

# VSP High-Lift Modeling

Erik D. Olson NASA-Langley Research Center OpenVSP Workshop 2015 Aug. 12, 2015

## Outline



- Motivation and Goal
- Modeling High-Lift Components
- Deflecting Flaps and Slats
- Gap, Overlap and Relative Deflection
- Current Shortcomings
- Recommendations

#### Motivation



- OpenVSP can model high-lift surfaces using simple shearing of the airfoil coordinates. This is an appropriate level of complexity for lower-order aerodynamic analysis methods, such as vortexlattice.
- For higher-order analysis methods (panel and Euler codes), actual three-dimensional surfaces must be modeled, particularly for slats and slotted flaps.
- No direct method for controlling complex flap and slat motions parametrically or intuitively.

### Goal



- Establish a set of best practices for modeling high-lift components in OpenVSP at a level of complexity suitable for higher-order analysis methods.
  - Flaps and slats modeled as separate threedimensional surfaces
  - Controlling motion using simple parameters in the local frame of reference

# Outline



- Motivation and Goals
- Modeling High-Lift Components
- Deflecting Flaps and Slats
- Gap, Overlap and Relative Deflection
- Current Shortcomings
- Recommendations

# Modeling High-Lift Components



- Components of the high-lift configuration (main wing, slat, vane and flap) modeled as separate wings.
- Planform layout for components identical to the complete wing (same span, tip chord, root chord, sweep, dihedral and twist).
- Component airfoil coordinates use fractional chord but normalized by the chord of the full wing section.
- Transition segments allow for nearly-discontinuous change in cross section.
- Flap and slat surfaces can be assigned to separate sets to visualize and export independently.

#### Fractional Airfoil Coordinates



#### EET AR12 Example





#### **Transition Segments**





# Outline



- Motivation and Goals
- Modeling High-Lift Components
- Deflecting Flaps and Slats
- Gap, Overlap and Relative Deflection
- Current Shortcomings
- Recommendations

## **Deflecting Flaps and Slats**



- Problem: VSP transformations (XForm) are defined relative to the x, y, and z axes – whereas we want to specify flap and slat transformations relative to the hinge axis.
- Solution: der specify flap n
- Approach: de transformatic
   Advanced Pa equivalent transformatic

| ۶r        |                   |                 | the user to directly |  |
|-----------|-------------------|-----------------|----------------------|--|
|           | Win               | g               |                      |  |
| n         | Gen XForm Sub Pla | an Sect Airfoil | e hinge axis.        |  |
|           | Transfo           | orms            | ]   _                |  |
| <b>14</b> | Coord System:     | <b>Rel Abs</b>  | ls for flan          |  |
| אל        | XLoc >            | < 0.000 0.000   |                      |  |
| -:/       | YLoc >            | < 0.000 0.000   | kic and uco          |  |
| -19       | ZLoc >            | •< 0.000 0.000  | kis, and use         |  |
|           | XRot >            | • < 0.000 0.000 | laulata tha          |  |
| d         | YRot >1           | •< 0.000 0.000  |                      |  |
|           | ZRot >1           | •< 0.000 0.000  |                      |  |
| :ri       | Rot Origin(X)     | < 0.000         | momponent's XForm    |  |
|           |                   |                 |                      |  |

#### **Definition of Hinge Line**





- Flap with semispan, b
- Hinge line between  $p_o = (x_0, 0, z_0)$  and  $p_1 = (x_1, y_1, z_1)$  where  $y_1 = \sqrt{b^2 - (z_1 - z_0)^2}$
- Hinge axis dihedral,  $\Gamma = \sin^{-1}\left(\frac{z_1 z_0}{b}\right)$  and sweep,  $\Lambda = \tan^{-1}\left(\frac{x_1 x_0}{b}\right)$

#### **Hinge Axis Coordinates**





- *c*-axis lies in the plane of the flap, orthogonal to the hinge axis (approx. chordwise).
- *s*-axis is aligned with hinge axis (approx. spanwise).
- *n*-axis is orthogonal to *c* and *s* (approx. vertical).

