
Hady Salama and Bryan W. Welch
Glenn Research Center, Cleveland, Ohio

On Development of Modern Software Interface
to Glenn Research Center’s Communication
Analysis Suite

NASA/TM—2020-220513

June 2020

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Hady Salama and Bryan W. Welch
Glenn Research Center, Cleveland, Ohio

On Development of Modern Software Interface
to Glenn Research Center’s Communication
Analysis Suite

NASA/TM—2020-220513

June 2020

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

This report contains preliminary fi ndings,
subject to revision as analysis proceeds.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

NASA/TM—2020-220513 1

On Development of Modern Software Interface to
Glenn Research Center’s Communication

Analysis Suite

Hady Salama* and Bryan W. Welch
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary
NASA’s Space Communications and Navigation (SCaN) program analyzes space communication

channels involving satellites in any Earth orbit and deep space for a multitude of operations. Specifically,
the SCaN program will power the future of lunar communications in the next decade and beyond. A web-
based user interface of the static link analysis component of the Glenn Research Center’s Communication
Analysis Suite (GCAS) was developed. It is operated through a newly designed front-end application with
an easy to use and intuitive web-based user interface that provides accurate satellite communications link
analysis capabilities. Its use does not require any knowledge of the underlying MATLAB® program (The
MathWorks, Inc.) or its corresponding programming environment. The GCAS offers high-fidelity optical
communications and radiofrequency link analysis calculations to give users the ability to input a
multitude of known link parameters and calculate desired link analysis outputs on a new web-based
software platform. This interface utilizes significantly more link parameters in the calculations, compared
with prior versions of the static link analysis capability, with the ability to solve for a larger set of output
results in different configuration modes, and fidelity and added flexibility in terms of developing software
outside of MATLAB®. Features included in the web application utilize the MATLAB® RuntimeTM to
perform calculations using the existing repository of MATLAB® code, save configuration parameter
values, load configuration parameter values with preloaded default parameter values, to increase the
tool’s versatility. The updates to the GCAS interface will benefit NASA as it develops the next decade’s
lunar satellite communication architecture. A broader population of users will have access to modernized
communications link analysis as more advanced satellite communications architectures are built.

Introduction
NASA’s Space Communications and Navigation (SCaN) program analyzes and operates satellite and

ground station systems to enable critical space communications for NASA missions. These missions and
operations are powered by radiofrequency (RF) communications links today, and may in the future
include optical (laser beam) communications links. User satellites establish effective communications
links with other satellites (space-to-space links) and/or with ground station antennas (space-to-ground or
ground-to-space links). The performance of the links from space-to-space, space-to-ground, or ground-to-
space are characterized by the quality and timing of the data received. The analysis of the links are
affected by over 60 variables including the distance between the nodes, transmit power, receiver gain,
data rate, modulation, coding scheme, and lens diameter in optical links. Solving for variables such as link
margin, distance, data rate, and transmitter power are critical when analyzing the effectiveness of a

*Summer Intern in Lewis’ Educational and Research Collaborative Internship Program (LERCIP), undergraduate at
Ohio State University.

NASA/TM—2020-220513 2

communications link. Since the mathematical models that solve for such values must be used frequently
in any analysis of a space mission, it is important to develop efficient software using these models to
quickly solve for a desired output. It is also important to build an intuitive and easy-to-operate graphical
user interface (GUI) to maximize the use of the tool for those not familiar with the MATLAB®
programming environment (The MathWorks, Inc.). The GUI provides a modern, easy-to-use, web-based
software interface with the Glenn Research Center’s Communication Analysis Suite (GCAS) static link
analysis capability. This capability utilizes existing mathematical models to provide analysis and solve
for desired outputs. The work outlined in this report describes the development of the interface with a
web-based software platform.

Background
The previous interface of the static link analysis component of GCAS implemented the tools in an

executable GUI in PythonTM programming language (Python Software Foundation). The GUI was
designed with Qt Designer (The Qt Company) and written in PyQt5 code, which both have a wide variety
of limitations. From a front-end design perspective, the biggest limitations are GUI responsiveness and
development. Qt Designer does not support the ability to hide input boxes when they are not needed,
limiting the GUI responsiveness. It also lacks support of certain complex input types that require using
strings and/or integers, such as calendar and date-time. The use of those types of complex inputs are more
desirable for an intuitive GUI design. Qt Designer also makes it difficult to expand the existing GUI
because every element is in a fixed location in the GUI layout. To expand the GUI, a developer must
modify the layout scheme to add more inputs. In terms of development, the GUI code is cumbersome to
expand or change in any way. The GUI and its code does not have support for style elements such as
coloring and responsive resizing. The developer must design their layout in the Qt Designer and then
compile it into PyQt5 code. The code is organized in an object-oriented methodology that utilizes
inheritance to layout GUI elements. This complicates the development of a GUI because simple changes
and/or bug fixes become much more difficult to support. Figure 1 illustrates the GUI as previously
developed in Qt Designer.

