

Additional On-Surface and Off-Surface Aerodynamic Data for Partially-Dressed Cavity-Closed Nose Landing Gear Benchmark (PDCC-NLG)

Mehdi R. Khorrami and Dan H. Neuhart NASA Langley Research Center

Workshop on Benchmark problems for Airframe Noise Computations (BANC-1) Stockholm, Sweden, June 10-11, 2010

PDCC - NLG

Fixed vs. Mobile Sensor

Lower Torque-Arm

Upper Torque-Arm

Door Front Side

 10^{4}

Door Backside (Horizontal Rows)

Door Backside (Vertical Rows)

PIV Planes

PDCC vs. FDCO Surface Pressures

NA S

FDCO vs PDCC Comparison

X-Z Plane PIV Measurements

tke

Summary

- Unsteady surface pressures from the mobile sensor confirm the broadband nature of, and lack of any tonal character in, the pressure field, corroborating previous results obtained with the fixed sensors
- The shock-strut torque-arm combination produces flow interactions reminiscent of tandem cylinder flow field
- The X-Z PIV planes downstream of the wheels show the wake to be symmetric
- A collective decision must be made as to whether the present data should be added to the PDCC-NLG dataset
- What more can be done and how else can we improve the dataset for the PDCC-NLG benchmark?

Backup Charts

