Comparison of Sonic Boom Noise Metrics from Predictions and Measurements Under Low Atmospheric Turbulence Conditions

Alexandra Loubeau and William Doebler
NASA Langley Research Center

177th Meeting of the Acoustical Society of America
Louisville, Kentucky
May 16, 2019
Paper 4pNS10
Introduction

- NASA goal to enable development of noise-based standard for commercial supersonic aircraft
- Need a noise metric that predicts human perception of sonic booms experienced both outdoors and indoors
 - No internationally agreed-upon metric exists
 - Previous meta-analyses identified 5-6 metrics
 - Further downselection of metrics is desired
 - Need a robust metric that can be used with real-world measurements
- Objective of current study
 - Use existing measured sonic boom data from supersonic overflight to study metric performance
Flight test procedure:
• Fly F-18 at Mach 1.4 at 34,000 ft. over microphone array through various levels of atmospheric turbulence (July 11-22, 2016)
• 20 flights (69 passes) at Edwards AFB

Flight test goal:
• Understand turbulence effects on ground measurements of sonic booms
• Turbulence effects model validation

Use low turbulence data from this test for a different purpose:
• Test our prediction capabilities
• Evaluate noise metrics
 ▪ Future noise certification standard may utilize ground measurements of booms in low-turbulence conditions
- Identified 6 supersonic passes with low turbulence
 - Analysis of ground boom variability and atmospheric turbulence measurements
- Next step: predict ground waveforms using NASA’s PCBoom propagation code
Boom propagation prediction tool overview

- Inputs:
 - Aircraft nearfield pressure
 - Aircraft trajectory
 - Altitude, heading, lat/lon, Mach, derivatives...
 - Atmospheric profile
 - Temperature, relative humidity, winds

- Output:
 - Ray landing position
 - Ground waveform

- Propagation methods:
 - Ray tracing
 - Implements the extended generalized Burgers equation
 - Nonlinearity, absorption/dispersion, geometrical spreading

No turbulence effects included here
Predictions for Low-Turbulence Passes of SonicBAT

- **Prediction inputs:**
 - F-18 nearfield CFD from Boeing
 - Measured F-18 trajectories
 - Measured weather balloon data
 - One profile per flight
 - Hot-dry climate
Prediction outputs:

- Closest ray landings to each microphone captured
- Resolution:
 - Nearest 1 degree emission angle
 - Nearest 0.5 second trajectory time step
- Only 3-4 predictions used for each pass

Predictions for Low-Turbulence Passes of SonicBAT

![Graph showing prediction locations and aircraft trajectory](image)
Sonic Boom Noise Metrics

Six noise metrics identified in previous work

• PL, ASEL, BSEL, DSEL, ESEL, ISBAP
 ▪ Indoor Sonic Boom Annoyance Predictor = ISBAP = PL + 0.4201 (CSEL – ASEL)
• Meta-analyses showed that all correlate well with human response outdoors and indoors

All 6 passes combined (N=106)

- Distributions vary by metric
- Standard deviations of 1.1 to 2 dB
Calculated Data (Individual Pass)

- Calculations conducted for each separate pass
 - One example pass shown (N=17)
Comparison of standard deviations

- Varies between passes
- Ranges from 0.6 to 2.9 dB
- BSEL and ISBAP have lowest values
Comparison of Measured and Predicted Data

- Example waveform comparison between measured and predicted for one pass
- Note that predicted waveforms for a given pass have very low variability along array
 - Variation in predictions is \(\leq 0.2 \) dB along array
 - Minor differences in trajectory and ray path
 - Same atmospheric parameters applied with no turbulence
- Variation in predictions between passes \(\leq 0.2 \) dB
- Variation in predictions between flights \(\leq 0.3 \) dB
- Assume that variations in measured data are due to atmospheric turbulence
Comparison of Measured and Predicted Data (Grouped)

- Model underpredicts mean measured values
 - Varies by metric
 - Difference ranges from 0.6 to 1.3 dB

- Mean of predicted data (N=21) within standard deviation of the measured data mean
Comparison of Measured and Predicted Data (Per Pass)

- **Model underpredicts mean measured values for all metrics**
 - Except for one case
 - Model does not account for any atmospheric turbulence
 - Note that predicted metrics have very low variability

- **(Meas-Pred) difference varies between passes**
 - Ranges from -0.2 to 2.3 dB

- **BSEL differences are smallest**
 - Most robust to changes in waveforms due to turbulence

- **PL differences are largest**
 - Most sensitive to (low) turbulence effects
Summary and Conclusions

- Used sonic boom flight test data and predictions to explore metric variability
- BSEL consistently is least sensitive to low turbulence effects
- PL is one of the most sensitive metrics to small changes in waveforms
- Results valid for limited dataset
 - F-18 N-wave sonic booms
 - Small subset of passes
 - Undertrack array
 - Low turbulence conditions
 - Hot-dry climate
Future Work

- Repeat for off-track microphone arrays
- Repeat for higher turbulence passes
- Analyze SonicBAT II data (hot-humid climate)
- Repeat analyses for quiet sonic thumps from NASA’s X-59 QueSST aircraft