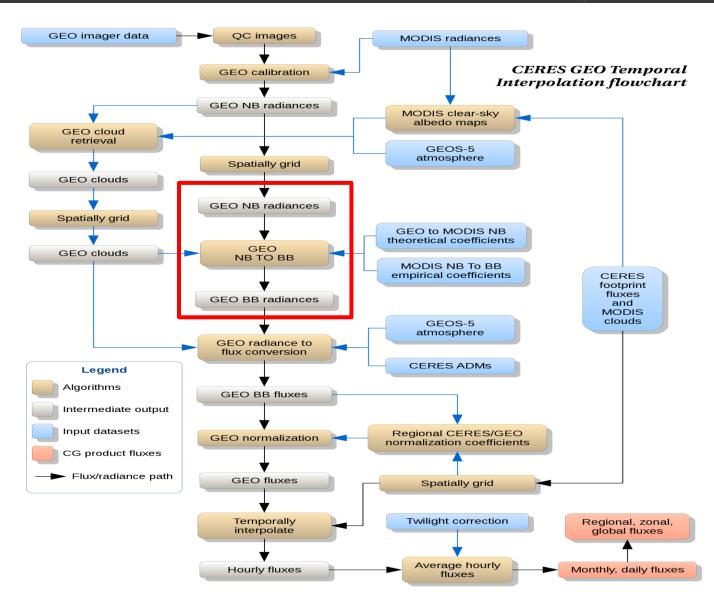
TISA Edition4 LW Improvement Working Progress

Moguo Sun, Cathy Nguyen, Natividad Smith, Raja Raju, Forest
Wrenn
SSAI
David Doelling, Norman Loeb, Patrick Minnis
NASA-Langley

CERES Science Team Meeting, 2013
May 7-9, 2013, NASA Langley, Hampton

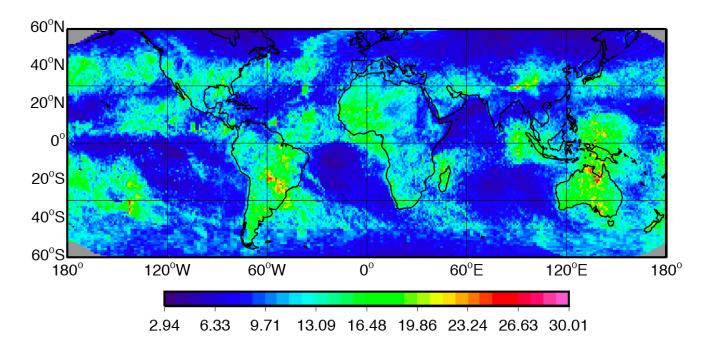
Outline

- Current GEO LW flux Status
- Ed4 NB-BB Radiance algorithm based on CERES
- Ed4 GGEO LW Flux: NB2BB, ADM, Normalization
- Preliminary Results
- Summary
- Future work


New stuff

- Procedures
- Validation: before vs. after
 - Map
 - A region
- Conclusion

CERES GEO LW Processing



Doelling

Current GEO NB-BB Flux Matched GEO vs. Terra, January 2006

Global Mean RMS: 8.39

GEO LW and Terra LW Matched within 1.5 hours

Current GEO LW NB->BB Flux Algorithm

• WN => Nadir NB flux

$$F_{NB} = 1.97 \pi L_{WN}(\theta) / \gamma(\theta)$$

$$\gamma(\theta) = \begin{cases} 1 & \theta \leq 11.7 \\ 1.000665 + 0.0324721 \ln(\cos \theta) & \theta > 11.7 \end{cases}$$
Limb darkening function

NB flux \Rightarrow BB flux (OLR)

Column Relative Humidity

$$OLR_{BB} = a_0 + a_1F_{NB} + a_2F_{NB}^2 + a_3\ln(RH)$$

NB flux

 a_0, a_1, a_2, a_3 Coefficients for ocean and land separately

Current GEO NB->BB Flux Algorithm

- The algorithm is based on Minnis et al. 1991 and not updated since then.
- Doelling et al. (1998 and 2003) validate the algorithm over ocean and land area and investigate the effects of different channels and relative humidity on RMS.
- LW RMS (~3-5%).