Figure 1.—Static link analysis graphical user interface in PythonTM Qt Designer (The Qt Company).

NASA/TM—2020-220513 3

The mathematical models that perform the numerical calculations, originally coded in MATLAB®,
were rewritten in PythonTM using NumPy and SciPy libraries. This hindered the development times of the
previous GUIs and detracted from the interface design. In addition, rewriting the code in PythonTM caused
a handful of the output values to have limited accuracy (three decimal places) when compared to the
MATLAB® code output, treated as the standard output value. This caused concerns about verification
testing of the GUI. Since the mathematical model was written in a format that can be packaged as a
software component using the MATLAB® CompilerTM, it becomes unnecessary to rewrite this code in a
different language.

Development Methodology and Discussions
This section describes topics such as code compilation, utilization, web technologies, front-end

features, back-end capabilities, deployment solutions and results of the development process.

Code Compilation and Utilization

Because it is a time-consuming process and the possible introduction of errors, preexisting code
should not be rewritten if it can be packaged in different programming languages as a reusable software
component. A better approach is to package the code for the mathematical models and build the user
interface on top of this packaged component. The goal of the GUI is to set the inputs to a function to
return an answer. The static link analysis component of GCAS consists of a multitude of scientific details
as inputs and outputs, where the output consists of many more elements beyond that of the simple desired
result requested by the analysis mode input. Given such aspects of the static link analysis component of
GCAS, the MATLAB® code was compiled for use in PythonTM using the MATLAB® CompilerTM to act
as a single black-box function. Figure 2 illustrates the command sequence to import and initialize those
compiled modules in PythonTM.

The code was integrated into PythonTM using the MATLAB® Compiler SDKTM, which required
installing the compiled files as a PythonTM package. This package runs the compiled files on the free
MATLAB® RuntimeTM without needing a license. Figure 3 illustrates the command to execute the static
optical link analysis module of GCAS in PythonTM.

Figure 2.—Command sequence to import and initialize compiled module in

PythonTM using MathWorks® MATLAB® CompilerTM.

Figure 3.—Command to execute compiled module in PythonTM from MathWorks® MATLAB®

Compiler SDKTM.

NASA/TM—2020-220513 4

TABLE I.—MATLAB® AND PYTHONTM DATA-TYPE CONVERSION
MATLAB® output argument typea Resulting PythonTM data type
Numeric array matlab numeric array object
Double float
Single -------
Complex (any numeric type) Complex
int8 int
uint8 -------
int16 -------
uint16 -------
int32 -------
uint32 int
int64 long
uint64 -------
NaN float(‘nan’)
Inf float(‘inf’)
logical bool
char array (1-by-N and N-by-1) str
char array (M-by-N) Not supported
structure dict
Row or column cell array list
aScalar unless otherwise noted

This package was integrated into the code as a MATLAB® RuntimeTM object with the link tool

function as an attribute of that object. The parameters of the function are then structured in PythonTM
dictionaries, which is the PythonTM equivalent of MATLAB® structures. In general, data and data
structures are transmitted effectively between PythonTM and the compiled MATLAB® files due to the
MATLAB® Compiler SDKTM support for PythonTM data types and structures, as shown in Table I.

The MATLAB® Compiler SDKTM also supports type parsers for MATLAB® for unique data types
such as MATLAB® double matrices, using the “matlab.double([[0.0, –4.0], [180.0, 0.0]])” to represent a
two-dimensional double matrix. This wrapper encapsulates nested float lists in PythonTM, which translates
to a 2 × 2 double matrix in MATLAB®. The MATLAB® Compiler SDKTM provides versatility to write
applications without needing to rewrite the MATLAB® code.

Finally, the code was tested using test fixtures from the Unittest library (PythonTM) to ensure that the
output results in PythonTM were the exact same as MATLAB®. The test fixtures were created using assert
equal statements to ensure that the output values in PythonTM were exactly the same as expected values
brought manually from MATLAB® outputs. The results of this testing were successful.

