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Introduction

O Objectives

Rapid, automated, and accurate sonic boom evaluation of new
supersonic design concepts

Infusion of design robustness into the conceptual design phase
Enable the evaluation and planning of future flight trajectories

a Challenges

Generation of water-tight geometries for CFD analysis
Surface and volume mesh generation

Intelligent and efficient volume mesh refinement to accurately
capture shock features at off-body locations

Automation and integration of geometry generation tools, CFD,
sonic boom propagation, and loudness analyses
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Integrated Off-Track Sonic Boom Analysis @/

Conceptual Geometry

Surface Mesh Volume Mesh

Off-Body Cart3D Analysis
Sonic Boom Carpet and Loudness 4




Automated Surface Meshing
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Volume Mesh Refinement for Off-Body Pressure N@m

Volume mesh generation is automated with Cart3D package.

Rotated geometry is based on Mach angle to align shocks with z-axis.
Stacked refinement boxes are located in under- and off-track directions.
Process is fully automated based on flight conditions and vehicle length.

ModelCenter model provides control over:

- Number of stacked boxes

- Refinement levels

- Cell aspect ratio

- Distance of near-field sampling 6
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CFD Analysis for Off-Body Pressure

Cart3D is integrated for CFD analysis

Q High-fidelity inviscid package

Automated Cartesian volume mesh generation
Capable of adjoint mesh adaptation
Conceptual and preliminary design

Flexible geometry input (accepts solid components instead of
more difficult to generate watertight outer mold line)

Fully integrated into ModelCenter model
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Sonic Boom Propagation
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Verification Cases @

0 Verification Cases 0 Case study
— Off-body location — Low-boom demonstrator

— Meshing method and CFD tools — Mach 1.6
— Volume mesh refinement — Angle of attack of 0.49 deg

— Off-track shock dissipation — Altitude of 47,500 ft

Source: Li, W. and Shields, E., “Generation of Parametric
Equivalent Area Distribution for Design of Low-Boom
Supersonic Concepts,” AIAA No. Pending, Jan. 2011. 9



Sensitivity to Off-Body Location @

Under-track 0 Near-field shock structure is successfully

o captured at all off-body locations.
e 0 Four body length off-body location
wb successfully captures 3D effects.
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Sensitivity to Meshing and CFD Tools@

a Cart3D solution obtained using a rotated grid with stacked
mesh refinement.

O USM3D solutions obtained using a grid stretching method.
O Good agreement despite the use of different meshing methods.
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Sensitivity to Volume Mesh Refinement @/
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Off-track Shock Dissipation
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Off-track Shock Dissipation for Baseline@
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O Off-track shock dissipation exists due to lack of grid alignment in the y-direction (off-track).
O The dissipation is more severe for the BOR than for the low-boom demonstrator.

A The higher shock frequency of the BOR waveform may lead to greater error (lost shock
features) as it propagates in the y-direction between cell boundaries. 15



Comparison of Baseline and X-Refined @
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Q The accuracy of off-track waveforms can be improved with greater grid refinement in the
x-direction but off-track dissipation persists.
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Comparison of Baseline and Y-Refined @
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a Off-track accuracy can be improved using greater grid refinement in y-direction (off-track).

O Second rotation about z-axis to align the shocks in off-track direction with the y-axis could
improve mesh efficiency in the same way it is rotated for under-track solutions.
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Solution Accuracy with X-Refinement
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Off-track Signature Dissipation for Y-Refined @
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Demonstration of Off-Track Capability @

=

O Ring wing concept O Low-boom demonstrator
— Length 170 ft — Length 127 ft
— Angle of attack of 0.3 deg — Angle of attack of 0.49 deg
— Mach 1.6

— Altitude of 47,500 ft
— One body length near-field location

20




Cart3D Near-Field Pressure Solution

Ring Wing 70t

dp/p
0.02
0.016
0.012
0.008
0.004

-0.004
-0.008
-0.012
-0.0186
-0.02

Low-Boom

Demonstrator 127 ft

21

(click to play movies)



Sonic Boom Carpets @

Low-Boom Demonstrator
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Off-Track Loudness Analysis
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O Greater off-track shock dissipation exists for signature-shaped low-boom demonstrator.
O Shocks coalescing occurs at approximately 51,000 ft.
O Backward signature contributes the most to off-track shock coalescing.
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Signature and Loudness Analysis @
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Off-track loudness rise is observed in shock coalescing of signature.
No further off-track shock coalescing is expected for ring wing concept.
Additional shock coalescing is expected for low-boom demonstrator (aft shocks).

Shaped-boom concepts are likely to exhibit stronger and greater number of off-track
shock coalescing events.

O 0 0 O
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Summary e

A Demonstrated a flexible and fully automated process for under- and
off-track sonic boom analysis in conceptual design.

Q Assessed the sensitivity and requirements of sonic boom analysis
to CFD volume mesh refinement and off-body location of the initial
near-field waveform.

Q Verified the accuracy of the Cart3D off-body pressure solution
through comparison to USM3D.

O Quantified the degree of off-track shock dissipation for one-shot
solutions with no alignment of the shocks with the grid in the off-
track direction.

Q Sonic boom carpets and loudness levels can be mapped over
nonuniform terrain and population densities to quantify
environmental impact and aid in the planning of future flight
trajectories.
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Approaches to Sonic Boom Analysis @

Low Accuracy
O Low-fidelity: Ground signature for low-fidelity equivalent area distribution and Cost
0 Medium-fidelity: Ground signature for CFD equivalent area distribution
Equivalent Area ) Signature
O High-fidelity: Ground signature for CFD near-field pressure distribution
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Near-field wave High Accuracy
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