Areas for Improvement

- Use Ed4 GEO multiple channels vs. Ed2/Ed3 WN only
- Use WV channel to replace GEOS Relative Humidity
- Use ADM-like scene types vs. global land/ocean formula

Ed4 NB->BB Radiance Development

- Data: SSF-Ed4 (MODIS radiance and CERES flux)
- Test multiple channels:

3.79μm (Night only), 6.72μm, 11.03μm, 12.02μm

- Create scene types:
 - Ocean/land (6): Ocean, Forests, Savannas, Grass-Crop, Dark and Bright Deserts.
 - Day/Night (2)
 - Clear/cloud (2)
 - **Precipitable Water (4):** 0-1, 1-3, 3-5, 5-10 cm
 - Viewing Zenith Angle (7): 0°-70°, every 10°
 - Total: 672 scene types

Ed4 NB->BB Radiance Development

• For each scene type:

Linear regress: CERES LW_{BB} vs. MODIS $(Rad_{nb1}, Rad_{nb2}, Rad_{nb3})$

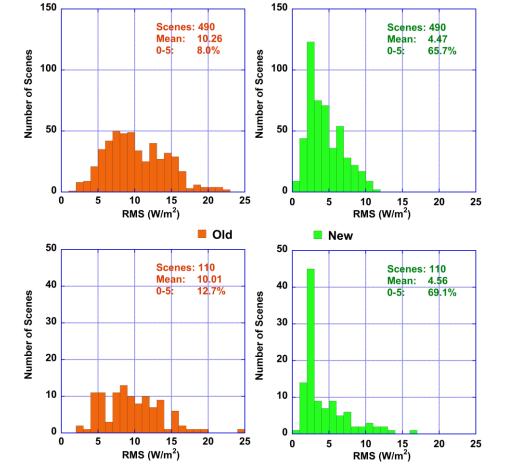
$$LW_{est} = a_0 + a_1 Rad_{11\mu m} + a_2 Rad_{6.7\mu m} + a_3 Rad_{12\mu m}$$

• Evaluation of the algorithm:

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (LW_i^{est} - LW_i^{BB})^2}$$

NB Rad -> **BB** Flux Algorithm

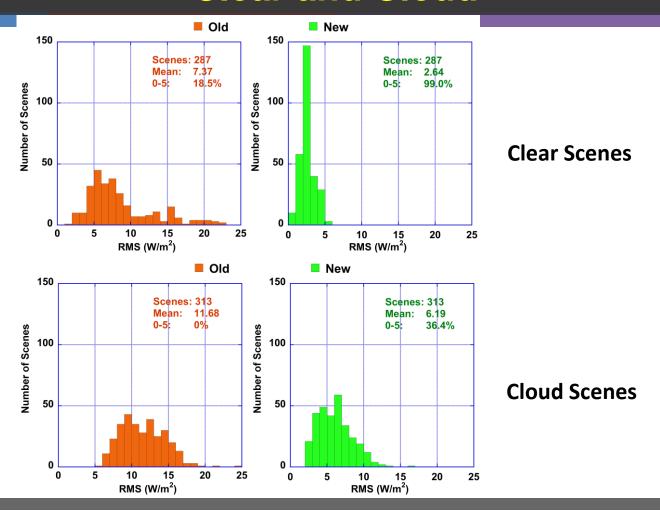
Method


- 1. Calculate NB-BB flux directly using 11.03μm and 6.72μm for all scenes.
- 2. Calculate NB-BB flux using current 11.03µm global formula and then sort the data according to the same scene types as in 1.

