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Need for Understanding Wake 
Vortices

• Current wake vortex spacing criteria based 
on rare events without consideration of 
meteorological influences on wake behavior

• Wake spacing criteria a limiting factor for 
improvements in NexGEN

• Increased traffic and changes in National 
Airspace System may impact current levels of 
safety
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Wake Vortex Fast-Time Models --
Definition

• Empirical or semi-empirical algorithms that generate wake vortex 
information based on aircraft, airport, or weather conditions for 
operational, investigative, or research purposes

• Output could be:
– Wake vortex track histories
– Wake vortex circulation histories
– Zones or regions with potential for wake hazard
– Probability distributions

• Needed for many real-time and engineering applications
– Investigation of safety & capacity benefits related to proposed concepts and 

procedures for management of aircraft traffic
– Potential submodel in Aircraft Dynamic Spacing System
– Development of aircraft separation standards
– Re-categorization of current aircraft standards
– Investigation of accidents and incidents influenced by inadvertent wake 

encounters
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Three Types of Fast-Time Models

• Deterministic Fast-Time Models
– Predict vortex position and strength histories
– Examples

• AVOSS† Prediction Algorithm (APA) 
• TASS* Derived Algorithms for Wake Prediction (TDAWP)
• Deterministic 2-Phased (D2P) model
• Vortex Prediction Routine (VPR)
• Deterministic wake Vortex Model (DVM)

• Wake Zone Fast-Time Models
– Predicts bounded area where wake may reside
– May utilize deterministic models with bound predictions based on 

environmental and aircraft uncertainties
– Examples: Rossow, Probabilistic 2-Phased (P2P)

• Probabilistic Fast-Time Models
– Predicts probability that wake will be a particular distance from flight path 

and/or weakened below a certain strength
– May use deterministic model for its basis
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†AVOSS – Aircraft Vortex Spacing System
*TASS – Terminal Area Simulation System



Objectives

• How “good” are deterministic fast-time 
models at predicting measured vortex 
trajectories and circulation histories?

• Which model(s) performs best?

• Where do they need improvement?
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Deterministic Fast-Time Models 
Used in this Study

• Three versions of the AVOSS Prediction Algorithm 
(APA)
– APA 3.2
– APA 3.3
– APA 3.4

• TDAWP version 2.1 (NASA)

• VPR version 1.0 (FAA)

• DVM version 4.3 (Université Catholique de Louvain, 
Belgium)
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Evaluation of Fast-Time Wake 
Prediction Models
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Field Data for Wake Model 
Evaluation

• Need special measurements for wake as well as 
meteorological data

– Continuous Wave (CW) Lidar measurements of wakes
• Limited range
• Beam must be focused on vortex

– Pulsed Lidar
• Good position measurements
• Accuracy of circulation  estimates under study

– Aircraft data (type, weight, position, speed, time)
– Vertical profiles of wind, temperature, and turbulence

• Data sets collected by NASA at Memphis (MEM) and Dallas-Ft. 
Worth (DFW) during the AVOSS project

– Wake tracks from CW Lidar
– Wind data measured at airport but not in vicinity of wakes
– Wake data limited to arrivals
– Wake tracks from Pulsed  Lidar only available for DFW-2000

• Large amount of field data has been collected by FAA
– Wake tracks from Pulsed Lidar
– Limited usefulness, obtained by FAA for purpose other than 

evaluating wake models
– Little or no meteorological data

• Almost no data exist at cruise altitudes
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Evaluation of Fast-Time Models

• Evaluation divided into two studies: 
– Out of ground effect (OGE)

• Wake vortex not influenced by ground

• Initial vortex heights at least two wing 
spans above the ground

• Wake vortices sink due to mutual 
interaction while advecting horizontally 
with wind

– In/near ground effect (IGE/NGE)
• Wake trajectory influenced by ground

• Enhanced decay due to interaction with 
ground
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Data Sets used in Study

• Observed data sets obtained from field 
studies at operational airports
– Memphis (MEM) 1995   OGE and IGE
– Dallas Ft-Worth (DFW) 1997  OGE and IGE
– San Francisco (SFO) 2001  OGE (FAA)

• Model scoring analysis performed by 
NorthWest Research Associates under NASA 
contract

• Study divided into two parts: OGE and IGE
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OGE Evaluation
(no ground influence)
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OGE Study: Data Sets
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Why use Proxy Crosswinds?

• Derived from Lidar vortex trajectory

• Closer match to wind experienced by vortices

MM5 – Mesoscale Weather Prediction model
SFO – FAA sponsored data set



Mean Residuals (model-data) vs 
Model
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Summary Table Models in OGE

16



Summary of OGE Study

• Differences between models usually less than differences with 
Lidar data 

• Lateral Position: Most residuals fall within ± ⅓ wingspan.  
Residuals change slowly with time

• Altitude: Most residuals within ±½ wingspan.  Model 
predictions tend to be biased high at early wake ages and low 
at later ages

• Circulation: Most residuals within 30% of the initial circulation.
– Decay too strong in APA 3.2 & 3.3 when environment is stratified
– Early circulations predicted by TDAWP 2.1 and DVM 4.3 appear 

too high
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IGE Evaluation
(ground influences wake behavior)
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IGE Data Sets

• Cases selected based on initial vortex height 
below 2 wing spans

• Less data available than OGE
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Summary of IGE Study

• Differences between models usually less than differences with 
Lidar data

• Lateral Position: Most residuals fall within ±1 wingspan.  
Predicted spreading between port and starboard vortices is 
underestimated relative to the spread indicated by Lidar

• Altitude: Most residuals within ±½ wingspan

• Circulation: Most residuals within 20% of the initial circulation

• More data is needed to determine which models perform best
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Key Findings

• Differences between fast-time models and Lidar 
data are greater than differences between models 
– Uncertainties in the input conditions lead to 

uncertainties in the model predictions

• Better data sets are needed in order to assess 
fast-time model accuracies
– Improved observation of the environment at the time 

and location of the wake measurement
– Remove ambiguities in the observations of wake 

vortices, especially vortex circulation
– Accurately determine the position, weight, type, and 

speed of the generating aircraft
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Future Work

• Scoring with additional data sets
– Including improved versions of current fast-time models

• Understanding accuracy and limitation of Lidar wake 
data

• Propose additional field measurements designed for 
evaluating wake models 
– IGE, OGE and cruise altitudes
– Departures as well as arrivals

• Integrate into operational system that determines safe 
spacings between aircraft
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BACK-UP SLIDES
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APA-3.2 Residuals with Wake Age 
at Memphis (OGE)

26



APA-3.2 Residuals with Wake Age 
at San Francisco (OGE)
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IGE: Bias of the Residuals as a 
Function of Time for MEM
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