

Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame

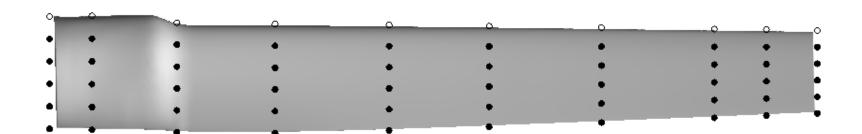
William T. Jones, Eric J. Nielsen, Elizabeth M. Lee-Rausch, and Cecil W. Acree, Jr.

> FUN3D Training Workshop June 20-21, 2015

Geometry Model

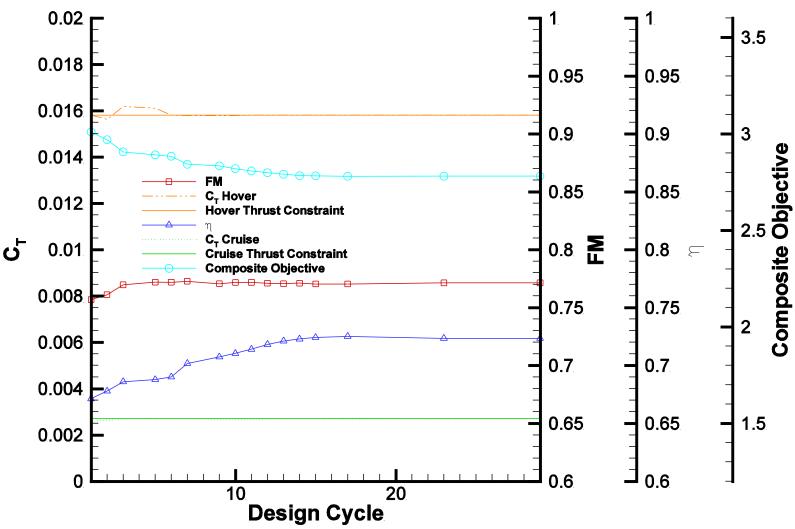
- Isolated rotor for Tilt-Rotor Aeroacoustics Model (TRAM)
 - Represents an optimized system designed with traditional tools
 - ¼ scale model of the V-22
 - Modified cuff for structural reasons
 - Resized to match full scale conditions
- Multiple design points
 - Hover (FM)
 - Cruise (*Propulsive Efficiency*, η)
- Single composite objective function

Flow and Sensitivity


- Solve as a steady problem relative to rotating reference frame
 - Constant angular velocity
 - Additional source term to represent Coriolis effect
 - Single mesh zone
 - Applicable to rigid tilt-rotor in helicopter or airplane mode
 - Freestream velocity vector is parallel to angular velocity vector
 - Helicopter: hover, ascending, descending
 - Airplane: cruise
 - Spalart-Almaras turbulence model
- Functions and gradients provided to SNOPT 7.2 (Stanford)
 - http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
- Gradient evaluation requires sensitivity analysis
 - Perturbation of design each design variable prohibitively expensive
 - 100 DVs X 2 Points X 50 Cycles X 2 Central Difference = 20,000 flow solutions
 - 0.5 hour / solution => 1.1 years
 - Adjoint gives Gradients at the cost of 1 flow solution + 1 adjoint solution (for all DVs)
 - 2 Points X 50 Cycles = 100 flow solutions => 50 hours

Geometric Parameterization

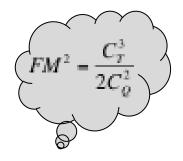
- MASSOUD
- 123 active design variables
 - 60 camber
 - 50 thickness
 - 10 twist
 - 1 taper
 - 1 collective for each of two design points
- Collective variable formed by linking twist variables
- Taper variable formed by linking in-plane components of planform at tip
 - ¼ chord invariant to design changes
- Variables bounded to prevent non-physical surface
- Boundary grouping used to maintain same shape for all blades



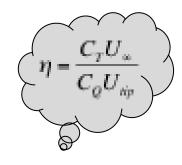
Camber and Thickness

Results: Design Convergence

Convergence History for Step C (Constraint on minimum Thrust)

