A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms

G.L. Schuster¹, R. Espinosa^{2,3}, L. Ziemba¹, A. Beyersdorf⁶, A. Rocha-Lima^{2,3}, B. Anderson¹, J. V. Martins², O. Dubovik^{4,5}, F. Ducos⁴, D. Fuertes⁵, T. Lapyonok⁴, M. Shook¹, Y. Derimian⁴, R. Moore¹

- 1. NASA Langley Research Center;
- 2. University of Maryland, Baltimore County;
- 3. NASA Goddard Space Flight Center;
- 4. Universite de Lille 1/CNRS;
- 5. GRASP-SAS, Remote sensing developments;
- 6. California State University, San Bernardino, CA.

Acknowledgements

This material was supported by NASA through the ROSES Atmospheric Composition: Laboratory Research program, issued through the Science Mission Directorate, Earth Science Division.

The Difficulty of Validating AERONET Retrievals

STEAR is a laboratory experiment that simulates AERONET radiances.

Fit

Simplified Schematic

CAPS: Cavity Attenuated Phase Shift monitor PSAP: Particle Soot Absorption Photometer PASS: Photoacoustic Soot Spectrometer

Tested 285 samples

Tests include humidified and dried runs for both PM1 and PM2.5.

<u>Minerals</u>

Hectorite Hematite Arizona Test Dust **Cambrianshale Imt-2** Saz-2 Ca-rich Montmorillonite Illite-smectite Na-Montmorillonite Montmorillonite, STx-1b Montmorillonite SCa-3 Israel, Negev Desert Senegal **Ripidolite CCa-2** Palvoorskite Arginotec NX Europe A1 ultrafine test dust Silica Dust

Artist Pigments

Lemon Ocher Yellow Ocher Light Blue Ridge Hematite Brown Ocher (Goethite) Nicosia Yellow Ocher Ambrogio Yellow Earth

<u>Volcanic Ash</u>

Mt. St. Helens Fuego Volcano Pinatubo Iceland Volcano Mt. St. Helens Puyeheu Spurr Gulagong

<u>Soot</u>

Ashrae #2 120 nm soot 105 nm Soot 60 nm soot 25 nm soot 70 nm soot Fullerene soot

<u>Spheres</u>

600 nm PSL 900 nm PSL 100 nm PSL

<u>Standards</u>

Ammonium Sulfate Ammonium Nitrate Adipic Acid

<u>Mixtures</u>

Mont STx + 5% Goethite (by mass) Mont STx + 10% Goethite (by mass) Amm Sulf + Goethite (9-26% of scat)Amm Sulf + Amborgio Yellow Earth (11-30% of scat) Amm Sulf + Italian Yellow Earth (11-38%) Amm Sulf + Soot (0.78–0.97 SSA) Internal Silica+AS Internal Silica+fullerene Internal Hematite+AS Internal Goethite+AS Internal Goethite+AS Internal Hematite+AS AS + Soot - 0.87-0.98 SSA AN/Full_Int #1 + 7-15% Arginotec AN/Full Int #2 + 9-17% Mont. Sca-3 Mont. STx, 150-1000 Mm-1 Mont. STx, APS=0.63, 19LPM Mont. STx, APS=0.73, 12LPM Mont. STx, APS=0.94, 8LPM Mont. STx, APS=1.38, 5LPM Mont. STx, APS=1.57, 2LPM 600 (60/Mm) + 900 nm (100/Mm) PSL 600 (110/Mm) + 900 nm (100/Mm) PSL Mont. SCa-3 + Amm. Nit. (~61%) Mont. SCa-3 + Amm. Nit. (9-80%) Fullerene + Amm. Nit. (external, 0.86–0.96 SSA) Silica + Fullerene Silica + AS (Ext, 16% Dust) Blue Ridge Hematite + AS (Ext, 19% Dust) Blue Ridge Hematite + AS (Ext, 16% Dust) Arginotec + AS (Ext, 24% Dust) Arginotec + AS (Ext, 21% Dust) AN+Full (Ext, SSA = 0.92) Argintoc + AN/Full Ext (18% Dust, SSA = 0.92) Mont. Sca-3 + AN/Full Ext (18% Dust, SSA = 0.92) Mont. Sca-3 + AN/Full Ext (18% Dust when dry, SSA = 0.92) Argintoc + AN/Full_Ext (18% Dust when dry, SSA = 0.92)

Simulating AERONET with GRASP

- Input radiances only considered at AERONET scattering angles.
- Real refr. index range: 1.33 1.6
- Imag. refr. index range: 0.0005 0.5
- Radius range: 0.05 15 um (22 bins)
- Residuals less than 8%

Some Inconsistencies

- PI-Neph wavelengths different than AERONET:
 - ► 473, 532, 671 nm vs 440, 675, 870, 1020 nm
- Instrument sensitivities
- No multiple scattering

"Necessary but not sufficient" experiment

Subsampling PI-Neph to match AERONET measurement angles

• AERONET robot pauses for measurements at fixed specified azimuth angles, ϕ . • Thus, scattering angles (Θ) are determined by the solar zenith angle (θ_{\circ}) and ϕ .

