

Overview of Unmanned Aircraft System (UAS) Noise Research at NASA Langley

Research Center

Michael J. Doty Aeroacoustics Branch Head, NASA Langley

Aircraft Noise and Emissions Reduction Symposium April 21, 2017 Alexandria, VA

ACKNOWLEDGMENTS

 The presentation represents work from several dedicated researchers and staff:

(randolph.h.cabell@nasa.gov)

- Steve Rizzi (<u>stephen.a.rizzi@nasa.gov</u>)
- Ran Cabell
- Nik Zawodny
- Andrew Christian
- Doug Boyd
- Aric Aumann
- Brian Tuttle
- Ferd Grosveld
- Harry Haskin
- Matt Hayes

(nikolas.s.zawodny@nasa.gov) (andrew.christian@nasa.gov) (d.d.boyd@nasa.gov)

(aric.r.aumann@nasa.gov)

(brian.c.tuttle@nasa.gov)

(f.grosveld@nasa.gov)

(henry.h.haskin@nasa.gov)

(matthew.t.hayes@nasa.gov)

 Funding primarily from the NASA DELIVER, Revolutionary Vertical Lift Technology, and Transformational Tools and Technologies Projects²

OUTLINE

- I. Introduction/Motivation
 - A. Scaling
 - **B.** Facilities
- I. Source Modeling and Prediction
- II. Ground Testing
- III. Flight Testing
- IV. Auralization and Psychoacoustic Studies
- V. Concluding Remarks

INTRODUCTION / MOTIVATION

- UAS in the National Airspace
 - Companies can file for exemption from obtaining COAs
 - Of first 500 exemptions, <u>71%</u> are rotary-wing in nature*
 - More than <u>90%</u> of these are <u>multi-</u> <u>copters</u>*
- Impacts on civilian populations (in large numbers) unknown
 - Vehicle sightings sometimes referred to as "annoying"
 - Vehicle acoustics require consideration

Image: *Kesselman, S., *Snapshot of the First 500 Commercial UAS Exemptions*, Association for Unmanned Vehicle Systems International (AUVSI), 2015.

INTRODUCTION / MOTIVATION

Work funded by NASA's DELIVER Project

6

UAS SCALING CONSIDERATIONS

- Common rotor noise sources
 - Deterministic
 - Broadband

Thickness and High-Speed Impulsive Noise

>>>))))

Loading and Broadband Noise

- $-M_{\rm tip} \approx 0.15 0.3$
- $-Re_{c}(0.75R)\approx 10^{4}-10^{5}$
- Effects of multiple rotors
 - Multiple BPFs
 - Rotor-rotor, rotor-airframe interaction effects
- Tonal vs. Broadband Noise
 - Reduced scale may increase importance of broadband noise

Image: Burley, C. L. and Brooks, T. F., "Rotor Broadband Noise Prediction with Comparison to Model Data," *Journal of the American Helicopter Society*, Vol. 49, (1), 2004.

Blade Vortex Interaction

(BVI) Noise

FACILITIES

7

SOURCE MODELING AND PREDICTION

- High-fidelity CFD (DJI-CF rotor)
 - OVERFLOW2 uRANS
 - Computes impermeable blade surface loadings
 - Coupled with PSU-WOPWOP (referred to as OF2-PSW)
 - Utilize off-body adaptive mesh refinement (AMR)

- Low-fidelity BEA (TM-CF rotor)
 - Propeller Analysis System (PAS) suite of ANOPP
 - Only applicable to cases of isolated rotors/propellers

SOURCE MODELING AND PREDICTION

- Acoustic Spectra
 - Data at $\theta = -45^{\circ}$
 - Low freqs.: Rotor BPF and first several harmonics
 - Mid- and high-freqs.: Mixture of motor and broadband noise
- POC: Nik Zawodny Certain motor tone levels similar b/w loaded vs. unloaded cases

SOURCE MODELING AND PREDICTION

- Method Comparisons (OF2-PSW vs PAS-SPN)
 - DJI-CF rotor
 - Excellent BPF directivity agreement
- **BPF** Predictions using PAS
 - 3 mid-range rotation rates per rotor
 - Good comparisons with experimental data (within ±2.5 dB)
- BPF SPL (Ω = 5400 RPM) Thickness Loading Total DJI-CF Rotor 90 -----OF2-PSW — — · 4800 RPM ----- 5400 RPM PAS 60 ο Expt. 30 (deg.) 0 0 • 0 -30 -60 -90 30 40 50 60 50 60 40 50 60 40 SPL (dB re. 20 μ Pa)

30 40 50 60 BPF SPL (dB re. 20 µPa)

ο.

