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Motivation

Boron nitride nanotubes (BNNTSs) are a
structural analog of CNTs composed of
a hexagonal B-N bonding network.

Excellent candidates for
nanocomposites due to:

— comparable mechanical properties to
CNTs

— excellent chemical and thermal stability

— high thermal conductivity

— piezoelectricity

— radiation shielding capability
Uniform dispersion is critical for
harnessing the advantageous
properties of the nanofiller in a
nanocomposite.

Need to overcome the intermolecular
forces between individual nanotubes to
prevent aggregation and bundling.
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Image from Lin et al. J. Phys.: Condens. Matter 25 (2013) 295501.

Current techniques for improvin
nanotube dispersion:

Surface functionalization

Surfactants
High-power sonication
Polymer wrapping

These methods modify or damage the
raw nanotube surface and/or
structure which is often detrimental to
their properties in a nanocomposite.



Background: Solution Thermodynamics

and Solubility Theory

« Solution thermodynamics describes the mixing of multiple components (i.e.
solvents and BNNTSs) by the Gibbs free energy (AG,,;,) of mixing:

AH,;= enthalpy of mixing
AGmix = AHmix - TASmix T=temperature in Kelvin
AS;hix= entropy of mixing

« If AG,,i, IS Negative, the components will spontaneously mix to form a
homogeneous solution — Need to minimize AH,,;,,'— Hansen solubility theory!

« Based on the idea that “like dissolves like” in order to minimize AH,,,;,-
« Match the Hansen solubility parameters (84, 6, 8,) of the solvent to the solute.

6 4= dispersion component (non-polar)
8,= polar component (permanent dipole-dipole interactions)
6= hydrogen bonding component

« The Hansen solubility parameters represent the Hildebrand parameter (8,):2
6 =65 + 65 + 67

1. Bergin et al. Adv. Mater. 20 (2008) 1876 - 1881 and Hughes et al. Nanotech. 23 (2012) 265604.
2. C.M. Hansen “Hansen Solubility Parameters: A User’s Handbook” Taylor & Francis, 2007.



The Approach

* By correlating the dispersion state of )
BNNTSs in single solvents with the known
Hansen solubility parameters a 3D Hansen
space plot (Figure 1) can be generated to
determine the solubility region of BNNTSs.

« Solvent blends are mixtures of two or more
solvents which can enhance dispersion

.y D » Polarity
stability. g
— Does not alter nanotube surface, can enhance m:;,sion
the solubility of individual solvents, Figure 1: An example of 3D Hansen space.!

economical, and environmentally-friendly.

 Suitable solvent blends can be chosen
from the solubility region.

— The solubility parameters can be tailored by
varying the ratio of the two solvents, by
creating a tie-line between the two (Figure 2).
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1.  http://confidentsolventselection.com/about/solubility-parameters.html Figure 2: Choosing solvent blends for
2. http://cool.conservation-us.org/coolaic/sg/bpg/annual/v03/bp03-04.html a solute.?



http://confidentsolventselection.com/about/solubility-parameters.html
http://cool.conservation-us.org/coolaic/sg/bpg/annual/v03/bp03-04.html

Experimental Procedure

5 mg of BNNTs were mixed with 20 mL
of solvent(s)

« Samples were stirred continuously 4
days, then sonicated for two 15 minute
segments.

— Samples were monitored at 24 hours, 1
week, 1 month, and 2 months.

« |n addition to visual inspection, some
samples were characterized with
scanning electron microscopy (SEM)
and UV-Visible spectroscopy (UV-Vis).

Less compatible
Hansen solubility
parameters

The dispersion state is characterized in one of three ways:*
1. Dispersed: maintains a uniform color without aggregation or precipitation

1. Ham et al. J. Colloid. Int. Sci. 286 (2005) 216 — 223.




Single solvent studies

Dimethylacetamide (DMACc), dimethylformamide (DMF),

water, acetone, ethanol (EtOH), . . ) .
Solvents from isopropanol (IPA), methanol (MeOH), dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP),
left to right:  exane. acetic acid. and toluene tetrahydrofuran (THF), pyridine, chloroform, and
' ' dichloromethane (DCM)
Before DMACc displayed a
stirring uniform, stable

dispersion after 1
week.

|

After stirring

for 4 days L e U ' CER e
| PRENGTT I ap— . © DMF, THF,
/ ~ MeOH, IPA, and
After 30 mins W - e acetone showed
of sonication ' | _--ﬂﬂ substantial short-

term dispersion.

