

3D Ice Cloud Climatology from 10+ years of CALIOP Observations

SSAI/

Xia Cai¹ (xia.cai@nasa.gov), David Winker², Brian Magill¹, Mark Vaughan², Melody Avery², Chip Trepte², Patrica Lucker¹

1 Science Systems and Applications, Inc, Hampton, VA 23666 2 NASA Langley Research Center, Hampton, VA 23681

Abstract

A comprehensive understanding of the spatial and temporal distributions of clouds on a global scale can be best achieved when the vertical distributions and multi-layer occurrence frequencies obtained from active remote sensors are fully integrated with the horizontal distributions currently provided by passive sensors. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite lidar onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft was specially designed to acquire aerosol and cloud profiles with unprecedented high vertical resolution and accuracy. As a part of the A-Train satellite constellation, CALIPSO has been operating routinely for more than 10 years and continues to provide a wealth of cloud observations to describe the mean state and inter-annual variability. Recently a suite of level 3 (L3) cloud products has been under development by the CALIPSO lidar science working group at the NASA Langley Research Center. These products describe 3-dimensional (3D) cloud occurrence and 3D ice cloud extinction coefficients and ice water content. Future evolution of the products will add observations from the Imaging Infrared Radiometer onboard CALIP-SO. Here we present a brief introduction and provide results from a product prototype. We will characterize the inter-annual vertical variability of zonal cloud occurrence and ice water content during the last 10 years. Suggestions and comments are welcome to help us design and provide better cloud climatology products using CALIOP observations for our cloud community.

CALIPSO ice cloud properties product

5-km column (L2 05kmCPro)								
DEM	_Surface	-						

Resolution and filters

- Temporal coverage: AM, PM, AM+PM
- Spatial coverage: longitude -180° ~ 180°, latitude -85° ~ 85°, altitude -0.5 km ~ 20.2 km
- **Spatial resultion:** longitude 2.5°, latitude 2°, altitude 120 m
- Missing value: -9999

Scientific data set (SDS)

- Spatial cooridinates
- Latitude_Midpoint, Longitutde_Midpoint, Altitude_Midpoint
- Bin informatin of *Extinction_Coefficient_532* and *IWC* histograms
 - Histogram_Bin_Extinction, Histogram_Bin_IWC
- Meteorological data

[If opaque
Num_Cloud Num_		.um_CloudFree		Num_Subsurface		Num_Totally			_Attenuated			
	Feature	e filter										
											1	
Num_lceCloud Nu		Num	n_Wat	ud	Νι	Num_UnknownCloud						
	Phase filter											
										-		
Num_IceCloud_Accepted					Num_IceCloud_Rejected							
	QA/QC	filter				_						
Hist_E Hist_IV	xtinction_ VC_lceCL	_lceClo oud_A	oud_A \ceept	ccepto ed	ed							

- Valid *Extinction_Coefficient_532* and *IWC* ranges:
 - Extinction Coefficient 532: -0.1 km⁻¹ ~ 10 km⁻¹
 - *IWC:* -0.01 g $m^{-3} \sim 1$ g m^{-3}
- QA/QC filters for ice clouds:
 - QA filters: hight confidence feature, high confidence phase random-oriented ice clouds
 - QC filters: valid extinction retrieval (*Extinction_QC_Flag_532* = 0, 1, 2, 16, 18; *ExtinctionQC_Uncertainty* \neq 99 km⁻¹), valid lidar ratio [10, 50), OverlyingOD ≤ 2
- *Temperature*, *Pressure*, *Relative_Humidity*, *Tropopause_Height*
- Numbers of granules
 - Num_Granules_Processed, Day_of_Month_Observed

Numbers of samples

- Num_Subsurface, Num_Totally_Attenuated, Num_CloudFree, Num_Cloud
- Num_IceCloud, Num_WaterCloud, Num_UnknownCloud
- Num_IceCloud_Accepted, Num_IceCloud_Rejected

Histograms of *Extinction_Coefficient_532* and IWC

- *Hist_Extinction_IceCloud_Accepted, Hist_IWC_IceCloud_Accepted*
- Median_Extinction_IceCloud_Accepted, Median_IWC_IceCloud_Accepted

Monthly statistics - Night, July 2008

Penetration frequency

(Num_Cloud+Num_CloudFree) / (Num_Cloud+Num_CloudFree+Num_Totally_Atten)

Ice cloud fraction

Num_IceCloud /(Num_Cloud+Num_CloudFree)

Ice cloud ratio

Num_IceCloud /(Num_IceCloud+Num_WaterCloud)

Mean IWC

Estimated from Hist_IWC_IceCloud_Accepted

Annual Cycle of Mean IWC in 2008 - Night

-30 Latitude, degree

-90 -30 Latitude, degree

Inter-annual Variability of Mean IWC - Night, July