Web Technologies

Over the last decade, the development of custom GUIs has flagged because of the push for web
technologies. In general, a GUI with a predefined layout of input parameters does not provide a design
striving for responsiveness, reusability, and expansion. A much simpler approach uses Hypertext Markup
Language (HTML) to layout input parameters. HTML also utilizes Cascading Style Sheet (CSS), which
gives the developer more control over the style elements of the interface such as coloring and responsive
resizing. HTML and CSS are now the standard conventions for designing an interface even if it is not
hosted on the web because of the simplicity of development and cross-platform support. HTML is easier
to develop and connects into almost any language to manage the logic of the application.

NASA/TM—2020-220513 5

The PythonTM Django® web application framework (Django Software Foundation) was used to
implement the front-end application instead of using the PyQt5 GUI application framework. Being the
oldest web framework, Django® is the world’s most popular to develop web applications. The Django®
framework strives for simplicity, rapid web development, and minimizing PythonTM code. What separates
Django® from other web frameworks is that it is a full-stack web framework. Full-stack web frameworks
implement front-end and back-end components into a web application for a more dynamic experience.
This allows the developer to design the front end and engineer the back end all from the same framework
in the same core programming language. This saves time because it eliminates the need to use multiple
frameworks to handle different parts of the stack. For example, a dual-framework might use Angular JS
for front-end development to manage user interface components and Flask or NodeJS as a back-end
framework to manage the server and database components. It was much simpler to use a single
framework to handle every part because there was only one person developing the web application.

Front-End Features

The first advantage of using Django® includes support for HTML templates through the Django®
template module. Instead of expanding the GUI application’s user interface in Qt Designer, a single-page
reusable HTML form was designed using the open-source Bootstrap 4 GUI component library. The result
was a much richer user interface that was easier to use. The HTML features the latest facets of modern
web development conventions and style and uses the most up to date Bootstrap 4 CSS and JavaScript
components. The user interface was developed using the Google Chrome web browser and debugged with
Chrome’s developer tools which give realtime updated errors and warnings which is far more efficient
than compiling a user interface.

The second advantage of using Django® includes Django®’s development server that completely
mimics a real-time web-server environment. Django® controls each component of an application through
views that are written in PythonTM and stored on the server. Each view has an associated Uniform
Resource Locator (URL) scheme. When the URL opens, the function associated with that view executes
on the server. These views handle the responses when the user sends a “GET” or “POST” request. The
views also return server responses, render the HTML template, and can send data back and forth between
the user interface and the PythonTM code. This functionality met the requirements of the interface for the
static link analysis components of GCAS.

The third advantage of using Django® includes support for Hypertext Transfer Protocol (HTTP)
methods such as GET and POST. The Django® application utilizes both methods in its server architecture.
POST is utilized to submit the name and value of each parameter input from the front-end HTML form
and send it to the correct server URL upon submission. Django® then receives the data in a view that is
associated with the URL where the data was posted. Once the view has the data, it can perform a variety
of functions, such as reformatting the inputs to MATLAB® double arrays or floating point numbers, to
then support module execution and return the data structure of the link analysis result.

The fourth advantage of using Django® includes the static files module which lets the user bring in
CSS and JavaScript files to control interface logic to minimize the code in the Django® views. The
JavaScript utilizes existing Bootstrap 4 JQuery files to perform form data validation. The JavaScript also
controls interface logic such as showing and hiding configuration parameters when they are not used,
saving the form values to the browser’s local storage for nonpersistent session storage so they do not
disappear after page reload and running extra link tool data validation to ensure the parameter data is
completely valid before sending it off in a POST request. Although the JavaScript utilizes local storage to
save form values in the current session, local storage is not a means of persistent storage and the values

NASA/TM—2020-220513 6

Figure 4.—Front-end interface of static optical link analysis module of Glenn Research

Center’s Communication Analysis Suite.

Figure 5.—Server message when user saves configuration.

clear once you clear your browser data. Local storage is a basic key-value database in the browser. Saving
multiple custom link configurations for later access was out of the scope of this storage option. Figure 4
illustrates the front-end interface for the static optical link analysis module.

Back-End Capabilities

After completing the front-end capabilities, the application needed a more dynamic means of
persistent storage to store the default link configurations and the custom user configurations. This was
implemented through Django® back-end capabilities, the fifth and final advantage of using Django®.
These back-end capabilities come preloaded in the Django® project. They consist of an object-oriented
data model written in PythonTM and a lightweight and portable SQLite database that auto builds to match
the fields of a particular model.

