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 Introduction

 Automated surface meshing
– Parametric definition

– Component-based point definition

• Monolithic mesh (GEO2VSP)

• Componentized mesh (HRM2GEO)

 Integrated off-track sonic boom analysis

 Verification
– Off-body near-field location

– CFD comparison

– Volume mesh refinement

– Off-track shock dissipation

 Demonstration of off-track analysis process

 Summary
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Introduction

 Objectives

– Rapid, automated, and accurate sonic boom evaluation of new 
supersonic design concepts

– Infusion of design robustness into the conceptual design phase

– Enable the evaluation and planning of future flight trajectories

 Challenges

– Generation of water-tight geometries for CFD analysis

– Surface and volume mesh generation

– Intelligent and efficient volume mesh refinement to accurately 
capture shock features at off-body locations

– Automation and integration of geometry generation tools, CFD, 
sonic boom propagation, and loudness analyses

3



Integrated Off-Track Sonic Boom Analysis
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Conceptual Geometry
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Off-Body Cart3D Analysis
Sonic Boom Carpet and Loudness



Automated Surface Meshing
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Volume Mesh Refinement for Off-Body Pressure

 Volume mesh generation is automated with Cart3D package.

 Rotated geometry is based on Mach angle to align shocks with z-axis.

 Stacked refinement boxes are located in under- and off-track directions.

 Process is fully automated based on flight conditions and vehicle length.

 ModelCenter model provides control over:
– Number of stacked boxes

– Refinement levels

– Cell aspect ratio

– Distance of near-field sampling
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CFD Analysis for Off-Body Pressure

Cart3D is integrated for CFD analysis

 High-fidelity inviscid package

 Automated Cartesian volume mesh generation

 Capable of adjoint mesh adaptation

 Conceptual and preliminary design

 Flexible geometry input (accepts solid components instead of 
more difficult to generate watertight outer mold line)

 Fully integrated into ModelCenter model
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Sonic Boom Propagation

Near-field wave propagated with sBOOM†

 Non-linearity, molecular relaxation, 
thermo-viscous absorption

 Finite shock rise-time can produce more 
accurate loudness calculations

 Off-track propagation
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Near-field wave
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† Rallabhandi, S. K., “Advanced Sonic Boom Prediction Using Augmented Burger's Equation," AIAA No. Pending, January 2011. 
(AIAA Session 255-AA-11, January 7, 2011 at 1330 hrs)



Verification Cases
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 Case study

– Low-boom demonstrator

– Mach 1.6

– Angle of attack of 0.49 deg

– Altitude of 47,500 ft

Source: Li, W. and Shields, E., “Generation of Parametric 
Equivalent Area Distribution for Design of Low-Boom 
Supersonic Concepts," AIAA No. Pending, Jan. 2011.

 Verification Cases

‒ Off-body location

‒ Meshing method and CFD tools

‒ Volume mesh refinement

‒ Off-track shock dissipation



Sensitivity to Off-Body Location

 Near-field shock structure is successfully 
captured at all off-body locations.

 Four body length off-body location 
successfully captures 3D effects.

 Accuracy is acceptable at one body length 
(loudness within 1.7%)

10

Under-track



Sensitivity to Meshing and CFD Tools

 Cart3D solution obtained using a rotated grid with stacked 
mesh refinement.

 USM3D solutions obtained using a grid stretching method.

 Good agreement despite the use of different meshing methods.
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Sensitivity to Volume Mesh Refinement
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 Near-field solution is located at three body 
lengths.

 Accuracy is acceptable for all mesh 
refinement levels (loudness within one 
PLdB).

 Approximately 400 points is a good 
compromise between computational cost 
and accuracy.

 Coarser grids are acceptable for larger 
computational domains (i.e. greater than 3 
body lengths and off-track calculations).

Under-track



Off-track Shock Dissipation
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Further Off-track Verification
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 Case study

– Lockheed Martin BOR

– Length 231 ft

– Mach 1.6

– Angle of attack of 0 deg

– Altitude of 47,500 ft

 Verification Cases

‒ Baseline (~460 pts in x-dimension)

‒ X-refinement (~2X Baseline)

‒ Y-refinement (~2X Baseline)

1BL Cylindrical Cut



Off-track Shock Dissipation for Baseline
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 Off-track shock dissipation exists due to lack of grid alignment in the y-direction (off-track). 

 The dissipation is more severe for the BOR than for the low-boom demonstrator.

 The higher shock frequency of the BOR waveform may lead to greater error (lost shock 
features) as it propagates in the y-direction between cell boundaries.



Comparison of Baseline and X-Refined
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 The accuracy of off-track waveforms can be improved with greater grid refinement in the 
x-direction but off-track dissipation persists.



Comparison of Baseline and Y-Refined
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 Off-track accuracy can be improved using greater grid refinement in y-direction (off-track).

 Second rotation about z-axis to align the shocks in off-track direction with the y-axis could 
improve mesh efficiency in the same way it is rotated for under-track solutions.



Solution Accuracy with X-Refinement
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 Off-track dissipation is not resolved 
with x-refinement.

 Off-track solution accuracy is 
improved using higher x-refinement 
despite persistent dissipation.



Off-track Signature Dissipation for Y-Refined
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Demonstration of Off-Track Capability
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 Ring wing concept

– Length 170 ft

– Angle of attack of 0.3 deg

 Low-boom demonstrator

– Length 127 ft

– Angle of attack of 0.49 deg

– Mach 1.6

– Altitude of 47,500 ft

– One body length near-field location



Cart3D Near-Field Pressure Solution
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Sonic Boom Carpets
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Off-Track Loudness Analysis
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 Greater off-track shock dissipation exists for signature-shaped low-boom demonstrator. 

 Shocks coalescing occurs at approximately 51,000 ft.

 Backward signature contributes the most to off-track shock coalescing.



Signature and Loudness Analysis
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 Off-track loudness rise is observed in shock coalescing of signature.

 No further off-track shock coalescing is expected for ring wing concept.

 Additional shock coalescing is expected for low-boom demonstrator (aft shocks).

 Shaped-boom concepts are likely to exhibit stronger and greater number of off-track 
shock coalescing events.



Summary

 Demonstrated a flexible and fully automated process for under- and 
off-track sonic boom analysis in conceptual design.

 Assessed the sensitivity and requirements of sonic boom analysis 
to CFD volume mesh refinement and off-body location of the initial 
near-field waveform.

 Verified the accuracy of the Cart3D off-body pressure solution 
through comparison to USM3D.

 Quantified the degree of off-track shock dissipation for one-shot 
solutions with no alignment of the shocks with the grid in the off-
track direction.

 Sonic boom carpets and loudness levels can be mapped over 
nonuniform terrain and population densities to quantify 
environmental impact and aid in the planning of future flight 
trajectories.
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 Low-fidelity: Ground signature for low-fidelity equivalent area distribution

 Medium-fidelity: Ground signature for CFD equivalent area distribution

 High-fidelity: Ground signature for CFD near-field pressure distribution

Approaches to Sonic Boom Analysis
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