EDL Vehicle Designs: 20 t Payload Capability

<table>
<thead>
<tr>
<th>Name</th>
<th>Shape</th>
<th>Vehicle Dimensions</th>
<th>Launch Mass</th>
<th>Entry Mass</th>
<th>Ballistic Number</th>
<th>L/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule</td>
<td></td>
<td>10 m (h) x 10 m (w)</td>
<td>68t</td>
<td>63t</td>
<td>500 kg/m²</td>
<td>0.3</td>
</tr>
<tr>
<td>Mid L/D</td>
<td></td>
<td>22m (l) x 7.3m (h) x 8.8m (w)</td>
<td>66t</td>
<td>62t</td>
<td>380 kg/m²</td>
<td>0.55</td>
</tr>
<tr>
<td>ADEPT</td>
<td></td>
<td>4.3m (h) x 18m diameter</td>
<td>60t</td>
<td>55t</td>
<td>155 kg/m²</td>
<td>0.2</td>
</tr>
<tr>
<td>HIAD</td>
<td></td>
<td>4.3m (h) x 16m diameter</td>
<td>57t</td>
<td>49t</td>
<td>155 kg/m²</td>
<td>0.2</td>
</tr>
</tbody>
</table>

ADEPT = Adaptable Deployable Entry Placement Technology
HIAD = Hypersonic Inflatable Aerodynamic Decelerator

Study down select
Cargo Elements for Long Duration Surface Stay

10 m diameter SLS fairing; 300 day stay; Crew of 4; Four 20 t payloads

- **Lander 1**
 - Surface Power Units
 - Unpressurized Rovers
 - Cargo Off-loading
 - Logistics Module
 - Science Payloads

- **Lander 2**
 - Mars Ascent Vehicle
 - Atmosphere ISRU
 - Crew Access Tunnel

- **Lander 3**
 - Pressurized Rover
 - Logistics module
 - Crew consumables
 - Fixed system spares
 - Mobile system spares
 - EVA spares
 - Surface Mobility

- **Lander 4**
 - Habitation
EDLAS Requirements and Assumptions

Informal Requirements

1. Launch on Block 2B SLS, 10m fairing
2. Interface with Mars transit systems
3. Enable docking and crew transfer from deep space habitat
4. Aerocapture at Mars & Deorbit from 1 Sol parking orbit
 - Loiter in Mars orbit up to 1 year
4. Aerocapture at Mars & Deorbit from 1 Sol parking orbit
5. Crewed and cargo landers are of the same design and fly the same trajectories
 - Human Systems Integration Requirements (HSIR) compliant trajectory (< 4 Earth g)
6. Deliver 20mt crewed payload to Mars surface
 - Allow for payload access on Mars surface
7. Land within 50m of target, 0 km above the reference areoid
8. Limit hazardous landing debris to <700m radius

Assumptions

1. No separation events during EDL
2. No parachutes as primary drag devices
3. Navigation errors not considered at this time
4. Common MAV and EDL main engines (LOX/CH4 ISRU compatible)
5. No MAV assembly on Mars surface
Vehicle Summaries: Capsule

Vehicle Configuration

Sizing Assumptions:
- Soyuz Shape
- 3G limit during AC & EDL
- 10 m diameter heatshield - *Fairing interference, but potential to fly without a fairing*
- No Jettison events during EDL
- Ballistic coefficient = 500 kg/m²

EDL Concept of Operations

Entry
AOA = -20 deg
Velocity = 4.7 km/s
FPA = -10.6 deg

Deorbit
Aft RCS Thrusters

Powered Descent Initiation (PDI)
Mach = 4.7 Alt = 9.8 km
Pitch up to 0 deg AOA

Approach
8x125kN engines
80% throttle

Touchdown

Launch to Mars Landing Vehicle Configurations
Vehicle Summaries: Mid L/D

Vehicle Configuration

Sizing Assumptions:
• 5 G axial, 2 G lateral load at launch on all concepts
• Payload element structures need to be redesigned for horizontal launch orientation
• 9.1 m max diameter in 10 m SLS fairing
• No Jettison events during EDL
• Ballistic coefficient = 380 kg/m²