NB Rad - BB Flux Land and Ocean

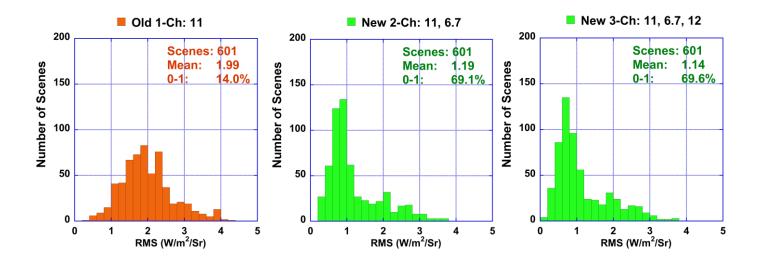
New

Old


Land Scenes

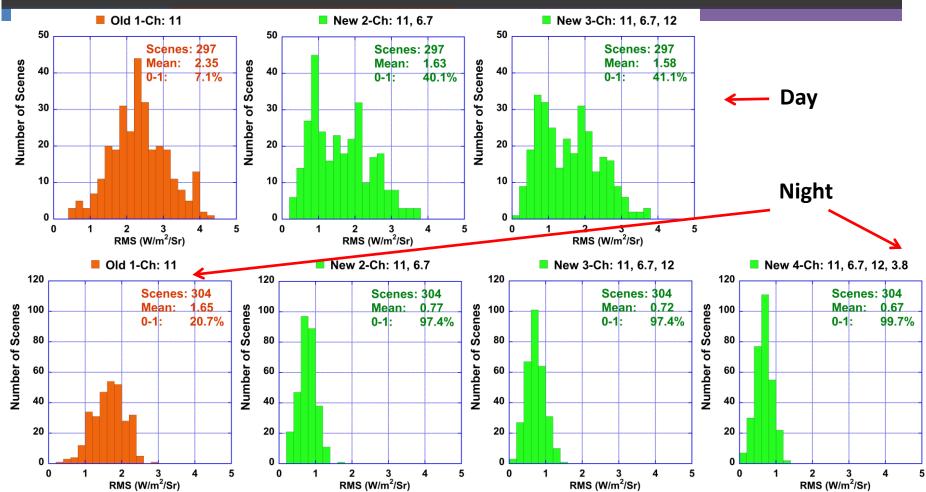
Ocean Scenes

NB Rad -> BB Flux Clear and Cloud


NB Rad -> BB Flux Table

Types	Total Scenes	Ed2/Ed3 WN-only		Ec WN -	Ed4 vs. Ed2/3	
		Mean RMS	(%) RMS < 5	Mean RMS	(%) RMS < 5	RMS diff (%)
All	600	10.21	8.8	4.49	66.3	56.02
land	490	10.26	8.0	4.47	65.7	56.43
ocean	110	10.01	12.7	4.56	69.1	54.45
day	296	11.18	11.5	5.59	49.0	50.00
night	304	9.27	6.3	3.42	83.2	63.11
clear	287	8.61	18.5	2.64	99.0	69.34
cloud	313	11.68	0.0	6.19	36.4	47.00

NB -> BB Radiance All Scenes



April, 2000

NB Rad -> BB Rad Day and Night, April 2000

NB Rad -> BB Rad Table

							Ed4	
Types	Total Scenes	Ed2/Ed3 WN-only		Ed4 WN + WV		Ed4	WN+WV+12µm	
		Mean RMS	(%) RMS < 1	Mean RMS	(%) RMS < 1	vs. Ed2/3 RMS diff (%)	Mean RMS	(%) RMS < 1
All	601	1.99	14.0	1.19	69.1	40.20	1.14	69.6
land	490	2.03	13.1	1.22	66.3	39.90	1.17	66.9
ocean	111	1.84	18.0	1.08	81.1	41.30	1.02	81.1
day	297	2.35	7.1	1.63	40.1	30.64	1.58	41.1
night	304	1.65	20.7	0.77	97.4	53.33	0.72	97.4
clear	287	1.72	17.1	0.79	89.2	54.07	0.74	90.2
cloud	314	2.25	11.1	1.56	50.6	30.67	1.52	50.6

Ed4 GGEO LW Flux Improvement

- LW Narrowband-Broadband Radiance Conversion
- LW BB Radiance-Flux Conversion by ADM (Angular Distribution Model)
- GGEO LW Flux Normalization

LW Narrowband-Broadband Radiance Conversion

- Apply MODIS-CERES based NB-BB coefficients to GGEO data assuming GGEO and MODIS have similar spectral response function (SRF).
- Problems:
 - GGEO and MODIS do have different SRF, this may cause some bias.

