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INTRODUCTION / MOTIVATION
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Image: *Kesselman, S., Snapshot of the First 500 Commercial 
UAS Exemptions, Association for Unmanned Vehicle 
Systems International (AUVSI), 2015.

• UAS in the National Airspace
– Companies can file for exemption 

from obtaining COAs

– Of first 500 exemptions, 71% are 
rotary-wing in nature*

• More than 90% of these are multi-
copters*

• Impacts on civilian populations 
(in large numbers) unknown
– Vehicle sightings sometimes 

referred to as “annoying”

– Vehicle acoustics require 
consideration



Work funded by NASA’s DELIVER Project
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Noise:

- Key for community 
acceptance

Gaps / Challenges:

- No current ability to account 
for noise in conceptual 
design

Emerging Vertical Lift 
Vehicle Concept Space

Hybrid Electric Propulsion:

- Enabling technology for all 
vehicles in concept space

Gaps / Challenges:

- Limited hybrid-electric 
propulsion system models –
for large vehicles only

- No data for novel 
cryogenically cooled power 
systems

Conceptual Design (NDARC):

- Enables design and sizing of 
vehicles for specific missions

- Validated only for larger (>2 
PAX), convention vehicles

Gaps / Challenges: 

- Tools not calibrated to small 
and alternative configurations

- Limited data available for novel 
and small vehicles

Autonomy:

- High impact on mission and 
operational capability

Gaps / Challenges:

- No current ability to include 
autonomy constraints in 
conceptual design

Data & 
Models

Data & 
Models

Data & 
Models

Vehicle 
Data & 
Missions

• 3-year project ending 9/2017
• Feasibility assessment of design tools

INTRODUCTION / MOTIVATION



Loading and Broadband Noise

Thickness and High-Speed Impulsive 
Noise

Blade Vortex Interaction 
(BVI) Noise

Image:   Brentner, K. and Farassat, F., “Modeling aerodynamically generated sound 
of helicopter rotors,” Progress in Aerospace Sciences, Vol. 39, Apr 2003.

Image:   Burley, C. L. and Brooks, T. F., “Rotor Broadband Noise Prediction with 
Comparison to Model Data,” Journal of the American Helicopter Society, Vol. 

49, (1), 2004.

UAS SCALING CONSIDERATIONS

• Common rotor noise sources
– Deterministic

– Broadband

• Effects of reduced scale
– ���� ≈ 0.15 − 0.3

– ��� 0.75� ≈ 10� − 10�

• Effects of multiple rotors
– Multiple BPFs

– Rotor-rotor, rotor-airframe 
interaction effects

• Tonal vs. Broadband Noise
– Reduced scale may increase 

importance of broadband noise
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FACILITIES
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Langley’s UAS Operations Office
• Coordinates pilots, vehicles, 

support personnel
• Supports multiple flight locations

• 6.3’ dia. tunnel
• M 0.045 - 0.14

Exterior Effects Room

Low Speed Aeroacoustic Wind TunnelAnechoic Chamber

• Free field >~80 Hz
• 337 m2

• 31-channel 3D 
audio system

• Seating for 39



SOURCE MODELING AND PREDICTION
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• High-fidelity CFD (DJI-CF rotor)
– OVERFLOW2 uRANS 

– Computes impermeable blade surface 
loadings

– Coupled with PSU-WOPWOP (referred 
to as OF2-PSW)

– Utilize off-body adaptive mesh 
refinement (AMR)

• Low-fidelity BEA (TM-CF rotor)
– Propeller Analysis System (PAS) suite of 

ANOPP

– Only applicable to cases of isolated 
rotors/propellers

PAS Blade Grid PAS Blade Pressures

CFD Grid

8
POC: Nik Zawodny, Doug Boyd



SOURCE MODELING AND PREDICTION
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DJI-CF Rotor, Ω = 5400 RPM

BPF

• Acoustic Spectra
– Data at � = −45∘

– Low freqs.: Rotor BPF and first several harmonics

– Mid- and high-freqs.: Mixture of motor and broadband noise

– Certain motor tone levels similar b/w loaded vs. unloaded casesPOC: Nik Zawodny



SOURCE MODELING AND PREDICTION
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• Method Comparisons 
(OF2-PSW vs PAS-SPN)
– DJI-CF rotor

– Excellent BPF directivity 
agreement

• BPF Predictions using PAS
– 3 mid-range rotation rates 

per rotor

– Good comparisons with 
experimental data (within 
±2.5 dB)

• Two BPF Predictions
– Better 2*BPF agreement b/w 

OF2-PSW and expt.