EDL Concept of Operations

Deorbit
Aft RCS Thrusters
Entry
AOA = 55 deg
Velocity = 4.7 km/s
FPA = -10.8 deg

Powered Descent Initiation
Mach = 1.98, Alt = 3.2 km
Pitch up to 90 deg AOA

Approach
T/W = 1.25 Earth g
8x125kN engines
80% throttle
10 deg outward cant

Ground Operations

Launch to Mars Landing Vehicle Configurations

<table>
<thead>
<tr>
<th>Phase 1 Launch</th>
<th>Phase 2 Earth Loiter & Stack Chase</th>
<th>Phase 3 Earth-Mars Flight</th>
<th>Phase 4 Mars Arrival</th>
<th>Phase 5 Mars Orbit Loiter</th>
<th>Phase 5a Crew Transfer</th>
<th>Phase 6 Entry, Descent & Landing</th>
<th>Phase 7 Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vehicle Summaries: ADEPT

Vehicle Configuration

Sizing Assumptions:
- 9.1 m max diameter in 10 m SLS fairing
- Deployable decelerator stowed forward of the heatshield in launch configuration surrounding launch adapter
- Dual Heat Pulse Capable Deployable Decelerator & Rigid Heatshield
- Ballistic coefficient 155 kg/m²
- 30% Mass Growth Allowance (MGA) applied, higher MGA in less mature system areas.

EDL Concept of Operations

Deploy
In Earth orbit

Entry
AOA = -17 deg Velocity = 4.7 km/s FPA = -10.6 deg

Deorbit
Aft RCS Thrusters

PDI
Mach = 3.0 Alt = 8.3 km Pitch to 0 deg AOA

Approach
8x100kN engines 80% throttle

Touchdown

Ground Operations

Launch to Mars Landing Vehicle Configurations

<table>
<thead>
<tr>
<th>Phase 1 Launch</th>
<th>Phase 2 Earth Loiter & Stack Chase</th>
<th>Phase 3 Earth-Mars Flight</th>
<th>Phase 4 Mars Arrival</th>
<th>Phase 5 Mars Orbit Loiter</th>
<th>Phase 5a Crew Transfer</th>
<th>Phase 6 Entry, Descent & Landing</th>
<th>Phase 7 Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7
Vehicle Summaries: HIAD

Vehicle Configuration

Sizing Assumptions:
- 9.1 m maximum diameter in 10 m SLS fairing
- 2 HIAD systems carried for each Lander
 - Aerocapture HIAD = 17.2 m; 7 tori with 0.8m minor diameter
 - EDL HIAD = 16.2m; 5 tori with 0.8m minor diameter
- Deployable decelerator stowed around the perimeter of the rigid center body
- HIAD Ballistic coefficient =155 kg/m²

EDL Concept of Operations

Launch to Mars Landing Vehicle Configurations

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
<th>Phase 5a</th>
<th>Phase 6</th>
<th>Phase 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch</td>
<td>Earth Loiter & Stack Chase</td>
<td>Earth-Mars Flight</td>
<td>Mars Arrival</td>
<td>Mars Orbit Loiter</td>
<td>Crew Transfer</td>
<td>Entry, Descent & Landing</td>
<td>Surface</td>
</tr>
</tbody>
</table>