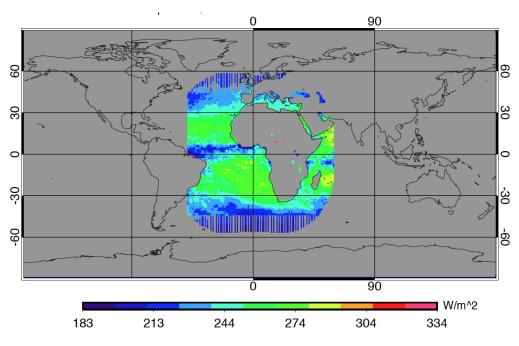
LW BB Radiance-Flux Conversion by ADM (Angular Distribution Model)

- Use current LW ADM to convert Broadband Radiance to Flux. Supposedly this is better than the current simple-limb darkening correction.
- Problems:
 - The ADM is based on CERES and may have problem applying to GGEO data.

GGEO LW Flux Normalization

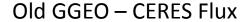
- Normalize the GGEO Flux against matched CERES flux.
- This method has been applied to SW and cloud properties and it shows great improvement.

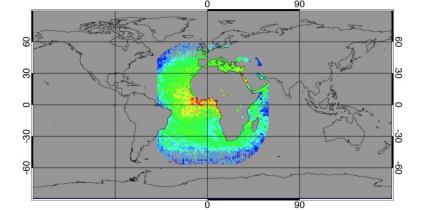
Preliminary Results

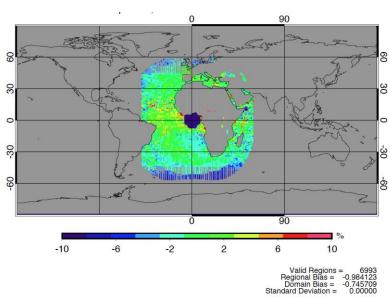

• The results here are very preliminary and represent work in progress.

Preliminary Results

April 2010 CERES Flux over MET9 Satellite Area



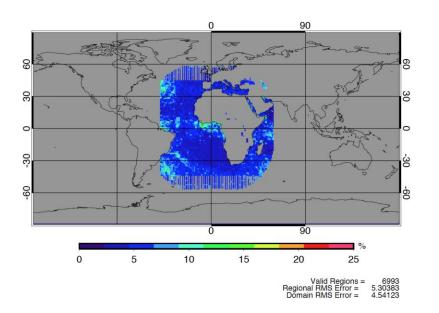

Valid Regions =
Number of Samples = 2
Regional Mean = 2
Domain Mean = 2

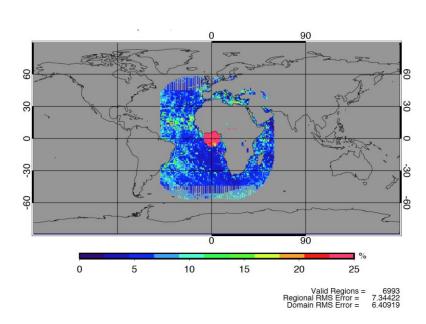


Preliminary Results April, 2010 BIAS

New GGEO – CERES Flux

The new method shows regional improvement but not for the whole domain.


Valid Regions = 6993
Regional Bias = -0.343279
Domain Bias = -0.115939
Land Deviation = 0.00000



Preliminary Results April, 2010 RMS

Old GGEO – CERES Flux

New GGEO - CERES Flux

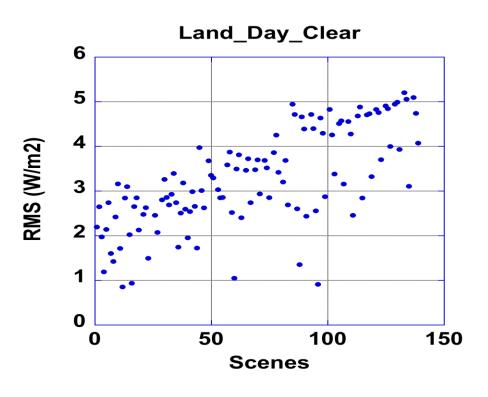
The new method shows worse results, need to double check.

Summary

- For NB-BB radiance conversion, 2-channel algorithm reduce RMS by about 40% compared with 1-channel algorithm averaged for all scenes.
- Adding other channels to the 2-channel algorithm improves RMS only slightly.
- The New NB-BB Radiance algorithm combined with LW ADM show no improvement for this preliminary results. This needs further validation and code checking.

Future Work

• Continue to work on Ed4 GGEO LW algorithm to correct any bugs and refine algorithms to improve accuracy compared with current LW algorithm.



Thank You!

Backup

2-channel NB-BB flx April, 2000