 $\cos\Theta = 1 - \sin^2\theta_{\circ}(1 - \cos\phi)$

Note: AERONET Level 2 require residuals less than 5-8%, depending upon AOD.

- Evaluate size distribution retrievals using the effective radius and effective variance
- Integrated aerosol volume
- Single-scatter albedo
- Solar zenith angle effects on the single-scatter albedo absolute bias
- Bistatic lidar ratio at 173 degrees

- Evaluate size distribution retrievals using the effective radius and effective variance
- Integrated aerosol volume
- Single-scatter albedo
- Solar zenith angle effects on the single-scatter albedo absolute bias
- Bistatic lidar ratio at 173 degrees

Evaluate size distribution retrievals using the effective radius and effective variance

$$v_{eff} = \frac{\int (r - r_{eff})^2 \times \pi r^2 n(r) dr}{r_{eff}^2 \int \pi r^2 n(r) dr}$$

- Evaluate size distribution retrievals using the effective radius and effective variance
- Integrated aerosol volume
- Single-scatter albedo
- Solar zenith angle effects on the single-scatter albedo absolute bias
- Bistatic lidar ratio at 173 degrees

Integrated Aerosol Volume

- Evaluate size distribution retrievals using the effective radius and effective variance
- Integrated aerosol volume
- Single-scatter albedo
- Solar zenith angle effects on the single-scatter albedo absolute bias
- Bistatic lidar ratio at 173 degrees

Single Scatter Albedo

abslt bias

0.024

- Evaluate size distribution retrievals using the effective radius and effective variance
- Integrated aerosol volume
- Single-scatter albedo
- Solar zenith angle effects on the single-scatter albedo absolute bias
- Bistatic lidar ratio at 173 degrees

Solar Zenith Angle effects on SSA Absolute Bias

SSA Absolute Bias

- Evaluate size distribution retrievals using the effective radius and effective variance
- Integrated aerosol volume
- Single-scatter albedo
- Solar zenith angle effects on the single-scatter albedo absolute bias
- Bistatic lidar ratio at 173 degrees

Bistatic Lidar Ratio at 173 degrees $S_a = \frac{\text{ext}}{\text{sca}} \frac{4\pi}{P(173)}$

SZA:	50	77	1-deg
correlation coef	0.714	0.860	0.973
slope:	0.774	1.004	0.991
Intercept:	19.8	7.55	4.76
Relative Bias:	2%	10%	6%
Absolute Bias:	1.8 sr	7.9 sr	4.1 sr

Conclusions

- Simulated AERONET measurements for 285 in situ sampling volumes.
- GRASP provided quality retrievals (residuals of < 8%) for ~90 samples.
- Relative bias for effective radius is -13% when dynamic shape factor is constrained by extinction.
- Relative bias for the effective variance of size distributions is 280%.
- Relative bias for the integrated aerosol volume is 13-18% (SZA-dependent).
- Absolute bias for single-scatter albedo is +0.023 at 532 nm via PSAP.
- SSA biases do not vary significantly for SZA = 50-77 degrees.
- Relative bias for bistatic lidar ratio at 173° is 2-10%, depending upon SZA.

Manuscript essentially complete. To be submitted to Remote Sensing.

Appendix

Aerosol absorption and the single-scatter albedo

The Importance of Residuals

Residuals measure the ability of a retrieval model to reproduce measurements

Note: AERONET Level 2 require residuals less than 5-8%, depending upon AOD.

Bistatic Lidar Ratio at 173 degrees

 $S_a = \frac{\text{ext}}{\text{sca}} \frac{4\pi}{P(173)}$

SZA:	50
correlation coef	0.714
slope:	0.774
Intercept:	19.8
Relative Bias:	2%
Absolute Bias:	1.79 sr

Bars indicate the percentage of retrievals that satisfy the 8% requirement in each extinction bin.

Aerodynamic-Optical Size Conversion

Require closure with extinction measurements

Comparing Retrieved Size Distributions to Aerodynamic Size

Evaluate size distribution retrievals using the effective variance and effective radius.

$$r_{eff} = \frac{\int r \times \pi r^2 n(r) dr}{\int \pi r^2 n(r) dr}$$
$$v_{eff} = \frac{\int (r - r_{eff})^2 \times \pi r^2 n(r) dr}{r_{eff}^2 \int \pi r^2 n(r) dr}$$

$$\rho^* = \rho/\chi = \rho/1.3$$

