

Biofuels Take Flight: How Advanced Jet Fuels Reduce Cloudiness and Aviation's Climate Impact

Richard Moore Langley Aerosol Research Group (LARGE) Science Directorate, NASA Langley Research Center

These environmental effects will only increase in the future, as air travel continues to grow at a rate of 2-3% per year.

Ground tests with the NASA DC-8 CFM56 engines demonstrate particle emissions reductions from burning alternative fuels

Anderson, B.E. et al., NASA/TM-2011-217059, 2011 Beyersdorf A.J. et al., *Atmos. Chem. Phys.*, 2014 Moore, R.H. et al., *Energy & Fuels*, 2015 **6** However, cruise conditions are very different from conditions on the ground, which necessitates in-flight testing

- Flight test series conducted at Edward AFB complex
- Falcons are slow, but can sample exhaust up close
- Two fuels: Jet A and 50:50 Jet A and Biofuel Blend
- Corresponding ground test to link to past studies

- Flight test series conducted in German air space
- DC-8 is fast, but was required to sample > 5 km in trail
- Three fuels: Jet A and 2 blends of varying composition
- Corresponding ground test
- Also sampled commercial aircraft flights of opportunity in the national air space targeting advanced engines

Finding: Jet Biofuels Reduce Soot Particle Emissions by 50-60%!

ransport Association (IATA) has targeted carbon-neutral growth by 2020 and a 50% reduction in carbon emissions by 2050 (ref. 9). Sustainable bioiet fuels are a promising route for mitigating greenouse gas emissions. However, many challenges remain before aviation biofuels can be widely adopted, particularly with regard to cost and distance of 30-150 m (plume age of about 0.15-0.75 s) behind the sustainability. Let fuels are more highly refined than the biofuels used DC-8 (Fig. 1). This short distance assures that the plumes from specific for surface transportation, with the latter perhaps presenting a "better engines did not mix. Three different fuels and three different engine many alternative energy solutions for surface transportation, other than liquid hydrocarbon-based fuels, that are realizable in the near istic flight conditions on the DC-8 flight curve (Fig. 1d). Commercial aircraft typically fly at thrust conditions at or slightly above the future^{10,11}. Biojet fuels consist of a mixture of C₉-C₁₆ hydrocarbons that 'maximum range' point, at which the quotient of drag and Mach

within the wings. During the flight experiments, these tanks conto 3-4 times the year 2000 levels5. Consequently, some governments tained either a medium- or low-sulfur-content Jet A fuel, while a are exploring ways to curb these emissions, and the International Air fuselage-mounted auxiliary tank contained an approximately 50:50 (b) rolume) blend of a low-sulfur-content Jet A fuel and a Camelina-based HEFA bioiet fuel (see Methods)

The exhaust plumes from the left and right inboard DC-8 engines were sampled by research aircraft flying in a trailing formation at a tunity cost"¹⁰. However, unlike for aviation, there are thrust conditions were investigated, which bracket the range of real

¹NSA Langing Reaset: Gotte: Amption, Virginia, USA: Science Systems and Applications, Incorporated (SSA), Hearpion, Virginia, USA: ²Outode: Bahrum Ito Luit- und Reambart (DLR), Intellitä of Amorpheric Physics, Oberphöfenholm, Garmany, ¹University of Vienna, Wen, Acativa¹ Luiderg Mastiritation, Usavari, Mantelo, Garmany, ⁵California Sale University San Bernardina, Salitani, USA: ¹Outoder, 1994, Sale Science, 1994, Sale Science,

Number of non-volatile particles emitted per kilogram fuel burn (10¹⁵ kg-fuel⁻¹)

Volume of non-volatile particles emitted per kilogram fuel burn $(mm^3 kg-fuel^{-1})$

Finding: These Soot Particle Emissions Reductions Directly Translate Into Contrail Ice Crystal Number Reductions!

Schripp, T. et al., Environ. Sci. Technol., 2018

New Citizen Science Project Combining GLOBE Observer With FlightRadar24 Aircraft Augmented Reality

Alpena Elementary/Middle School, Alpena AR
Treadway Elementary, Leesburg, FL
Lexington School for the Deaf, East Elmhurst, NY
University of Toledo, Toledo, OH

Contact Marilé Colón Robles – Marile.ColonRobles@nasa.gov

Statistics Provided By The Students Enable NASA Researchers To Test Their Contrail Prediction Models

Contact Marilé Colón Robles – Marile.ColonRobles@hasa.gov

DO SCIENCE IN THE PALM OF YOUR HAND Download the GLOBE Observer app observer.globe.gov

Your planet is changing. We're on it.

Jane.Smith@nasa.gov

New Cloud Observation

Review / Send My Cloud Observations

> Check Satellite Flyovers

EARTH RIGHT NOW