

Development of Metallic Sensory Alloys

T. A. Wallace, J. A. Newman, W. P. Leser NASA Langley Research Center Hampton, VA

> P. E. Leser North Carolina State University Raleigh, NC

2012 Aircraft Airworthiness & Sustainment Conference Baltimore, Maryland April 4, 2012

Problem

Service life (cycles or hours)

Problem

Service life (cycles or hours)

Motivation: Safe operation of modern aircraft depends on the ability to detect small cracks before they reach a critical size; however, existing NDE techniques can be ineffective in existing structural materials.

Approach: Embed particles with enhanced NDE response

Sensory Alloy Concept

Motivation: Safe operation of modern aircraft depends on the ability to detect small cracks before they reach a critical size; however, existing NDE techniques can be ineffective in existing structural materials.

Motivation: Safe operation of modern aircraft depends on the ability to detect small cracks before they reach a critical size; however, existing NDE techniques can be ineffective in existing structural materials.

High strain in damage zone causes phase transformation

- Acoustic emission (AE) that can be measured during flight
- Magnetic changes measurable using ground-based inspection equipment

Motivation: Safe operation of modern aircraft depends on the ability to detect small cracks before they reach a critical size; however, existing NDE techniques can be ineffective in existing structural materials.

Develop FSMA Sensory Material

- Background
- FSMA selection and optimization
- Evaluate NDE response

Embed Particles in Structural Al Alloy

- Production of sensory particles
- Investigate embedding techniques
- Evaluate effect on fatigue properties

Understand NDE Response of Sensory Alloy

Shape Memory phenomenon is driven by temperature OR strain

Alloy Selection for Sensory Particles

<u>Typical FSMA</u>

- Challenges:
 - Martensitic and magnetic changes not necessarily coincident
 - Transition temperatures very sensitive to small changes in composition

Processing of Sensory Materials

Production of Bulk Sensory Material

Can produce large (1 kg) casting with repeatable chemistry

Processing of Sensory Materials

Cast + Solution Treated and Quenched

Differential Scanning Calorimetry (DSC) Results

Proper heat treatment produces uniform chemistry and a sharp, repeatable phase transformation

NDE Response of Sensory Materials

Sensor

NDE Response of Sensory Materials

Shape memory alloy has enhanced NDE response compared to pure aluminum – increased number of events and energy

NDE Response of Sensory Materials

Strain in FSMA produces a change in magnetic properties that can be characterized using Eddy Current

Production of Sensory Alloys

Sensory Panel

Production of Sensory Alloys

Can produce sensory particles in various sizes and shapes

> Good consolidation for different Al-alloy matrices

2024-Al Matrix

NDE Response of Sensory Alloys

Bulk FSMA

10% Embedded FSMA in Pure Al

Sensory alloy has comparable NDE response to bulk FSMA

NDE Response of Sensory Alloys

Sensory alloy can be produced by embedding FSMA in aluminum alloys

Production of Sensory Alloys

No apparent decrease in fatigue life compared to panels without particles

NDE Response of Sensory Alloys

Test Set-Up

High intensity AE signals are measured as the crack tip approaches sensory particles

NDE Response of Sensory Alloys

Eddy Current Scans

- •An FSMA was developed that demonstrated acoustic emission and magnetic property changes when strained
- •Particles of the FSMA were successfully produced and consolidated within an aluminum matrix
- •Sensory alloys demonstrate acoustic emission and change in magnetic properties for compressive and fatigue loading
- •Patents:
 - "Strain-Detecting Composite Materials," LAR-17738, provisional patent filed January 11, 2010