

System-Level Urban Air Mobility Transportation Modeling and Determination of Energy-Related Constraints

> Dr. Lee W. Kohlman NASA Langley Research Center Aeronautics Systems Analysis Branch

Outline

- Background
- Motivation
- Modeling Approach
- Energy Source Comparison
 - Fuels vs. Battery
 - Deep Dive: LNG vs. Battery
- Conclusions

Background

- Urban Air Mobility (UAM) refers to the transportation of people and cargo by air in a metropolitan area
- This new emerging market has the potential to transform the way people and cargo move within the urban environment
- Smaller, unconventional configurations will be needed to operate in these systems
- Emissions, noise and costs will be key to the success of these systems

Motivation

- To better understand how choices in vehicle design and power system architecture affects network operations
- To evaluate the viability of potential energy storage and conversion systems for primary electric propulsion of UAM aircraft

Modeling Approach

- 7 vertiport, hexagonal model for sensitivity studies
- 5 vertiport, hexagonal model for Dallas-Fort Worth/Uber parameters
- Scale model 30-50 aircraft per vertiport
- Full scale model 300-500 aircraft per vertiport
- Demand model: discrete events generated from probability curve
- More information available in the paper

Time Count, 10 seconds

Saturating Replenish Stations

Baseline

Saturated Replenish, Impacting Ops

Half

Replenish

Rate

Unsaturated Ops

Double Replenish Rate

Number of Landing Pads

Doubled Landing Pads

Baseline

Scaling Comparison

40 aircraft per vertiport

Energy Source Comparison: Fuel vs. Battery

UAM Power Sources: Battery vs. Hybrid

Engine/Turbine Modeling

System Mass: Doubling Endurance

Baseline

Doubled Endurance

CO2 Emissions

Modeling Results: Fuel and Electricity Usage

	100 kW	200 kW	500 kW	200 kW	500 kW	1000 kW	2000 kW	100 kW	200 kW	500 kW
	IC	IC	IC	Turbine	Turbine	Turbine	Turbine	SOFC	SOFC	SOFC
100-LL	5.47	10.92	27.21	20.52	42.31	73.14	126.4	3.22	6.43	16.1
(L)										
Diesel	4.83	9.65	24.05	19.60	40.42	69.87	120.8	3.07	6.15	15.4
(L)										
JP-A (L)	5.00	9.99	24.88	18.76	38.69	66.88	115.6	2.94	5.88	14.7
LNG (L)	7.79	15.56	38.79	31.61	65.18	112.7	194.8	4.96	9.91	24.8

	100 kW	200 kW	500 kW	1000 kW	2000 kW
Battery Energy (MJ)	78	156	390	780	1560

System Fuel Usage

	AvGas 100LL	Ultra-Low Sulfur Diesel	JP-A	LNG	Electricity
200 kW IC 40 km mission fuel	10.92/373	9.65/345	9.99/374	15.56/345	209/156
volume/energy (L/MJ)					
Average mission volume/energy	13.61/465	12.03/431	12.45/466	19.39/430	260/194
(L/MJ)					
Energy used for 15,000 missions	53,931 Gal	47,670 Gal	49,334 Gal	76,834 Gal	808,333 kWh
Energy used for 75,000 missions	269,655 Gal	238,350 Gal	246,670 Gal	384,170 Gal	4,041,665 kWh
Number of 9000 Gallon Tanker	30	27	28	43	
Deliveries					
Price per Unit	\$2.99 [28], premium	\$2.93 [28]	\$2.83 [28]	\$1.50 [26], [27], [29]	\$0.13 [26]
(\$/Gal <i>,</i> \$/kWh)					
Energy Operating Cost per Day	\$806,268	\$698,365	\$698,076	\$576,255	\$525 <i>,</i> 416
CO2 per Day (kg)	2,419,235	2,393,470	2,496,940	1,811,150	2,178,455

LNG: slightly higher cost (%9.7), lower CO2 (17%)

[26] Alternative Fuels Data Center, "Fuel Prices," [Online]. Available: https://www.afdc.energy.gov/fuels/prices.html. [Accessed 27 November 2017].

