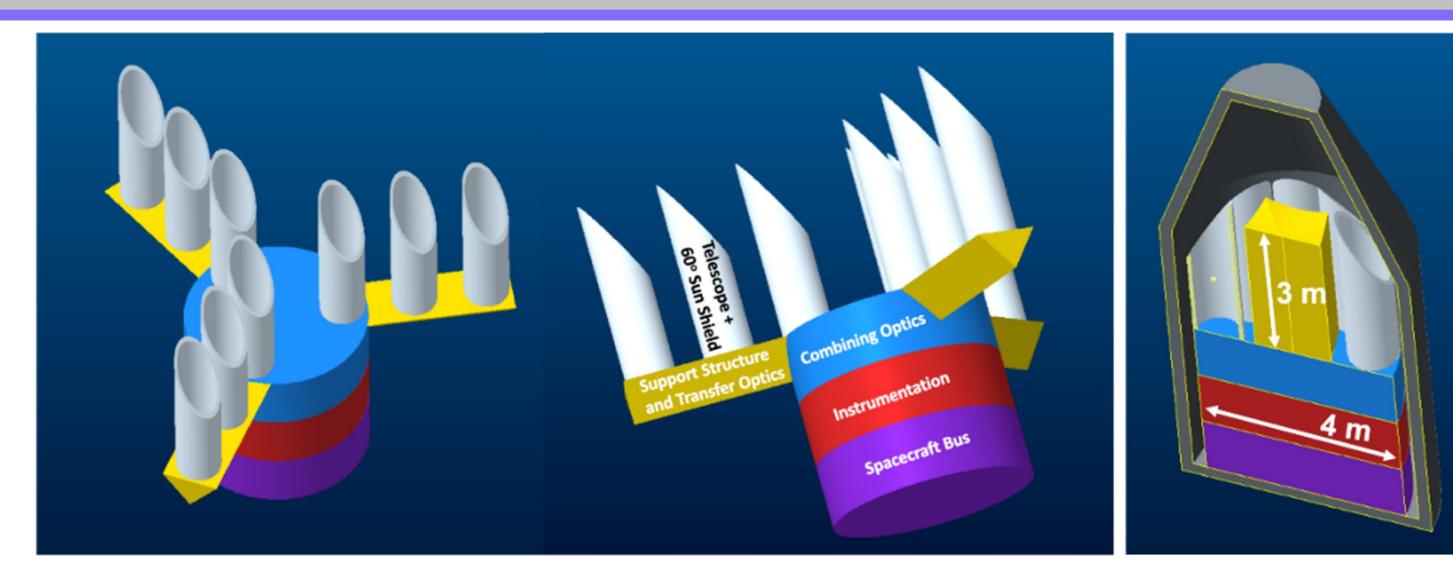

Summary

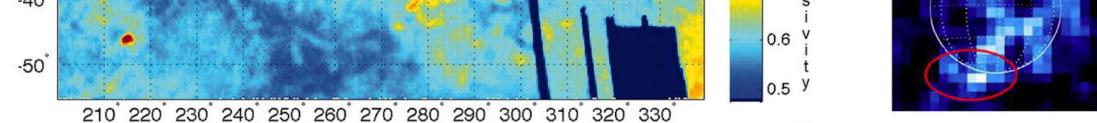
Caroline Herschel high-Angular Resolution In-Space assembled Multi-Aperture (*CHARISMA*) telescope for solar system science addresses the Committee on Astrobiology and Planetary Science (CAPS)'s recommendation to study a large/medium-class dedicated space telescope for planetary science.

We are nearing the end of the Hubble Space Telescope (HST)'s lifetime, at which point the continuity of solar system UV measurements will be lost. Scientific objectives critically dependent on UV capabilities include: studies of exospheric and auroral emissions in planetary atmospheres and plumes.