Save functionality was implemented by reusing the HTML form for the calculations, and instead of
executing an analysis, the application saves the parameters to the database upon form submission. The
parameters are then stored in the database while the app is closed. Two more parameters were also added
to the database: the Custom Configuration Name and the Datetime. These parameters were added so the
user can differentiate between the custom configurations when they are loaded from the database at a
future date. An example from one of the loaded configurations include “Configuration Name: 'Config5'
from: 2019-07-23 21:05:34.388533+00:00.” The save function does not save output results because they
should be recalculated from the saved parameters to maintain consistency with the current mathematical
models of GCAS at all times to make sure that the user is getting the most up to date link analysis results.
Figure 5 illustrates the server message for saving a configuration.

NASA/TM—2020-220513 7

Figure 6.—Load configuration functionality.

Figure 7.—Delete configuration functionality and server message.

A load function, complementary to the save functionality, was written to pull the configurations out

of the database and perform calculations upon user request. The load function was more cumbersome to
implement because the data had to be reinjected into the HTML template. The load and save functions
both utilize Django®’s QuerySet API, which prevents Structured Query Language (SQL) injection by
using Django® methods instead of raw SQL queries. When loading a configuration, the Custom
Configuration Name and Datetime appear on the form as a message from the server. This was made
possible by Django®’s templating and GET method capabilities. The function, HTTP GET, retrieves data
from the database such as the configuration names shown in Figure 6, and renders them on the page with
the appropriate URL, to load in the configuration parameter data by configuration name. The database is
also preloaded with the default configuration values for static optical and static RF.

Finally, a delete configuration function gives the user the ability to delete added custom
configurations. Figure 7 illustrates the delete configuration process and message. Adding back-end
functionalities to the GCAS static link analysis web application interface makes it more robust as a
full-stack web application.

Deployment Solution

One of the original requirements of the user interface was that the application have a portable
executable to run offline. Considering that the standard convention for deploying a web application is
hosting it on a production server, it was necessary to replicate the same environment but as a portable
executable. The solution to this problem was reengineering an open-source software called Django2exe.
Django2exe is a software that turns Django® web applications into progressive web applications that can
run as an executable. Django2exe turns on the application in a Chromium Embedded Framework view

NASA/TM—2020-220513 8

that is embedded in a blank PyQt5 GUI pane. Django2exe starts a Chromium web browser in a blank GUI
pane that runs the web application. Django2exe was reengineered into Django2Bat, which runs all these
processes in a Bat script executable. Django2Bat was stripped of all the original components that came
with Django2exe and was upgraded with the portable WinPythonZero 3.5 PythonTM interpreter solution
able to run PythonTM, Django®, and the compiled MATLAB® functions. Several modifications were also
made to the Django2exe PythonTM source code to update all of its components. The Django2Bat solution
also uses a Secure Sockets Layer (SSL) encrypted server instead of the original development server so
that the web application benefits from Django®’s Hypertext Transfer Protocol Secure (HTTPS) security
features. These features include encrypting HTTP GET and POST requests so that the data is not
maliciously extracted from the server’s port. This deployment solution allowed packaging and running the
GCAS static link analysis web application as a progressive web application executable.

Results and Discussions

The web application underwent three major development iterations also known as betas. The first beta
was building the front-end static optical link analysis GUI, which was successful but took the longest time
because of the methodologies and development of the reusable components described previously.
Figure 8 illustrates the results of a static optical link analysis calculation through the entire interface.

Figure 8.—Static optical link analysis results.

NASA/TM—2020-220513 9

Figure 9.—Use cases of Glenn Research Center’s Communication Analysis Suite

static link analysis graphical user interface.

The second beta introduced bug fixes and the three back-end capabilities: load, save, and delete to the

static optical link GUI. This functionality not only made the web application easier to use but it made it
more dynamic as it uses back-end models and databases that can be used for future development such as
building a Representational State Transfer Application Programming Interface (REST API). The third
major beta introduced the Static RF link analysis GUI and its corresponding back-end model and database
with load, save, and delete functionality. This made the GCAS static link analysis GUI more versatile as it
now has more use cases for engineers that are not dealing with optical communications.

