

Fundamental Aeronautics Program

Annalitan

Subsonic Rotary Wing Project

Overview of the Experimental Capabilities Discipline and UH-60 Particle Image Velocimetry Measurements

Luther N. Jenkins Technical Lead Experimental Capabilities Discipline

2011 Technical Conference March 15-17, 2011 Cleveland, OH

www.nasa.gov

Areas of Research & Application

Rotor Blade Position Measurement

- Photogrammetry
- Projection Moire Interferommetry (PMI)
- On-hub Video Systems
- Rotor Wake Measurements
 - Particle Image Velocimetry (PIV)
 - Retro-Reflective Background-Oriented Schlieren (RBOS)
 - Laser Velocimetry (LV)

Surface Pressure Measurements

- Pressure Sensitive Paint (PSP)
- Shear stress sensors
- Advanced Measurement Tools

Rotor Blade Position Measurement

Photogrammetry

e state de la constate de la constat

Raw Image

Fringe Pattern Image

Blade 2 Blade 3 Blade 4

330

300

Unwrapped Phase Image

Rotor Wake Measurements

Surface Pressure Measurements*

Pressure Sensitive Paint (PSP)

*Collaboration with Army JRPO

LED Acquisition vs Laser Acquisition

~750 revolutions Required to acquire one image

Image acquired from a single blade rotation

5

Advanced Measurement Tools

Unified Instrumentation

Spectrum Usage

Source	Wavelength (nm)
IR Illuminators	850, 920
PIV Laser	532
Flow Visualization	516
PMI Laser	795
PSP Laser	532
PSP Emission	600 - 650
S3F Illumination	600 - 650
Photogrammetry	432

PIV Measurements During the UH-60A Airloads Test

Alan J. Wadcock Gloria K. Yamauchi Eduardo Solis Ashley Pete NASA Ames Research Center

We gratefully acknowledge the assistance from: James T. Heineck (NASA Ames Research Center) Louise Walker (Aerospace Computing, Inc.) Mani Ramasamy (UARC/US Army AFDD) Luther Jenkins and CS Yao (NASA Langley Research Center)

- 3D velocity field in a stationary cross-flow plane
 - Location: approximately 90 degree rotor blade azimuth
 - Coverage: outer 50% of the rotor radius
 - Field of View: approximately 3.5 ft-high by 14 ft-wide
- From the velocity field, we will extract
 - Tip vortex core size
 - Blade tip vortex position and trajectory in laser sheet
 - Blade trailed wake position and trajectory in laser sheet
 - Vortex strength and vortex structure

Installation Challenges

- Very limited optical access in the 40 x 80 test section
- Long distances
 - Laser beam divergence
 - Large (3.5 ft H x 14 ft W) region of interest (ROI)
 - Camera resolution
- Tunnel vibration
- Seeding a very large volume
- Camera calibration
 - Two calibrations required to cover large ROI
 - ROI located over 20 ft above a partially curved floor
- Securing a large area against Class IV laser hazard

System Components

- •Two TSI 11 Mp cameras with 120 mm lens
- Spectra-Physics PIV laser, ~260 mJ per pulse@ 532 nm
- Four MDG seeders emitting 0.75 micron particles
- Remotely-controlled (2 axes) mirror (36 in x 12 in, H x W)
- 4-ft x 8-ft dual plane calibration plate
- Software
 - INSIGHT 3G[™] (TSI, Inc.)
 - ⁻ proVISION[™] (IDT, Inc.)

Installation Challenges and Opportunities

Aligning rods for camera focusing

Calibration Plate

- Dual-plane MIC 6 aluminum plate: 8 ft x 4 ft x 0.25 in
- 137 flush targets, 138 raised targets on each side of plate
- Target diameter = 0.375 in
- Plate is reinforced with steel tubing
- Weight of plate: ~ 190 lbs
- Two calibrations required to cover
- 14-ft wide region of interest

NFAC Run No.	Rotor Shaft Angle (deg)	Tip Mach Number	Advance Ratio	C _T /σ	Azimuth delay (deg)
73	0	0.65	0.15	0.08	5, 15, 30, 45, 60,75, 95, 135, 185, 225, 275, 315
75	4	0.65	0.15	0.08	5, 15, 30, 45, 60, 75, 95, 135, 185, 225, 275, 315
78*	-4.82	0.638	0.303	0.087	5, 15, 30, 45, 60, 75, 95
81	0	0.65	0.24	0.07, 0.09	5
81	0	0.65	0.24	0.11	5, 15, 30, 45, 60, 75, 95, 185, 275
83	0	0.65	0.15	0.07, 0.09, 0.11, 0.12	15
83	-6.9	0.65	0.35	0.08	5, 10, 15, 20, 30, 45, 60, 75, 95, 185, 275

***Corresponds to flight test counter 8424**

Preliminary Data: Ensemble-averaged Velocity Field

View looking upstream, every other vector shown. Average of 100 velocity fields.

Preliminary Data: Ensemble-Averaged Velocity Field

Preliminary Data: Ensemble-Averaged Vorticity Field

View looking upstream, every other vector shown. Average of 100 velocity fields.

Data Reduction Status and Plans

 Completed first pass through images using approximate calibration and IDT proVISION software.

- Will begin analysis to extract vortex characteristics. This entails
 - 1. Image processing to correct for LLS movement
 - 2. Separate calibrations for the inner and outer half of the ROI
 - 3. Smaller cross-correlation window with greater overlap
 - 4. Conditional averaging of the vector fields to remove vortex wander effects
 - 5. Use of multiple tools: TSI Insight3G software, LaVision DaVis software, and in-house tools.
- Paper describing PIV installation and sample data:

Wadcock, A. J., Yamauchi, G. K., Solis, E., Pete, A. E., "PIV Measurements in the Wake of a Full-Scale Rotor in Forward Flight," 29th AIAA Applied Aerodynamics Conference, Honolulu, HI, June 27-30, 2011.

