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Previous fluid-structure-interaction experiments in high-speed

flows

« Very few hypersonic FSI experiments previously been conducted
« Supersonic SWBLI/FSI investigated by Spottswood et al. (2013)
« Cantilevered plate in Mach-6 flow studied by Currao et al. (2016)

« Casper et al. (2016) investigated response of flexible panel to
turbulent spots

Experimental configuration of
Casper et al. (2013)

DIC-patterned panel from Perturbe,
Spottswood et al. (2013)
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Schlieren image from
Currao et al. (2016)
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Why shock-wave/boundary-layer interactions?

* No previous FSI measurements on ramp-induced hypersonic SWBLIs in open literature

« Hypersonic interactions show notable differences from supersonic ones, producing
extremely high pressure fluctuation levels, also with significant low frequency content and
large subsonic region in separated cases

« Therefore, might expect ramp-induced SWBLI to be worst-case scenario for external FSI

Mach 2.9 (Priebe & Martin, 2012) Mach 9.6 (Helm & Martin, 2016)
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|. Experimental apparatus
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Test facility

e Tests performed in NASA Langley 20” Mach 6 tunnel

* Test times potentially up to minutes, but limited here
to a few seconds by camera memory

* Two test conditions to investigate influence of
incoming boundary-layer state

» Total pressure and temperature variations I AL 20-Inch.Mach 6 Air Tunnel
during run <0.1%
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Experimental model

* Flat plate/compression ramp with angles of 10°, 20°, 30°-35°
 Ramp corner located 356 mm from leading edge - transitional and turbulent incoming
boundary-layer states for Conditions A & B respectively
 Compliant structure incorporated in ramp:
e 4140 steel, 0.032” thick, 3.5” wide by 3.475” long
* Well below flutter boundary at tested conditions
* Flush-mounted Kulite pressure sensors on centerline upstream and downstream of panel
25 x 25 grid of markers on panel
for photogrammetry, recorded
at 30 kHz (Phantom v25125s)
* Pressure beneath panel
uncontrolled (but measured)
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Development of high-accuracy photogrammetry

. 1, N
* Photogrammetry allows sparse, localized markers and absolute %fﬂlm“df’i

position measurements, though displacement accuracy
traditionally lower than DIC

* Marker position evaluated through least-squares fitting of Photogrammetry

* Accuracy evaluated through artificial image analysis

intensity profile instead of center-of-mass calculation setup

Markers

* Average position error ~0.015 pixels (comparable to DIC),
relatively insensitive to marker diameter 0.035
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Development of high-accuracy photogrammetry

* Ray-tracing analysis of DNS of shock-wave/boundary-layer interaction indicated
refractive errors should be negligible for present application

* Experimental errors (out-of-plane) estimated as 2-4 um

* Allows high-speed (>10 kHz) micron-level out-of-plane measurements over entire
panel region

35° Transitional, Single Marker Displacement
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Integration with Spectral POD method

* Spectral Proper Orthogonal Decomposition (SPOD) (re-)introduced to community

by Towne et al. (2018)

* Uses data from all markers to determine dynamic modes at each frequency

* Characterizes panel motion as a whole rather than at discrete points
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. Rigid ramp characterization
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High-frequency pressure measurements

* Flush-mounted Kulites have flat frequency response up to ~40 kHz
* Significant amplification of pressure fluctuations through SWBLI — maximum of 12% of

mean pressure for 35 degree ramp

Pressure Spectra [35deg Turbulent]
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Focusing schlieren visualizations

* Focusing schlieren allows visualization of flow structures near centerline
e Cavilux Smart and Phantom v2512 allow double-pulsed operation for structure tracking
* More information was given in AIAA 2019-1127

Transitional boundary layer, 33° ramp Turbulent boundary layer, 34° ramp
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I1l. Compliant panel results
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Influence of ramp angle on panel modes

* Fully separated cases show largest panel responses

* Transitional interactions appear to excite broader range of panel modes (esp. asymmetric)
» Shifting of panel modes to lower frequencies with increased interaction strength

Transitional interactions
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Mode shapes: 35° ramp, transitional boundary layer

Mode 1,1: 795 Hz Mode 2,1: 1.77 kHz
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Time series data, 34° ramp

Condition A Condition B
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e Calculated using wavelet transform of single marker displacement
* Forcing in turbulent case appears far more sporadic
* No discernible link to upstream pressure content on centerline
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Static deformation and frequency shifting
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* Panel also underwent substantial static deformations, especially for turbulent condition
* Not well predicted by finite-element analysis
* Shifting of modal frequencies noted earlier appears to be linked to these deformations
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Static deformation, thermal stresses, and frequency shifting
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 Static deformation could be a result of thermal stresses induced by temperature differential
between panel and surrounding structure
 Temperature differential AT chosen to best match measured deflections for Condition B
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Static deformation, thermal stresses, and frequency shifting
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 Thermal stresses will also produce shift in modal frequencies
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* Good qualitative agreement between measured frequencies and model predictions
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Fundamental mode bifurcation
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» Atlarger ramp angles, 1,1 mode appears to split into two discrete frequencies
* Split modes appear alternately, rather than simultaneously
* Origin of this behavior unknown — still need to examine links to static deformatio
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Influence of panel motion on downstream pressure
fluctuations

Downstream sensor

* Small panel displacements mean limited coupling
back to fluid motions, but some effect appears to be
present in pressure fluctuations downstream of ramp

33° Turbulent, Downstream Pressure Spectra
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Conclusions and Acknowledgements

* High-speed photogrammetry used to study response of compliant panel to hypersonic ramp-
induced SWBLI for varying interaction strengths

* SPOD allowed mode shapes and strengths to be evaluated under different conditions
* For turbulent interactions, 1,1 mode excitation dominant
* For transitional interactions, higher-order modes showed comparable energy to 1,1

* Higher than expected static deformation and frequency shifting appear to be linked to thermal
stresses between panel and support

e Limited intensification of downstream pressure fluctuations also observed — origin not clear

This work was funded through AFOSR award FA-955-0181-0035, monitored by Dr. Ivett Leyva

We would also like to thank all the NASA Langley personnel (Kelly Murphy, Scott Berry, Karen
Berger, and the Mach-6 Tunnel technical staff) who made these experiments possible!
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Modal Testing

e Post-campaign modal testing
performed
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