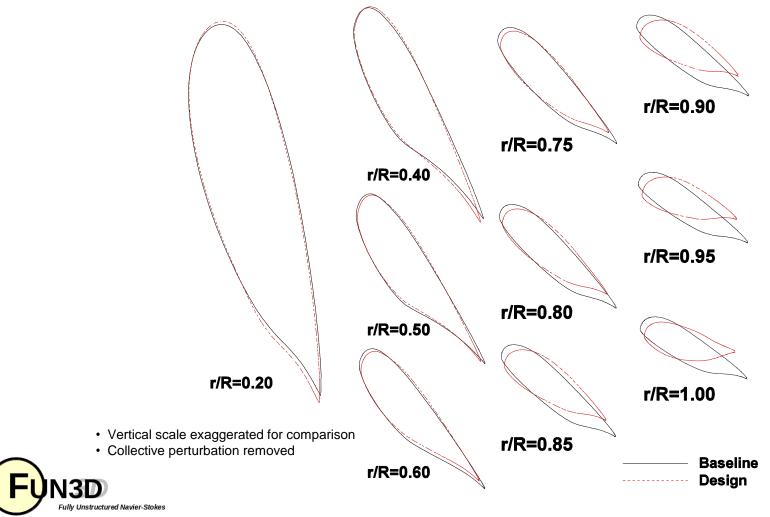


Results: Hover and Cruise Points


Hover Figure of Merit function (Constant Thrust constraint)

Step	C_T	C_T/σ	FM	∆FM	%Change
Baseline	0.0158	0.151	0.756	-	-
С	0.0158	0.137	0.771	0.015	1.98

Cruise Propulsive Efficiency (Constant Thrust constraint)


Step	C_T	C_T/σ	η	Δη	%Change
Baseline	0.0027	0.0257	0.671	-	-
С	0.0027	0.0233	0.723	0.052	7.75

Results (cont.)

• Airfoil sections, Step C, constant C_T constraint

AIAA-2014-0290

Conclusions

- Demonstrated gradient-based aerodynamic optimization methods for tilt-rotor
 - High-fidelity CFD
 - Non-inertial reference frame for efficient steady state solution
 - Gradients supplied by flow adjoint solution
 - 123 aerodynamic design variables
 - Multi-point objective function
- Optimization sought to maximize rotorcraft FM in Hover and cruise η
- Multiple designs of increasing degrees of freedom examined impact of design variables
- Designs subject to thrust constraint
 - Constant thrust
 - Maintain minimum thrust
 - Unable to impose a blade loading constraint
 - Results indicated such a constraint is needed
- Process modestly improved hover FM and cruise η for all designs
 - Improved physics with many design variables
 - Designs validate process

Motivation

- Develop and demonstrate aerodynamic optimization methods for tilt-rotor application
 - Enhance the current process
 - Improved physics
 - Larger design space
- High-fidelity CFD is commonplace in steady aerodynamic analysis
 - Application to full rotorcraft configurations is still challenging
 - Unsteady flows
 - Wide range of velocities
 - Complex aerodynamic and structural interaction
- Adjoint methods provide sensitivity information for gradient-based optimization
 - Cost independent of number of design variables
 - Rotorcraft application requires time dependent adjoint implementation
 - Can cast isolated rotor as a steady problem in non-inertial frame
- Multi-point design at hover and cruise conditions

Design Methodology: Design Points

- Multiple design points supported by FUN3D implementation
 - Each point defined by a variation of basic flowfield quantities
 - Points may also represent more general characteristic changes
- Two design points for tilt-rotor optimization
 - Hover

•
$$C = FM^2$$

•
$$f_{hover} = 1.0(FM^2 - 2.0)^2$$

•
$$C_T = 0.0158$$

$$FM^2 = \frac{C_T^3}{2C_Q^2}$$

Cruise

•
$$C = \eta$$

•
$$f_{craise} = 1.0(\eta - 2.0)^2$$

•
$$C_T = 0.0027$$

$$\eta = \frac{C_T U_{\scriptscriptstyle \infty}}{C_{\scriptscriptstyle Q} U_{\scriptscriptstyle \dot{np}}}$$

- Separate meshes used for each condition due to collective pitch differences
- Single composite objective function, f_{mp}

$$- f_{np} = \alpha_{bover} f_{kover} + \alpha_{cruine} f_{cruine}$$

 α – Weight factor for each design point

Design Methodology: Design Conditions

- Open literature cruise conditions of V-22
 - Hover

 M_{tip} 0.707

 R_e 9.2M

C_{ref} 22 inches

 Θ 41°

T_∞ 519° Rankine

Mesh 8M nodes (48M tetrahedra)

Cruise

Altitude 3,000 feet

 M_{tip} 0.650

 R_e 6.1M

c_{ref} 22 inches

 Θ 14°

T_∞ 551.5° Rankine

Mesh 8M nodes (48M tetrahedra)