# Deflection relative to hinge axis



- Inboard end of hinge axis translated by  $(\Delta c_0, 0, \Delta n_0)$ .
- Outboard translated by  $(\Delta c_1, \Delta s_1, \Delta n_1)$ , where

$$\Delta s_1 = \sqrt{\left(\frac{b}{\cos\Lambda}\right)^2 - (\Delta c_0 - \Delta c_1)^2 - (\Delta n_0 - \Delta n_1)^2 - \frac{b}{\cos\Lambda}}$$

• Component rotated around hinge axis by  $\theta_f$ .

## Translation in xyz Coordinates



 In xyz coordinate system, deflection of inboard end of hinge axis is

$$\Delta p_0 = \begin{pmatrix} \Delta x_0 \\ \Delta y_0 \\ \Delta z_0 \end{pmatrix} = \begin{pmatrix} \Delta c_0 \cos \Lambda \\ -\Delta c_0 \cos \Gamma \sin \Lambda - \Delta n_0 \sin \Gamma \\ -\Delta c_0 \sin \Gamma \sin \Lambda + \Delta n_0 \cos \Gamma \end{pmatrix}$$

Outboard deflection is

$$\Delta p_{1} = \begin{pmatrix} \Delta x_{1} \\ \Delta y_{1} \\ \Delta z_{1} \end{pmatrix} = \begin{pmatrix} \Delta c_{1} \cos \Lambda + \Delta s_{1} \sin \Lambda \\ -\Delta c_{1} \cos \Gamma \sin \Lambda + \Delta s_{1} \cos \Gamma \cos \Lambda - \Delta n_{1} \sin \Gamma \\ -\Delta c_{1} \sin \Gamma \sin \Lambda + \Delta s_{1} \sin \Gamma \cos \Lambda + \Delta n_{1} \cos \Gamma \end{pmatrix}$$

• New semispan, dihedral, and sweep:

$$b' = \sqrt{(y_1 + \Delta y_1 - y_0 - \Delta y_0)^2 + (z_1 + \Delta z_1 - z_0 - \Delta z_0)^2}$$
  

$$\Gamma' = \sin^{-1}\left(\frac{z_1 + \Delta z_1 - z_0 - \Delta z_0}{b'}\right), \Lambda' = \cos^{-1}\left(\frac{x_1 + x_1 - x_0 - \Delta x_0}{b'}\right)$$

## Flap Transformation Steps



- 1. Translate the flap by  $-p_0$  so that the inboard end of the hinge axis coincides with the flap origin.
- 2. Rotate about the x-axis by the negative of the dihedral angle  $(-\Gamma)$  so that the hinge axis lies in the z = 0 plane.
- 3. Rotate about the z-axis by the sweep angle ( $\Lambda$ ) so that the hinge axis coincides with the y-axis.
- 4. Rotate about y-axis by the flap rotation angle ( $\theta_f$ ).
- 5. Rotate about the *z*-axis by the negative of the new sweep angle  $(-\Lambda')$ .
- 6. Rotate about the x-axis by the new dihedral angle ( $\Gamma'$ ).
- 7. Translate by  $p_0 + \Delta p_0$  so that the inboard end of the hinge axis coincides with its new location.

#### **Transformation Matrix**



$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & X \\ A_{21} & A_{22} & A_{23} & Y \\ A_{31} & A_{32} & A_{33} & Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Where

 $A_{12} = -\sin\Gamma\sin\theta_f \cos\Lambda' - \cos\Gamma\cos\theta_f \sin\Lambda\cos\Lambda' + \cos\Gamma\cos\Lambda\sin\Lambda'$  $A_{13} = \cos\Gamma\sin\theta_f \cos\Lambda' - \sin\Gamma\cos\theta_f \sin\Lambda\cos\Lambda' + \sin\Gamma\cos\Lambda\sin\Lambda'$  $A_{23} = \\\sin\Gamma\cos\Lambda\cos\Lambda'\cos\Gamma' - \cos\Gamma\left(\sin\theta_f \sin\Lambda'\cos\Gamma' + \cos\theta_f \sin\Gamma'\right)$  $-\sin\Gamma\sin\Lambda\left(\sin\theta_f \sin\Gamma' - \cos\theta_f \sin\Lambda'\cos\Gamma'\right)$  $\vdots$ (etc.)