[27] Alternative Fuels Data Center, "Clean Cities Alternative Fuels Price Report," [Online]. Available: https://www.afdc.energy.gov/uploads/publication/alternative_fuel_price_report_july_2017.pdf. [Accessed 29 November 2017].

[28] U.S. Energy Information Administration, "Data, Weekly Retail Gasoline and Diesel Prices," [Online]. Available: https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_w.htm. [Accessed 1 December 2017].
 [29] Prometheus Energy, "LNG Quick Facts," [Online]. Available: http://www.prometheusenergy.com/_pdf/LNGQuickFacts.pdf. [Accessed 1 December 2017].

Energy Source Comparison: Deep Dive LNG vs. Battery

Existing DFW Power Sources

NASA

396 total power plants

Biomass
Coal
Geothermal
Hydro
Hydro
Natural gas
Nuclear
Other
Other
Other fossil gases
Petroleum
Pumped storage
Solar
Wind
Wood

Cost of New Electricity Generation

Vehicle Cruise Power	100 kW	200 kW	500 kW	1000 kW	2000 kW
Lm Length (40 km) Mission Energy (MJ)	78	156	390	780	1560
Power for five minute recharger (kW)	260	520	1300	2600	5200
Power for one vertiport with 160 five minute rechargers(MW)	41.6	83.2	208	416	832
Total power for five vertiports (full model) each with 160 five minute rechargers (MW)	208	416	1040	2080	4160
Number of additional 237 MW Advanced Combined Cycle Natural Gas (NG) Plants	1	2	5	9	18
Total NG Installation Cost (\$M 2016)	\$159M	\$319M	\$795M	\$1431M	\$2862M
Number of additional 100 MW wind power installations	2	4	11	19	37
Total Wind Installation Cost (\$M 2016)	\$337M	\$674M	\$1854M	\$3202M	\$6235M

Natural Gas Pipelines in Dallas/Fort Worth

Cost of LNG Plant

Capacity	Pretreatment and Liquefaction	Construction, Installation, Storage	Total Installed Cost			
10,000 gallons/day ^m	\$5-8M	\$5-12M	\$10-20M			
50,000 gallons/day*m	\$12-15M	\$12-22.5M	\$24-37.5M			
75,000 gallons/day ^c	\$20M	\$20M	\$42M			
150,000 gallons/day ^{^m}	\$22-25M	\$22-37.5M	\$44-62.5M			
250,000 gallons/day ^c	\$42M	\$33-38M	\$75-80M			
375,000 gallons/day	\$63M (est.)	\$57M (est.)	\$120M (est.)			
*minimum recommended size,						
^minimum recommended economic size						
^m numbers provided by MicroLNG (Ref. [40])						

^cnumbers provided by Chart Industries (Ref. [38])

[40] W. Livingston, Interviewee, President of MicroLNG: Email Conversation on LNG Production. [Interview]. 11 December 2017.

^[38] L. Hallas, Interviewee, Chart, LNG Refueling Correspondence. [Interview]. 8 January 2018.

Cost of LNG Fuel

Cost Component	Price \$/Gal (High)	Price \$/Gal (Low)	Used in Calculation
Natural Gas 375,000 Gal/day	\$0.70	\$0.32	\$8.48 commercial/\$3.89 industrial per 1000 cu feet [41] 82.6 cu feet/Gal [29]
Amortized Installation 5 year, 10% interest, 95% utilization	\$0.40	\$0.22	Ref. [42], estimate from page 7
Electricity @ 1 kWh/Gal	\$0.1043	\$0.0533	High estimate: US average commercial price, Low estimate: Texas industrial [40]
Labor (two workers 24 hrs/day and two workers 12 hrs/day at \$30/hr)	\$0.03	\$0.03	Estimate (LNG plant only, not refueling pumps)
Maintenance and operations	\$0.073	\$0.037	Estimate high \$2M/year, low \$1M/year
Total Near Term	\$1.31	\$0.66	
Total Long Term	\$0.91	\$0.44	Remove Amortization
Current Retail	\$1.50		See Table 7

[29] Prometheus Energy, "LNG Quick Facts," [Online]. Available: http://www.prometheusenergy.com/_pdf/LNGQuickFacts.pdf. [Accessed 1 December 2017].

