

ALL DALLAND

SFW's Second-Generation MDAO Capability (GEN2) Integration Process and Validation Plans

Dr. Erik D. Olson

Research Aerospace Engineer NASA Langley Research Center

2011 Technical Conference NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project Cleveland, OH, March 15 - 17, 2011

www.nasa.gov

NASA Subsonic Transport System Level Metrics

.... technology for dramatically improving noise, emissions, & performance

CORNERS OF THE TRADE SPACE	N+1 (2015)*** Technology Benefits Relative to a Single Aisle Reference Configuration	N+2 (2020)*** Technology Benefits Relative to a Large Twin Aisle Reference Configuration	N+3 (2025)*** Technology Benefits
Noise (cum below Stage 4)	- 32 dB	- 42 dB	- 71 dB
LTO NOx Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance Aircraft Fuel Burn	-33%**	-50%**	better than -70%
Performance Field Length	-33%	-50%	exploit metroplex* concepts

*** Technology Readiness Level for key technologies = 4-6

** Additional gains may be possible through operational improvements

* Concepts that enable optimal use of runways at multiple airports within the metropolitan areas

SFW Approach

- Conduct Discipline-based Foundational Research
- Investigate Advanced Multi-Discipline Based Concepts and Technologies
- Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes
- Enable Major Changes in Engine Cycle/Airframe Configurations

Outline

- Background
- GEN2 methods toolbox
- Reference aircraft
- Analysis process flows
- Validation plans and progress

GEN2 Milestones FY10-11

- FY10: Complete new suite of integrated multidisciplinary analysis tools to predict noise, NO_x, takeoff/landing performance, cruise performance, and take-off gross weight (TOGW)
 - Valid for conventional ("tube and wing") aircraft and unconventional aircraft (e.g. hybrid wing-body).
 - Verify successful integration of multiple low/intermediate/high fidelity modules within an MDAO framework.
- FY11: GEN 2 Validation of integrated tool set with experimental data
 - Validate NO_x, takeoff/landing, cruise performance, takeoff gross weight, noise for conventional and unconventional systems.

GEN2 Methods Toolbox (1 of 2)

- Propulsion
 - Numerical Propulsion System Simulation (NPSS) / WATE++
- Geometry
 - HWB Cabin Layout
 - Vehicle Sketch Pad (VSP)
- Aerodynamics
 - Flight Optimization System (FLOPS)
 - Vorview
 - PMARC
 - CPPAero
 - CART3D (in progress)
- Structures / Weights
 - FLOPS
 - Structures Unified (HWB only)
 - Boeing Centerbody Weights (HWB only)
 - VSP to NASTRAN (in progress)

GEN2 Methods Toolbox (2 of 2)

NASA

- Mission Analysis
 - FLOPS
- Stability & Control
 - Matlab Stability & Control Toolbox (MaSCoT)
- Acoustics
 - Aircraft Noise Prediction Program (ANOPP)
 - ANOPP WING
 - Fast Scattering Code (in progress)

GEN2 Reference Models

Conventional B787-8 / Genx-2B67 242 pax in 3 classes

Unconventional

Boeing BWB-710 dual-use freighter Rolls-Royce direct-drive turbofans 20 commercial containers

GEN2 HWB Process Flow

Completed In progress

GEN2 Conventional Process Flow

Conventional Process in ModelCenter

HWB Process in ModelCenter

GEnx Engine in WATE++

Vehicle Sketch Pad

GEN2 Multi-Fidelity Aerodynamic Analysis

- Results from individual integrated components within ModelCenter are compared to results from stand-alone execution with manual data transfer
- Method integration passes verification test if the differences in output values are solely the result of the precision of input values
- Verification process completed Sept. 2010

Ongoing VSP Enhancements

VSP Structural Meshing

VSP High-Quality Surface Mesh

- Currently lacking automation and robustness
- Work underway and planned to improve VSP in these areas

VSP to CART3D Progress

VSP X-48B wing-body model Adapted from unstructured grid

CART3D adjoint adapted solution

- •Quality of solution appears to be independent of surface triangle quality
- •Quality of flow visualization depends on a fine triangle density

GEN2 Validation Targets

Motrio	Conventional	Unconventional
Metric	D/8//GENX-200/	DOGING DWD-710
NO _x	± 5%	± 15%
Takeoff/landing performance	± 5%	± 15%
Cruise performance	± 2.5%	± 10%
Takeoff gross weight	± 5%	± 15%
Noise	± 2.5 dB	± 7.5 dB *

* Limited benchmark data for HWB system noise Shielding analysis can be validated for BWB450, N2A

- Validation Datasets
 - 787-8 validation using flight test & certification results
 - HWB benchmarking using Boeing BWB-710 detailed analysis
 - HWB acoustic shielding for BWB-450, N2A (2012)
- Leverage ERA HWB validation efforts
 - Use validation of disciplinary analyses (aerodynamics, structures) to inform selection of appropriate methods and modeling techniques
 - Improve methods integration and incorporate additional methods
 - Use GEN2 integrated processes to compute system-level metrics for validation/benchmarking
 - Update GEN2 HWB models using lessons learned

- Discipline-level errors propagate through to the system level
- Use validation at the discipline level to understand sources of errors
- Minimize discipline-level errors through improved modeling

Sample Aero Validation Progress

X-48B, TF1038 wind-tunnel data

GEN2 Validation Schedule