– 2*BPF levels considerably 
lower than BPF levels

– Negligible higher frequency 
content predicted by both 
methods 

BPF SPL (Ω = 5400 RPM)

2*BPF SPL

POC: Nik Zawodny



GROUND TESTING
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• Determine contributions of rotor and rotor-
airframe interactions to radiated noise for simple 
vehicle configurations

• Rotor and airframe support stands
- Physically separate from one another
- Able to vary rotor tip separation distance (Δ)
- Airframes of constant and variable cross-

section considered
- �

����⁄ ≈ 1

• Results show
- Harmonically rich for small rotor tip clearances (Δ)       
- Case of Δ �⁄ = −0.5 nearly identical to case of 

isolated rotor

POC: Nik Zawodny
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GROUND TESTING

POC: Nik Zawodny
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GROUND TESTING

POC: Nik Zawodny
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GROUND TESTING

POC: Nik Zawodny
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GROUND TESTING

POC: Nik Zawodny



FLIGHT TESTING

Virginia Beach Airport (12/2014)
• Private grass airfield, 1500m x 60m

• 3 ground mics, 1 mic on 1.2m stand

• No on-site meteorological data  

Fort A.P. Hill (8/2015)
• Paved 365m x 30m runway

• Shared test with separate NASA project

• 4 ground mics

• Weather station ~4m off ground

Oliver Farms, Smithfield, VA (Fall 2016)
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San Diego, CA (December 2016)
• In conjunction with Straight-Up Imaging

POC: Ran Cabell



EXAMPLE FLIGHT VEHICLES
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Edge 540 (Gas)
11.3 kg; 27 m/s

3DR Y6
2.5 kg; 15 m/s

Phantom 2
1.6 kg; 15 m/s

Prioria Hex
7.3 kg; 15 m/s

•Fixed-pitch propellers

•All vehicles flown manually

•Flight data acquisition 
system with two GPS 
systems mounted on each 
vehicle

POC: Ran Cabell



SPECTROGRAMS: HOVER
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Phantom 2 Quadcopter

BPFs

“Unsteady loading can be the dominant noise source, particularly for low-tip-
speed propellers.” 
(Magliozzi, Hanson, Amiet, NASA TR)
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POC: Ran Cabell



• Work toward the goal of understanding human annoyance that 
results from the sound of UAS has fallen (/will fall) into 3 categories:

– Synthesis:
Generating the capability to produce an auralized UAS flyover.

– Work done Winter 2015, presented Summer 2015.

– Simulation:
Producing vehicle dynamics histories (distance, attitude, etc.) that can be used 
for auralization.

– Work done Summer 2015, presented Summer 2016.

– Psychoacoustic Testing:
Presenting recorded and auralized sounds to human subjects in order to get 
direct measurements of the effects these sounds may have on a general 
population.

– Work done Spring 2017, preliminary results indicate annoyance penalty 
with small UAS compared to road vehicle

19

AURALIZATION AND PSYCHOACOUSTICS

POC: Steve Rizzi, Andrew Christian
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AURALIZATION AND PSYCHOACOUSTICS

Auralizing a basic model:

POC: Steve Rizzi, Andrew Christian
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AURALIZATION AND PSYCHOACOUSTICS

Included Effects:
• Dynamics
• Wind
• Body Drag
• Rotor Drag
• Turbulence
• “Manufacturing

Error”

POC: Steve Rizzi, Andrew Christian



• Important to understand the acoustic impacts of current UAS and whether existing tools 
can successfully predict and auralize the noise

• Application of high (CFD) and low (PAS) fidelity methods to isolated rotor noise compare 
favorably with measurements from ground testing

• Acoustic implications of propeller/airframe interaction can be significant at small spacings 
from the rotor tip

• Flight tests have revealed the unsteady loading on the rotor(s) can increase the noise and 
change its character

• Auralizations from test data or predictions can reproduce realistic UAS noise when 
accounting for various free flight effects

• These auralizations can be presented to sound juries to measure the effects they might 
have on the general population
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CONCLUDING REMARKS

POC: Steve Rizzi, Andrew Christian
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