|

The remaining

24 hours of
settling time :
1 solvents displayed
1 week of

settling time




Single solvent studies, continued

Dispersion . ) L.
Solvent % % % 5 Structure state (stirring DISperSI?n Stat? (st'|rr|ng
MPa?/2 [ MPal/2 | MPa/2 | MPal/2 only) + 30 mins sonication)
N,N"dimethylacetamide 16.8 11.5 10.2 22.5 CH5C(O)N(CH;), sedimented dispersed
(DMACc)
N,N'-dimethylformamide (DMF) | 17.4 13.7 11.3 24.9 HC(O)N(CH;), swollen dispersed/swollen
tetrahydrofuran (THF) 16.8 5.7 8.0 19.4 (CH,),0, cyclo swollen dispersed/swollen
methanol 15.1 12.3 22.3 29.6 CH;0OH swollen dispersed/swollen?
isopropyl alcohol (IPA) 15.8 6.1 16.4 23.6 (CH5),CHOH swollen dispersed/swollent
acetone 15.5 10.4 7.0 19.9 CH;COCH, sedimented dispersed/swollen
N-methyl-2-pyrrolidone (NMP) 18.0 12.3 7.2 23.0 HN((CH,);CO0), cyclo swollen swollen®
chloroform 17.8 31 5.7 19.0 CHCl,4 sedimented swollen®
dichloromethane 18.2 6.3 6.1 20.0 CH.,Cl, swollen swollen?
acetic acid 14.5 8.0 13.5 21.4 CH,;COOH swollen” swollen™*
dimethylsulfoxide (DMSO) 18.4 16.4 10.2 26.7 (CH;),SO swollen swollen
toluene 18.0 1.4 2.0 18.2 CeHsCH; sedimented swollen’
pyridine 19.0 8.8 5.9 21.8 CsH:N, cyclo sedimented sedimented’
ethanol 15.8 8.8 19.4 26.5 C,H,OH swollen sedimented
hexane 15.3 0.0 0.0 15.3 CH;(CH,),CH, sedimented* sedimented
water 15.6 16.0 42.3 47.8 H,O n/a* n/a*

*Some raw BNNT pieces remaining on top of vial. In water, all raw BNNTs were unaffected by the processing methods; pieces remained on top of the solution.
TMinor milkiness was observed indicating a small amount of BNNTs were dispersed.
ISwollen BNNT were suspended at the top of the solution immediately following sonication.

#BNNTSs were broken up but adhered to the walls of the sample vial.




SEM analysis

¥ + < —
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Figure 1. BNNTs from DMACc disbersion after 30 minutes of
sonication (A, B) and as-synthesized BNNTs (C, D).
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No significant
differences
observed between
raw tubes and
BNNTSs sonicated in
DMAC.

30 minutes of
sonication is
sufficient to
disperse BNNTs
without any
apparent damage
from SEM imaging.
Length/diameter
aspect ratio of 364.
High-resolution
TEM imaging
needed to confirm
the nanotube
structure is intact.



Single solvent studies, continued

To determine a region of BNNT solubility, the
Hansen solubility parameters were plotted as a
function of the dispersion state.

Based on these 2D plots, some observations

can be made:

1. The dispersion component appears to have an
upper limit of 17.4 MPal’?2 (A,B).

2. Best dispersions exists for solvents within a
moderate hydrogen bonding range (B,C).

The solubility region of BNNTSs is within a range

of 15.5-17.4,5.7 - 13.7, and 7.0 — 22.3 MPal/2

for &4, 6,, and &y, respectively.

Our results reinforce that the individual Hansen
solubility parameters can more accurately
describe the interaction between BNNTs and
solvents over §,.1

— For example, the value of 6, for DMAc and pyridine are

22.5 and 21.8, respectively. DMAc is an excellent solvent
while pyridine is a poor solvent.

1. Ham et al. J. Colloid. Int. Sci. 286 (2005) 216 — 223.
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Solvent blend studies

Solvent blends from
left to right:

Before
stirring

|

After stirring
for 4 days

|

After 30 mins
of sonication

|

24 hours of
settling time

|

1 week of
settling time

IPA-DMF, DMF-DCM, hexane-
THF, DMF-toluene, and DMAc-

water

NMP-DMAc, EtOH-acetone,
DMF-acetone, THF-NMP, and
DMSO-THF

Solvent blends were
tailored to lie within
the solubility region.