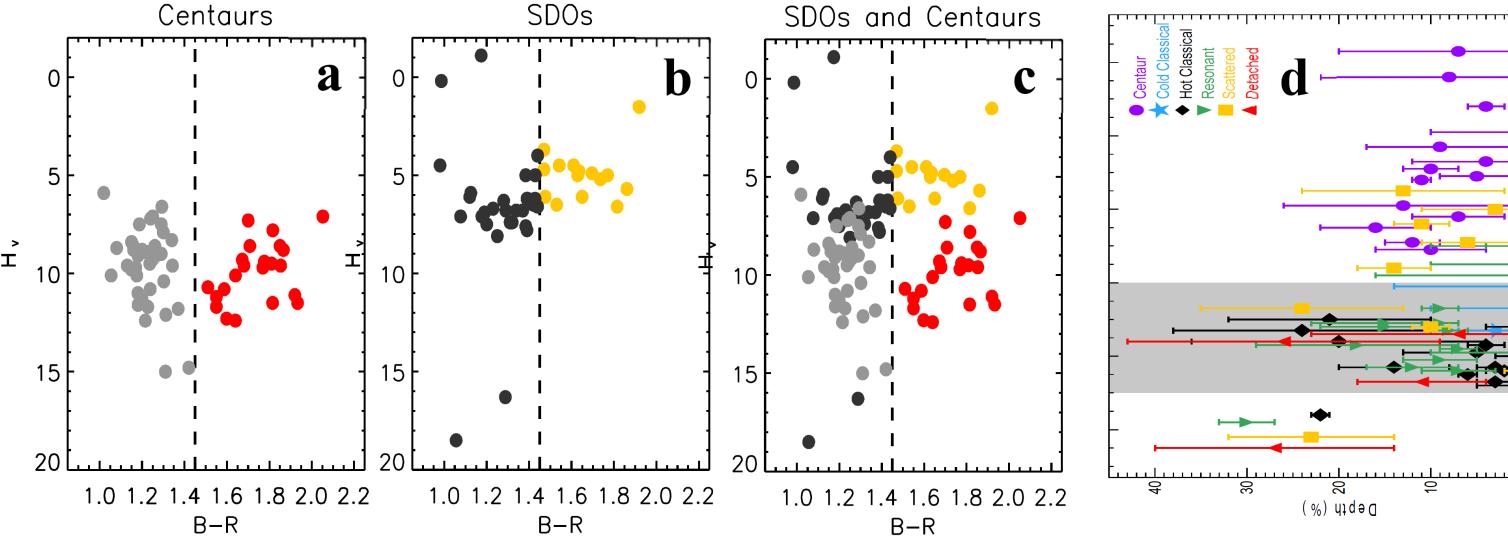
CHARISMA will also revolutionize our understanding of time-dependent phenomena in our solar system: interaction of planetary magnetospheres with the solar wind,

Active Plumes and Volcanism (ACT):

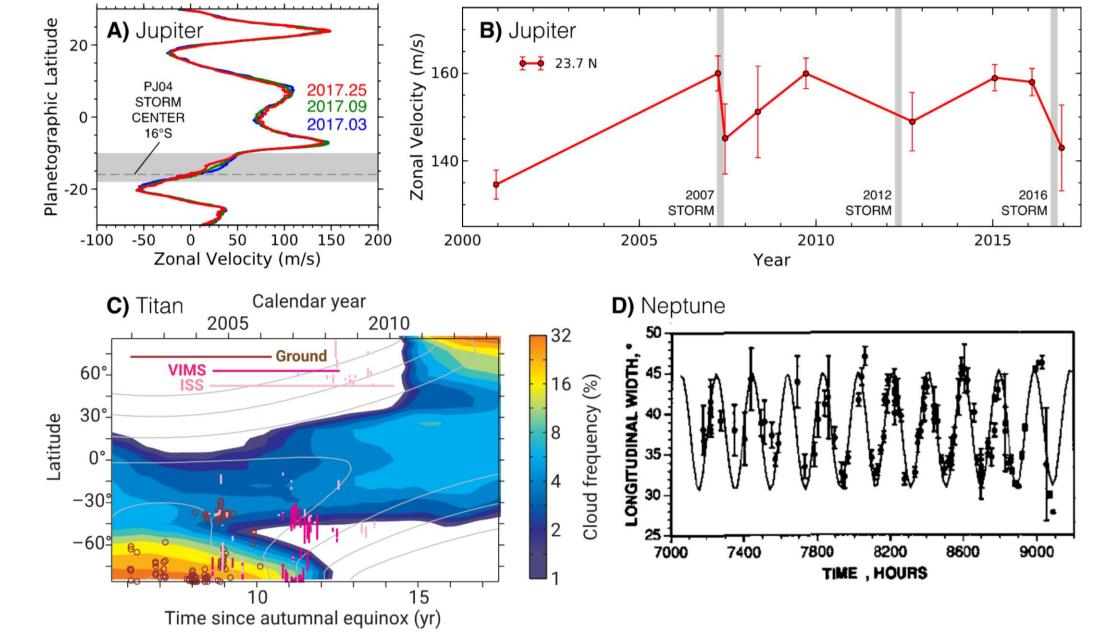



A) Surface emissivity (bottom) reveals areas of recent lava flow that are less weathered than their surroundings. Surface emissivity is derived from spectral data in the 1.02 µm region[1]. (B) Plume activity on Europa is suggested by HST UV observations of transient signals[2].