The third beta was the fastest to complete due to the reusable code from the first two betas. The
development time for the third beta was about 5 days compared to the development time for the first and
second beta, which was over a month each. This was due to the reusable single-page HTML template
developed using Bootstrap 4.0 and about 3,000 lines of JavaScript UI logic that can be reused in most
other link tools after static optical and static RF. The faster development time of static RF was also due to
the entire Django® application architecture already built for each core function of the web application. All
iterations implemented a large number of bug fixes and have been tested against expected values from the
MATLAB®-based unit testing routines that output the correct expected values for each link tool. Figure 9
illustrates the possible use cases of the GUI that was developed.

Concluding Remarks
Overall, the implementation of a web-based user interface was successful. From the beginning

of the project, the MathWorks® MATLAB®-compiled static link analysis. Glenn Research Center’s
Communication Analysis Suite (GCAS) functions passed the unit tests in PythonTM programming
language (Python Software Foundation), which indicated that this implementation would work. Since
initial unit testing of the compiled MATLAB® code was successful using PythonTM Unittest test fixtures,
more link configurations were tested within the application and it maintained higher levels of accuracy

NASA/TM—2020-220513 10

compared to the previous PythonTM implementation of the interface. In the context of any space mission
or operation, the most valuable asset to using MATLAB®-compiled files is that the results will be exactly
the same as executed in MATLAB®. Any user of the GCAS static link analysis front-end application will
not have to worry that the data might be different from MATLAB® outputs. This alleviates any problems
that might arise in a NASA mission regarding the accuracy of a link analysis computed on the web-based
front-end tool.

The efforts of this project will be used to support the upcoming lunar studies to perform analysis for
the future communications architecture of the Artemis project. In terms of future development, graphical
user interfaces for the GCAS static link repeater tools and/or dynamic link tools can be easily expanded
into the web application framework through the previously described methods. In terms of future
concepts that can be added into the Django® architecture, a Representational State Transfer Application
Programming Interface (REST API) could be built on a more central version of the web application to
support additional users of the GCAS capabilities. Users could request link outputs over the internet by
sending the parameters in JavaScript Object Notation structures. This would increase the user base of the
GCAS capabilities to the widest possible audience.

Bibliography
Bootstrap: 4.3 Documentation. 2019. https://getbootstrap.com/docs/4.3/about/overview/ Accessed

March 26, 2020.
Django Software Foundation: Django Documentation. 2019. https://docs.djangoproject.com/en/2.2/

Accessed March 26, 2020.
Django To Exe—Distribute Your Django Project as a Portable Windows EXE Application. Algotronics,

2015. https://algotronics.wordpress.com/2015/10/23/dj2exe/ Accessed March 26, 2020.
Green, Jack L.; Welch, Bryan W.; and Manning, Robert M.: Updating the Space Communications and

Navigation (SCaN) Link Tool Executable Software to Version 5. NASA/TM—2019-220234, 2019.
http://ntrs.nasa.gov

Herrmann, Michael: PyQt5 Tutorial. fman Build System, 2019. https://build-system.fman.io/pyqt5-
tutorial Accessed March 26, 2020.

The MathWorks, Inc.: Handle Data Returned From MATLAB to Python. 2019.
https://www.mathworks.com/help/compiler_sdk/python/handle-data-returned-from-matlab-to-
python.html Accessed March 26, 2020.

The MathWorks, Inc.: Initialize Package and Return a Handle. 2019.
https://www.mathworks.com/help/compiler_sdk/python/mydeployedmodule.initialize.html
Accessed March 26, 2020.

The MathWorks, Inc.: MATLAB Compiler SDK. 2019. https://www.mathworks.com/products/matlab-
compiler-sdk.html Accessed March 26, 2020.

https://getbootstrap.com/docs/4.3/about/overview/
https://docs.djangoproject.com/en/2.2/
https://algotronics.wordpress.com/2015/10/23/dj2exe/
http://ntrs.nasa.gov/
https://build-system.fman.io/pyqt5-tutorial
https://build-system.fman.io/pyqt5-tutorial
https://www.mathworks.com/help/compiler_sdk/python/handle-data-returned-from-matlab-to-python.html
https://www.mathworks.com/help/compiler_sdk/python/handle-data-returned-from-matlab-to-python.html
https://www.mathworks.com/help/compiler_sdk/python/mydeployedmodule.initialize.html
https://www.mathworks.com/products/matlab-compiler-sdk.html
https://www.mathworks.com/products/matlab-compiler-sdk.html

	TM-2020-220513.pdf
	Summary
	Introduction
	Background
	Development Methodology and Discussions
	Code Compilation and Utilization
	Web Technologies
	Front-End Features
	Back-End Capabilities
	Deployment Solution
	Results and Discussions

	Concluding Remarks
	Bibliography