[40] W. Livingston, Interviewee, President of MicroLNG: Email Conversation on LNG Production. [Interview]. 11 December 2017.

[41] U.S. Energy Information Administration, "Natural Gas," [Online]. Available: https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm. [Accessed 11 December 2017].

[42] MicroLNG, Kilotherm Natural Gas Processing, MicroLNG Natural Gas Liquefaction, Athens, Georgia, 2017.

Energy Cost for 200kW System

Region	Residential	Commercial	Industrial	Transportation	
National	12.55	10.43	6.76	9.63	
Texas	10.99	8.26	5.33	7.92	Cents/kWh
California	17.39	15.07	11.92	9.80	
New York	17.58	14.45	6.03	12.05	

200 kW Power System	Electricity	Electricity	LNG High	LNG Low	LNG High	LNG Low
	High	Low	w/IC	w/IC	w/ SOFC	w/SOFC
Mission use	43.3 kWh ^A	43.3 kWh ^A	4.11 Gal ^B	4.11 Gal ^B	2.62 Gal ^B	2.62 Gal ^B
Price per unit	\$0.15/kWh ^c	\$0.05/kWh ^D	\$1.31/Gal ^E	\$0.44/Gal [⊧]	\$1.31/Gal ^E	\$0.44/Gal [⊧]
Mission Price	\$6.53	\$2.31	\$5.38	\$1.81	\$3.43	\$1.15
Mission length (km)	40	40	40	40	40	40
Cents/km	16.3	5.77	13.46	4.52	8.58	2.88

^A from Table 4, 200 kW vehicle, includes conversion from MJ to kWh

^B from Table 3, 200 kW vehicle, includes conversion from L to Gal

^c from Table 10, highest average of "Commercial" (California)

^D from Table 10, lowest average of "Industrial" (Texas)

^E from Table 9, high estimate with amortization

^F from Table 9, low estimate without amortization

Charging vs. Refueling

Replenish Type	Recharge	Refuel
Rate	450 kW	50 Gal/min
Time to replenish vehicle	5.8 min	1.47 min (IC)
Cruise Flight Time	10 min	180 min
State of Development	In development	Commercially available
Preferred operational model	Distributed	Centralized Depot
Unit Cost Estimate	\$450k/charger [46]	\$2.25M for 15 pump station [38]
Units Required	~160	1 (2)
Total Cost Per Vertiport (500 Vehicles)	\$72M	\$2.25M (\$4.5M)

Conclusions

- Network modeling is critical to understanding the impact of vehicle design choices on the overall system operation
 - Replenishment rate and frequency will have a large impact on availability of aircraft
 - Takeoff and landing pads are critical potential bottlenecks in the system
- LNG is a competitive option for energy storage onboard UAM aircraft
 - The CO2 emissions are potentially lower than battery
 - The energy cost is potentially lower than battery
 - The technology has been developed to TRL 9 in ground transportation
 - The infrastructure costs are lower than for battery

Acknowledgements

 We would like to acknowledge the Revolutionary Vertical Lift Technologies project and the FUELEAP project for supporting this work.

The End.

New Model Capabilities

- KML GPS coordinate file import
- Distributed replenish and depot based replenish

New Demand Models

- A person object "lives" at one port and "works" at another
 - A request is generated in the morning from "live" to "work"
 - A request is generated in the afternoon from "work" to "live"
- A person object originates at one port and requests a flight to a random port
- A person is either located at an airport or wants to travel to an airport, the non-airport end of the trip is randomly selected.
- Both churn (random movement of people) and flow (bulk movement in a similar direction) can be simulated

Model Structure