Almost all solvent

combinations maintain
dispersed BNNTSs after




Solvent blend studies

Solvent blend Dispersion state Dispersion state (stirring +
(50:50 ratio) 80, MPa'2 | 8, MPa™ | &, MPa'™ | 8, MPal” (s:rring only) 20 mins sonic(ation) :
THF-NMP 17.4 9.0 7.6 21.0 swollen dispersed/swollent

DMPF-acetone 16.5 12.1 9.2 22.4 swollen® dispersed/swollen*
NMP-DMAc 17.4 11.9 8.7 22.8 swollen® dispersed/swollen
DMSO-THF 17.6 11.1 9.1 23.1 swollen dispersed/swollen*

DMF-toluene 17.7 7.6 6.7 21.6 swollen dispersed

IPA-DMF 16.6 9.9 13.9 24.3 sedimented dispersed/swollent
ethanol-acetone 15.7 9.6 13.2 23.2 swollen dispersed/swollen*
DMF-DCM 17.8 10.0 8.7 22.5 swollen dispersed/swollent
hexane-THF 16.1 2.9 4.0 17.4 sedimented dispersed/swollen

DMAc-water 16.2 13.8 26.3 35.2 swollen sedimented

TMinor milkiness was observed indicating a small amount of BNNTs were dispersed.
FSwollen BNNT were suspended at the top of the solution immediately following sonication.

- Stable dispersions of BNNTs can be generated although several solvent blends contain
poor stand-alone solvents (i.e. toluene, hexane, ethanol, etc.) by tailoring the solubility
parameters to match BNNT.

- Stability was significantly enhanced as compared with many individual solvent.

» All solvent blends, except DMAc-water, displayed dispersed BNNTs after 30 minutes of

sonication.

— The poor solubility of the DMAc-water system is likely due to the large hydrogen bonding component
of 26.3 MPa??2,




Long term stability - UV-Vis data

—— DMAc : = THF-NMP
— gcetone : w= DMF-acetone
DMSO-THF
81 _ Em,f 0.8 : —— DMAG-NMP
1 e THF-hexane
toluene 1 e DMF-toluene
= THF = EtOH-acetone
0.6 — |PA 0.6 = IPA-DMF
= DMACc-H20
= DMF-DCM

Absorbance (a.u.)

0\h_—==4—' — —— 0

300 400 500 600 700 800 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm)

» Selected single solvents (left) and all solvent blends (right) were analyzed after 2 months
of settling time.

e At an arbitrary point of 500 nm, the absorbances of all samples were compared. The UV-
Vis data reinforced our conclusions from visual observations over time.

* We found that two solvent blends (THF-NMP and DMF-acetone) displayed higher
absorbance values than DMAc alone, which demonstrates the effectiveness of solvent

blends and our approach to BNNT solubility.
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Applying to nanocomposites e |

« By treating polymers as co-solvent in a solvent blend, we
selected suitable solvent-polymer combinations to effectively

disperse BNNTSs.

* The well-dispersed BNNTs were subsequently utilized for the
fabrication of nanocomposite and mats up to 75 wt% BNNT.

[ Example of polymer solvent blends ] BNNT Composites (up to 75 wt%)
s
Composite I
o 1 12
&
—p
mat
fabrication 4

= g_- et

Polyacrylonitril Polyurethane — - |
olyacrylonitrile y o g 13 14 Is 16 I7 I8 |
CENTIMETERS




Summary

Applied Hansen solubility theory to dispersing
BNNTSs.

By correlating the known solubility parameters to the
dispersion state of BNNTSs in single solvents, we
were able to determine a region of good solubility for
BNNTSs.

— DMACc was found to be the best single solvent.
Applying this knowledge, we chose suitable solvent

blends for BNNTs by tailoring the solubility
parameters.

Several solvent blends maintained a higher
concentration of BNNTs than single solvents alone, . ot .
reinforcing the effectiveness of this approach. |

— THF-NMP and DMF-acetone were the best solvent 0 ; N 2

12
8,(MPa"?)
3
[ ]
[ ]

blends. R
We extended this to the fabrication of i
nanocomposites and mats of BNNTs by creating a4k, 49
solvent blends with polymers. Able to generate § ) @i s
nanocomposites up to 75 wt% BNNT. (Y W g
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