## **OpenVSP** Transformation Steps



- 1. Rotate around the *z*-axis by angle  $\gamma$ .
- 2. Rotate around the *y*-axis by angle  $\beta$ .
- 3. Rotate around the x-axis by angle  $\alpha$ .
- 4. Translate along the vector ( $\Delta x$ ,  $\Delta y$ ,  $\Delta z$ ).

B =

 $\begin{bmatrix} \cos\beta\cos\gamma & -\cos\beta\sin\gamma & \sin\beta & \Delta x \\ \sin\alpha\sin\beta\cos\gamma + \cos\alpha\sin\gamma & \cos\alpha\cos\gamma - \sin\alpha\sin\beta\sin\gamma & -\sin\alpha\cos\beta & \Delta y \\ \sin\alpha\sin\gamma - \cos\alpha\sin\beta\cos\gamma & \sin\alpha\cos\gamma + \cos\alpha\sin\beta\sin\gamma & \cos\alpha\cos\beta & \Delta z \\ 0 & 0 & 1 \end{bmatrix}$ If these transformations are equivalent, then A = B.

#### Solve by Inspection







#### **Equivalent Transformations**

$$\beta = \sin^{-1} A_{13}$$
$$\alpha = -\sin^{-1} \frac{A_{23}}{\cos \beta}$$
$$\gamma = -\sin^{-1} \frac{A_{12}}{\cos \beta}$$
$$\Delta x = X$$
$$\Delta y = Y$$
$$\Delta z = Z$$

#### Implementation



|                                   |                   |         | x |  |  |  |  |  |  |  |
|-----------------------------------|-------------------|---------|---|--|--|--|--|--|--|--|
| User Parms                        |                   |         |   |  |  |  |  |  |  |  |
| Predef Create Adjust              |                   |         |   |  |  |  |  |  |  |  |
|                                   | UserParms         |         |   |  |  |  |  |  |  |  |
| SlatIn_Rotation                   | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| Slatin_DeltaXin                   | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| Slatin_DeltaZin                   | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| Slatin_DeltaXout                  | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| Slatin_DeltaZout                  | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| SlatIn_Xin                        | >1                | < 0.211 |   |  |  |  |  |  |  |  |
| Clatin 7in                        |                   | 0 440   |   |  |  |  |  |  |  |  |
| Inboard vane translation/rotation |                   |         |   |  |  |  |  |  |  |  |
| onun_Lout                         |                   | 0.010   |   |  |  |  |  |  |  |  |
| Vaneln_Rotation                   |                   | < 0.000 |   |  |  |  |  |  |  |  |
| Vaneln_DeltaXin                   |                   | < 0.000 | - |  |  |  |  |  |  |  |
| Vaneln DoltaZin                   |                   | ■ 0.000 | - |  |  |  |  |  |  |  |
| Vaneir Inboa                      | rd vane hinge axi | S .000  |   |  |  |  |  |  |  |  |
| Vanelr                            |                   | 000     |   |  |  |  |  |  |  |  |
| Vanein_Xin                        |                   | < 1.510 |   |  |  |  |  |  |  |  |
| Vaneln_Zin                        | >1                | < 0.002 |   |  |  |  |  |  |  |  |
| Vaneln_Xout                       | >1                | < 1.726 |   |  |  |  |  |  |  |  |
| Vaneln_Zout                       | >1                | < 0.004 |   |  |  |  |  |  |  |  |
| FlapIn_Rotation                   | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| FlapIn_DeltaXin                   | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| FlapIn_DeltaZin                   | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| FlapIn_DeltaXout                  | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| FlapIn_DeltaZout                  | >1                | < 0.000 |   |  |  |  |  |  |  |  |
| <b>F1</b> 1 10 <sup>11</sup>      |                   | 1 700   |   |  |  |  |  |  |  |  |