6000 RPM

- Two BPF Predictions
 - Better 2*BPF agreement b/w OF2-PSW and expt.
 - 2*BPF levels considerably lower than BPF levels
 - Negligible higher frequency content predicted by both methods

- Determine contributions of rotor and rotorairframe interactions to radiated noise for simple vehicle configurations
- Rotor and airframe support stands
 - Physically separate from one another
 - Able to vary rotor tip separation distance (Δ)
 - Airframes of constant and variable crosssection considered
 - $W/c_{\rm ref} \approx 1$
- Results show
 - Harmonically rich for small rotor tip clearances (Δ)
 - Case of $\Delta/R = -0.5$ nearly identical to case of isolated rotor

11

FLIGHT TESTING

Virginia Beach Airport (12/2014)

- Private grass airfield, 1500m x 60m
- 3 ground mics, 1 mic on 1.2m stand
- No on-site meteorological data

Fort A.P. Hill (8/2015)

- Paved 365m x 30m runway
- Shared test with separate NASA project
- 4 ground mics
- Weather station ~4m off ground

Oliver Farms, Smithfield, VA (Fall 2016)

San Diego, CA (December 2016)

In conjunction with Straight-Up Imaging

EXAMPLE FLIGHT VEHICLES

- •Fixed-pitch propellers
- •All vehicles flown manually
- •Flight data acquisition system with two GPS systems mounted on each vehicle

SPECTROGRAMS: HOVER

Phantom 2 Quadcopter

"Unsteady loading can be the dominant noise source, particularly for low-tipspeed propellers." (Magliozzi, Hanson, Amiet, NASA TR)

AURALIZATION AND PSYCHOACOUSTICS

 Work toward the goal of understanding human annoyance that results from the sound of UAS has fallen (/will fall) into 3 categories:

– Synthesis:

Generating the capability to produce an auralized UAS flyover.

- Work done Winter 2015, presented Summer 2015.

- Simulation:

Producing vehicle dynamics histories (distance, attitude, etc.) that can be used for auralization.

– Work done Summer 2015, presented Summer 2016.

– Psychoacoustic Testing:

Presenting recorded and auralized sounds to human subjects in order to get direct measurements of the effects these sounds may have on a general population.

 Work done Spring 2017, preliminary results indicate annoyance penalty with small UAS compared to road vehicle

AURALIZATION AND PSYCHOACOUSTICS

Auralizing a basic model:

AURALIZATION AND PSYCHOACOUSTICS

CONCLUDING REMARKS

- Important to understand the acoustic impacts of current UAS and whether existing tools can successfully predict and auralize the noise
- Application of high (CFD) and low (PAS) fidelity methods to isolated rotor noise compare favorably with measurements from ground testing
- Acoustic implications of propeller/airframe interaction can be significant at small spacings from the rotor tip
- Flight tests have revealed the unsteady loading on the rotor(s) can increase the noise and change its character
- Auralizations from test data or predictions can reproduce realistic UAS noise when accounting for various free flight effects
- These auralizations can be presented to sound juries to measure the effects they might have on the general population

Backup Slides

CONFERENCE PUBLICATIONS

- Christian, Boyd, Zawodny, Rizzi, "Auralization of tonal rotor noise components of a quadcopter flyover," Inter-Noise 2015, San Francisco CA, August 9-12, 2015.
- Rizzi, Christian, "A method for simulation of rotorcraft fly-in noise for human response studies," Paper 192, InterNoise 2015, San Francisco, CA, August 9-12, 2015.
- Zawodny, Boyd, Burley, "Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components," AHS Forum-72, West Palm Beach, FL, May 17-19, 2016.
- Christian, Lawrence, "Initial Development of a Quadcopter Simulation Environment for Auralization," AHS Forum-72, West Palm Beach, FL, May 17-19, 2016.
- Cabell, McSwain, Grosveld, "Measured Noise from Small Unmanned Aerial Vehicles," Noise-Con 2016, Providence, RI, June 13-15, 2016.
- Zawodny, Boyd, "Investigation of Rotor-Airframe Interaction Noise Associated with Small-Scale Rotary-Wing Unmanned Aircraft Systems," abstract submitted to AHS Forum-73, 2017.
- Christian, Cabell, "Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial Vehicles," abstract submitted to AIAA Aviation 2017.
- Zawodny, Haskin, "Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel," abstract submitted to AIAA Aviation 2017.