- Venus and giant planet atmospheric dynamics,
- icy satellite geologic activity and surface evolution,
- cometary evolution, and evolving ring phenomena,
- comprehensive survey of the spectral characterization of minor bodies across the solar system, which requires a large time allocation not supported by existing facilities.


CHARISMA will examine the benefits of advanced in-Space Assembly (iSA) technologies that enable a 10-m class aperture at New-Frontiers cost. CHARISMA will have the greatest impacts on science objectives particularly sensitive to dynamically evolving phenomena with fine-scale structures in planetary rings, active plumes/volcanism, atmospheric energy/momentum transport, and aurora.

Technology



Outer Solar System Minor Body and Irregular Satellite Survey (MBS):

Science

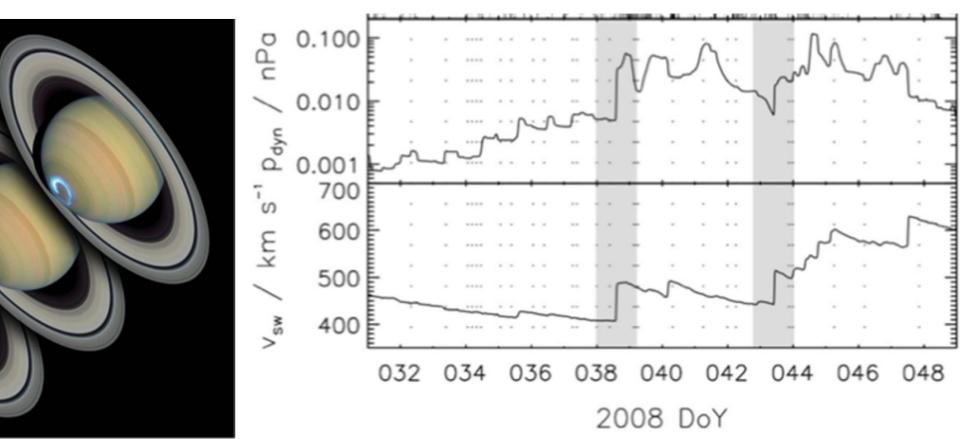
Dynamic Atmospheres (ATM):

Broadband color data[3] (for (a) Centaurs, (b) SDOs, and (c) both overplotted) cannot conclusively validate the dynamically-based hypothesis that Centaurs originate from the SDOs, requiring a spectroscopic sample from each population. (d) The transition region from water-rich to water-poor surfaces is shown in grey, in a plot of water ice feature strength vs. absolute magnitude[4]. We propose to increase the sample size of KBOs and Centaurs by an order of enable magnitude and comparisons of water ice abundance, color, and diameter, shedding light on the formation and evolution of the various dynamical populations.

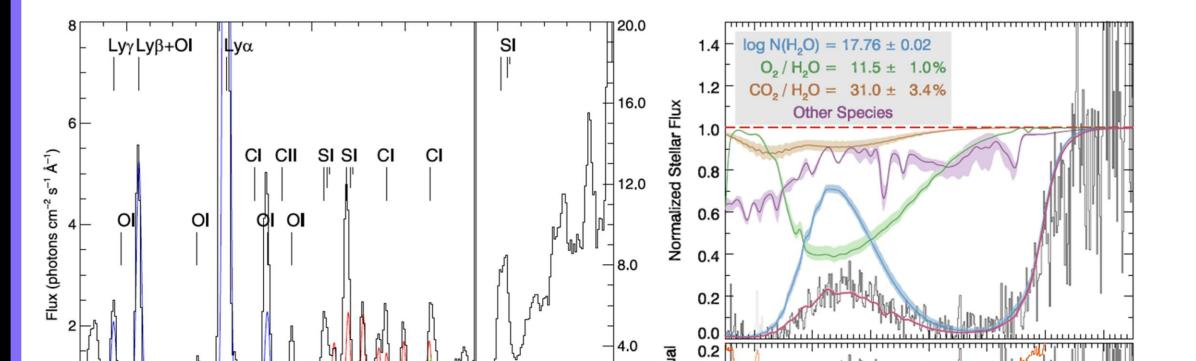
There are gaps in our understanding of storm/cloud activity, jets, and vortices of all planets with atmospheres due to the limited temporal coverage currently available. Major storm eruptions in Jupiter's southern (A) and northern (B) hemisphere alter zonal winds[5]. Models[6] duplicate storm activity at Titan's pole but not at midlatitudes (C). Oscillations in the shape of Neptune's Great Dark Spot (D) from Voyager's Neptune approach give insights into deep stratification, wind shear, and chemistry[7].