| Adv Parm Links                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Add                                                                                                                                                                                         | SlatIn_Deflection<br>SlatOut Deflection                                                                             |                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
| Del                                                                                                                                                                                         | Vaneln Deflection<br>VaneOut Deflection                                                                             |                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
| Del All                                                                                                                                                                                     | FlapIn_Deflection<br>FlapOut_Deflection                                                                             |                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
|                                                                                                                                                                                             | Name: Vaneln_                                                                                                       | Deflection                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |  |  |  |  |
|                                                                                                                                                                                             | Parm                                                                                                                | Picker                                                                                                                                                                                                                                                                                                                                                             |    |  |  |  |  |  |  |  |
| Container                                                                                                                                                                                   | 0-UserParms                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    | \$ |  |  |  |  |  |  |  |
| Group                                                                                                                                                                                       | User_Group_0                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                    | \$ |  |  |  |  |  |  |  |
| Parm                                                                                                                                                                                        | User_0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                    | \$ |  |  |  |  |  |  |  |
| Var Name:                                                                                                                                                                                   |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
| Ad                                                                                                                                                                                          | d Input Var                                                                                                         | Add Output Var                                                                                                                                                                                                                                                                                                                                                     |    |  |  |  |  |  |  |  |
| Input Parms                                                                                                                                                                                 |                                                                                                                     | Output Parms                                                                                                                                                                                                                                                                                                                                                       |    |  |  |  |  |  |  |  |
| VAR_NAME         PARM           b         TotalSpan           xin         VaneIn_Xin           zin         VaneIn_Xin           xout         VaneIn_Xout           Yout         VaneIn_Zout | GROUP CONTAINER<br>WingGeom vane_inboard<br>High_Lift_0 UserParms<br>High_Lift_0 UserParms<br>High_Lift_0 UserParms | VAR_NAME         PARM         GROUP         CONTAINER           x         X_Rel_Local XForm         vane_inboard           y         Y_Rel_Local XForm         vane_inboard           z         Z_Rel_Local XForm         vane_inboard           xrot         X_Rel_Rotal XForm         vane_inboard           vrot         Y_Rel_Rotal XForm         vane_inboard |    |  |  |  |  |  |  |  |



#### Example





# Outline



- Motivation and Goals
- Modeling High-Lift Components
- Deflecting Flaps and Slats
- Gap, Overlap and Relative Deflection
- Current Shortcomings
- Recommendations

## Gap, Overlap, Rel. Deflection



- Problem: flap and slat translation and rotation tends to be specified in terms of Gap, Overlap, and Relative Deflection ( $\delta_v$ ).
- Solution: determine  $\Delta c_0$ ,  $\Delta n_0$ ,  $\Delta c_1$ , and  $\Delta n_1$ that correspond to the desired gap, overlap and  $\delta_v$ .
- Approach: post-process OpenVSP geometry to calculate gap, overlap and  $\delta_v$ . Use constrained optimization to solve for  $\Delta c_0$ ,  $\Delta n_0$ ,  $\Delta c_1$ , and  $\Delta n_1$ .

### **EET AR12 Flap Settings**



| Configuration | Component | Gap/c | Overlap/c | Deflection, deg |
|---------------|-----------|-------|-----------|-----------------|
| Takeoff       | Slat      | 0.02  | 0.02      | 50              |
|               | Vane      | 0.015 | 0.04      | 15              |
|               | Flap      | 0.01  | 0.01      | 15              |
| Landing       | Slat      | 0.02  | 0.02      | 50              |
|               | Vane      | 0.02  | 0.03      | 30              |
|               | Flap      | 0.01  | 0.005     | 30              |



Transformational Tools and Technologies Project

#### **EET AR12 Flap Settings**





# Outline



- Motivation and Goals
- Modeling High-Lift Components
- Deflecting Flaps and Slats
- Gap, Overlap and Relative Deflection
- Current Shortcomings
- Recommendations

## **Current Shortcomings**



- Discontinuous Airfoils in Cove Region
  - VSP w-lofting (chordwise) is always continuous.
- Spanwise Lofting of Discontinuities
  - When "discontinuities" are at different arc lengths, u-lofting does not connect them to each other.





### Recommendations



- 1. Add rotation about an arbitrary axis.
- 2. Add a method for introducing discontinuities to airfoils (repeated point?).
- 3. Automatically connect discontinuities during spanwise lofting (in conjunction with #2).

