

IMPACT FOAM TESTING FOR MULTI-MISSION EARTH ENTRY VEHICLE APPLICATIONS

Lou Glaab LaRC, Parul Agrawal ARC, James Hawbaker SRI In-Space Propulsion Technology (ISPT)

- Discuss Multi-Mission Earth Entry Vehicles (MMEEVs)
- MMEEV impact and thermal soak analysis
- Thermal Conductivity Test
 - Test objectives
 - Facility
 - Samples
 - Results
- Summary, Plans

Multi-Mission Earth Entry Vehicles (MMEEVs)

- Considered a family or type of vehicle
- Can be designed to meet specific mission requirements
- Achieve high reliability through single-stage EDL concept
- No reaction control systems, parachutes, etc.
- Perform "free flight" after release from carrier spacecraft
- NASA is developing the trade space for these vehicles

Impact foam modeling requirements

- Concept of Operations can include extended recovery times
- During this time heat, stored in the heatshield, can flow into the vehicle and increase payload temperatures (referred to as thermal soak)
- Thermal soak analysis requires adequate modeling of the vehicle before and after impact
- Impact foam data for post-impact condition unavailable

- Provide data to support MMEEV thermal soak analysis
 - Define the effect of impact on the foam's thermal conductivity
 - Verify manufacturer's specifications and provide higher-fidelity model data for preimpact conditions

• Method

- Test series of impact foam samples in Southern Research Institute's (SRI's) 7" Guarded Hot Plate (GHP) test apparatus
- For both virgin and impacted condition
- For a range of Rohacell impact foam densities
 - 71-WFHT and 110-XTHT

SRIs 7" GHP

- Based on ASTM C177-85 specification
- Capable of temperatures from -200°F to 500°F
- Effective for testing insulating foams, graphite foams, fibrous insulations, low density ceramic insulations, cloths and rubbers

C177_AS.DWG

Impact Foam Samples, Test Matrix

Test samples

- 0.25" thick, 2" diameter
- 0.005" diameter thermocouples

Foams tested, virgin and crushed properties

#	Foam	Density	σ _{cs}	σ_{ss}	T _d
		slugs/ft ³	ks1	ks1	۴
1	71-WFHT	0.15	0.25	0.19	392
2	110-XTHT	0.21	0.52	0.35	464
3	71-WFHT-crushed	0.32	-	-	-
4	110-XTHT-crushed	0.40	_	_	_

110-XTHT Crushed Sample

Test Matrix

#	Foam	Condition	Test Pressure	Temperatures Tested
1	71-WFHT	Virgin	1 ATM	Multiple
2	71-WFHT	Virgin	Vacuum	Single
3	71-WFHT	Crushed	1 ATM	Multiple
4	71-WFHT	Crushed	Vacuum	Multiple
5	110-XTHT	Virgin	1 ATM	Multiple
6	110-XTHT	Virgin	Vacuum	Single Temp
7	110-XTHT	Crushed	1 ATM	Multiple
8	110-XTHT	Crushed	Vacuum	Multiple

NASA.

Mechanical Properties of the Impact Foams Tested

71-WFHT

110-XTHT

Reference 6: Patterson and Glaab, 2012.

Thermal Conductivity of the Impact Foams Tested

- Effect of impact
 - Crushes cells
 - Increases density
 - Small change in thermal conductivity
- Effect of vacuum testing
 - No effect for virgin foam
 - Large effect for crushed foam
 - Likely due to venting of manufacturing gas and replacement with air

- A series of Rohacell foams were tested to determine their characteristics for MMEEV impact attenuation applications
- Results indicate good mechanical characteristics for a range of impact rates
- Thermal conductivity results
 - Indicate the effect of impact is small
 - Likely due to venting of manufacturing gas and replenishment with air
 - Density is increased by a factor of two due to impact
 - Virgin thermal conductivity higher than manufacturer's specification
 - ~30% higher at low temperatures
 - ~60% higher at high temperatures
- Plans
 - Incorporate impact foam thermal conductivity data into thermal soak analyses
 - Complete modeling in support of parametric Multi-Mission System Analysis for Planetary Entry (M-SAPE) tool (Reference 2).

BACKUP

Effect of Foam Density on Thermal Soak

IN-SPACE PROPULSION 11