CHARISMA is enabled by iSA technologies. Study plan will:

- Leverage expertise across NASA Centers: iSA from LaRC and in-space servicing from GSFC.
- Adopt a sparse, distributed-aperture architecture (inherently modular in design and conducive to iSA)
- Examine the potential for future servicing and upgrades enabled by the iSA technologies.
- Provide an early demonstration of technologies needed for future astrophysics telescopes while serving as a fully functional telescope for planetary science.
- Take advantage of LaRC's leading role in the Orbital Servicing, Assembly and Manufacturing (OSAM) efforts to perform a series of trade studies.

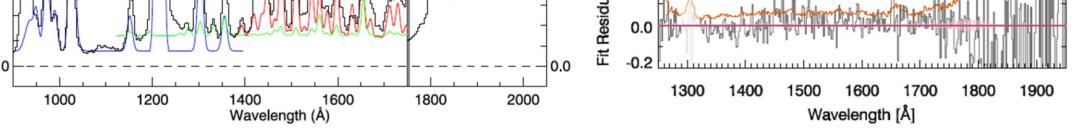

CHARISMA design:

- Imaging and spectrographic capabilities in 110 nm 1.7 μm
- Nine 1-m Cassegrain sub-apertures in a tri-arm configuration to form a 10-m effective aperture.
- Collimated beams emerging from the nine sub-apertures are brought in phase by the optical path adjustment mechanisms in the arm trusses. Combiner optics focus the beams on a single focal plane.
- Design has a light-collecting area equivalent of the 2.4-m HST and a diffraction limit of a 10-m telescope.
- A pick-off mirror directs the beam onto the detector (or the slit) of the desired instrument.
- Chamfered sunshields on the sub-apertures reduce the exclusion zone to about 30° around the sun, facilitating observations of Venus and comets near perihelion, and extending temporal coverage of the outer planets when they are near solar conjunction.
- Cost: nine sub-apertures and four instruments to be assembled by one robotic arm in low-Earth orbit, the LaRC Basis-of-Estimate tool predicts that CHARISMA will cost \$815M including 30% reserve.


Scientific objectives enabled by different telescope architectures:

and TitanRRCT-2: What drives variability in volcanic and ryovolcanic activity?Determine the statistics of plume activityRRRCT-3: What is the composition of magma and ryomagma reservoirs?Determine composition of lava and surface depositsRRRIBS-1: What do the compositions/colors of hinor bodies/irregular satellites reveal about lanetary migration early in solar system history?Determine the source population(s) of the Jupiter Trojans and irregular satellites of the giant planets.D, SIIBS-2: What dynamical processes shape minor ody populations today?Determine hew source population(s) of the Centaurs.D, SIIBS-3: What do the compositions of minor odies reveal about the radial variations in the olar nebula?Determine how formation distance influenced KBO surface composition.D, SIDetermine statistics, properties, and evolution of convective events, wave systems, vortices, and jetsRRR
today?and TitanRRACT-2: What drives variability in volcanic and cryovolcanic activity?Determine the statistics of plume activityRRRACT-3: What is the composition of magma and cryomagma reservoirs?Determine composition of lava and surface depositsRRRMBS-1: What do the compositions/colors of minor bodies/irregular satellites reveal about planetary migration early in solar system history?Determine the source population(s) of the Jupiter Trojans and irregular satellites of the giant planets.D, SIMBS-2: What dynamical processes shape minor body populations today?Determine he source population(s) of the Centaurs.D, SIMBS-3: What do the compositions of minor bodies reveal about the radial variations in the solar nebula?Determine how formation distance influenced KBO surface composition.D, SIDetermine statistics, properties, and evolution of convective events, wave systems, vortices, and jetsRRR
ryovolcanic activity?Determine the statistics of plume activityRRRIDS-1: What is the composition of magma and ryomagma reservoirs?Determine composition of Iava and surface depositsRRRIDS-1: What do the compositions/colors of ninor bodies/irregular satellites reveal about lanetary migration early in solar system history?Determine the source population(s) of the Jupiter Trojans and irregular satellites of the giant planets.D, SISIDS-2: What dynamical processes shape minor ody populations today?Determine he source population(s) of the Centaurs.D, SIIIDS-3: What do the compositions of minor odies reveal about the radial variations in the olar nebula?Determine how formation distance influenced KBO surface composition.D, SIIIDEtermine statistics, properties, and evolution of convective events, wave systems, vortices, and jetsRRRR
MBS-1: What do the compositions/colors of minor bodies/irregular satellites reveal about planetary migration early in solar system history?Determine the source population(s) of the Jupiter Trojans and irregular satellites of the giant planets.D, SISMBS-2: What dynamical processes shape minor body populations today?Determine the source population(s) of the Centaurs.D, SIIMBS-3: What do the compositions of minor bodies reveal about the radial variations in the solar nebula?Determine how formation distance influenced KBO surface composition.D, SIIDetermine statistics, properties, and evolution of convective events, wave systems, vortices, and jetsRRR
Initial bodies/inegular satellites reveal about planetary migration early in solar system history?Trojans and irregular satellites of the giant planets.D, SIMBS-2: What dynamical processes shape minor body populations today?Determine the source population(s) of the Centaurs.D, SIMBS-3: What do the compositions of minor bodies reveal about the radial variations in the solar nebula?Determine how formation distance influenced KBO surface composition.D, SIATM-1: How does energy/momentum transport vary temporally and spatially in dense planetary atmospheres?Determine statistics, properties, and evolution of convective events, wave systems, vortices, and jetsRR
Determine the source population(s) of the Centaurs.D, SMBS-3: What do the compositions of minor bodies reveal about the radial variations in the solar nebula?Determine how formation distance influenced KBO surface composition.D, SLATM-1: How does energy/momentum transport vary temporally and spatially in dense planetary atmospheres?Determine statistics, properties, and evolution of convective events, wave systems, vortices, and jetsRR
Determine now formation distance initiatice (KBO) D, S Solar nebula? Determine now formation distance initiatice (KBO) ATM-1: How does energy/momentum transport vary temporally and spatially in dense planetary atmospheres? Determine statistics, properties, and evolution of convective events, wave systems, vortices, and jets
atmospheres?
ATM-2: How is vertical energy transport Determine the response of horizontal circulation, aerosol
processes?
ATM-3: What is the current outer solar system Detect and characterize impact ejecta fields in giant planet atmospheres
MAG-1: What controls auroral processes on different scales of time and planetary size? Map auroral emission on terrestrial/gas giant/icy bodies, under varying solar wind and magnetospheric conditions R R R
MAG-2: What is the balance between internal/ external control of magnetospheric variability? Measure the 3D structure and variability of the lo
COM-1: How do the coma and nucleus evolve seasonally or with heliocentric distance (R _h)?
COM-2: What processes dominate in the coma? Determine spatial associations of various coma species, as coma activity and morphology evolves
RNG-1: What is the current and past provide the solar Determine the ring particle size distributions and R R R System?
RNG-2: How do ring structures evolve and Interact with moonlets?

Magnetospheric Interactions (MAG):



Cometary Evolution, Morphology, and Processes (COM):

(left) HST far-UV images of Saturn's aurora and changes during an auroral storm, and (right) total auroral power at Saturn vs arriving solar wind speed. The shaded regions indicate the arrival of solar wind shocks at Saturn[8].

In multiple comets, CHARISMA would measure (left) atomic and molecular UV emission to distinguish coma processes such as electron impact (blue, green) and fluorescence (red), and (right) transmission during stellar occultation to determine associations between species such as O₂ and H₂O, as shown in these examples from Rosetta/Alice data[9,10].

Planetary Ring Systems (RNG): The study of planetary ring systems is not only critical for understanding the dynamic history of our own solar system, but also sheds light on physical processes that lead to planet formation in protoplanetary disks. CHARISMA would address outstanding questions related to ring systems of Jupiter, Saturn, Uranus, Neptune, Chariklo, Haumea, and other potentially ringed minor bodies.

*Team: M. Wong, S. Curry, K.L. Jussup, T. Becker, A. Hendrix, N. Chanover, S. Milam, B. Holler, G. Holsclaw, J. Peralta, J. Clarke, J. Spencer, M. Kelley, J. Luhmann, D. MacDonnell, R. Vervack, K. Rutherford, L. Fletcher, I. de Pater, F. Vilas, L. Feaga, A. Simon, O. Siegmund, J. Bell, G. Delory, J. Pitman, T. Greathouse, E. Wishnow, N. Schnieder, R. Lillis, J. Colwell, L. Bowman

[1] Smrekar et al., 2010 Science.	[4] Barucci et al., 2011 Icarus.	[7] Sromovsky et al., 1993 Icarus.	[10] Keeney et al., 2019 Astronomical Journal.
[2] Roth et al., 2014 Science.	[5] Tollefson et al., 2017 Icarus.	[8] Clarke et al., 2009 JGR (Space Physics).	
[3] Hainaut et al., 2012 Astronomy and Astrophysics.	[6] Schneider et al., 2012 Nature.	[9] Feldman et al., 2018 Astronomical Journal.	