Entry
AOA= -10 deg
Velocity = 4.7 km/s
FPA = 10.6 deg

Powered Descent Initiation
Mach = 3.0,
Alt = 8.3 km
Pitch to 0 deg AOA

Approach
8x100kN engines
80% throttle

Deorbit & Deploy

Touchdown

Deorbit & Deploy
Vehicle Analysis: Packaging

Lander 1
Lander 2
Lander 3
Lander 4
Design impacts of adding landers

- More launches (est. 5)
- Larger landing zone
- Modular Habitat; need way to connect them on surface
- Different payload masses per mission
- Additional architecture element (taxi)
- Extended delivery schedule
<table>
<thead>
<tr>
<th>Figures of Merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Mass</td>
</tr>
<tr>
<td>Mass of vehicle transported to Mars; Impacts in-space</td>
</tr>
<tr>
<td>transportation architecture; lower mass is better</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Transportation Interface</td>
</tr>
<tr>
<td>Rendezvous and docking: Considerations for docking</td>
</tr>
<tr>
<td>with Earth-Mars transportation stage AND with transit</td>
</tr>
<tr>
<td>habitat to support crew transfer into the lander</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cargo Packaging</td>
</tr>
<tr>
<td>How well does the lander configuration package the</td>
</tr>
<tr>
<td>standard 1st mission surface manifest</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cargo Support</td>
</tr>
<tr>
<td>How well does the lander accommodate the various</td>
</tr>
<tr>
<td>payload needs: Obstruction-free access, leveling, etc.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cargo Protection</td>
</tr>
<tr>
<td>How well does the concept protect the payload</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control Scheme</td>
</tr>
<tr>
<td>Complexity of EDL control system</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MPS Engine Requirement</td>
</tr>
<tr>
<td>How close is the desired descent engine thrust level</td>
</tr>
<tr>
<td>to the desired ascent engine thrust level</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Developments</td>
</tr>
<tr>
<td>Number of Technology Developments required to field</td>
</tr>
<tr>
<td>the concept</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Concept Maturity</td>
</tr>
<tr>
<td>Maturity of the design analysis; how well to we</td>
</tr>
<tr>
<td>believe we have estimated the mass and complexity of</td>
</tr>
<tr>
<td>the concept</td>
</tr>
</tbody>
</table>
In 2000 randomly generated weighting schemes:

- HIAD ranked 1st or 2nd in 99% of the cases
- Mid L/D ranked 1st or 2nd in 72% of the cases
- Capsule ranked 4th in 93% of the cases

HIAD and Mid L/D consistently scored 1st or 2nd despite reweighting.
Summary

- Developed four closed EDL vehicle designs within defined requirement and assumptions
- Prioritized and identified entry system technology investments
- Higher fidelity analysis needed in key areas to drive out additional technology requirements
 - Sensors
 - GN&C
 - Engine design parameters
 - Surface plume interactions
 - Landing gear
 - Mid L/D shape optimization
 - Multiple guidance and control algorithms for each vehicle
Key Accomplishments

- Multi-Directorate, Multi-Center, Multi-Year year collaboration
- Common Mars architecture assumptions and requirements
- Core group that understands complex integrated Mars Architecture
- Appreciate that every assumption has significant design implications
- Payload definition allowed for integrated lander/EDL design
- Subsystem commonality allowed for consistent vehicle comparisons
- Identified Figures of Merit and down selected to two EDL designs
Recommendations

- **STMD: EDL Technology Investment Recommendations**
 - *Down select to two closed vehicle designs* that bound EDL problem
 - Mid L/D and Low L/D (HIAD)
 - Perform extensive *CFD analysis on SRP initiation* and surface interaction phase
 - FY18 EDLAS + Propulsive Descent Technologies follow on efforts
 - Determine if *Direct Force Control systems* can replace heritage bank angle guidance
 - FY18 Entry Systems Modeling GN&C effort
 - Define *EDL GN&C sensor requirements* matrix (performance and software requirements and vehicle accommodation)
 - FY18 Safe & Precise Landing Integrated Capabilities Evolution (SPLICE)

- **HEOMD: Mars Architecture Design and Optimization**
 - Integrate vehicle design updates following STMD investigations
 - Assess transportation impacts for delivering heavier landers to Mars

- **SMD: Facilitate Communication**
 - To maintain awareness to upcoming Mars Sample Return mission
 - Information about common landing sites of interest (i.e. Jezero Crater)
JOIN US ON THE JOURNEY MARS